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Perturbative expansion of the R-ratio

The R-ratio is defined as 

At lowest order in perturbation theory (PT)
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The R-ratio: perturbative expansion

First order correction

virtual real

Real and virtual do not interfere since they have a different # of particles. 
The amplitude squared becomes

|A1|2 = |A0|2 + �s

�
|A1,r|2 + 2Re{A0A

�
1,v}

⇥
+ O(�2

s) �s =
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s

4⇥

R1 = R0

�
1 +

�s

⇥

⇥
Integrating over phase space, the first order result reads
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R-ratio and UV divergences
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To compute the second order correction one has to compute diagrams 
like these and many more

Ultra-violet divergences do not cancel. Result depends on UV cut-off. 
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...

One gets
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Renormalization

Loop corrections in QCD are (often) divergent. Divergences originate 
from regions of very large momenta 

5

QCD is a renormalizable theory. This means that that one can 

1. regularize the divergence (e.g. using dimensional regularization)

 

2. absorbe all UV divergences into a universal redefinition of a finite 
number of the bare parameters of QCD

d4k � µ2�d4�2�k



Renormalization and running coupling
For the R-ratio, the divergence is dealt with by renormalization of the 
coupling constant
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R expressed in terms of the renormalized coupling is finite

Renormalizability of the theory guarantees that the same redefinition of the 
coupling removes all UV divergences from all physical quantities (massless case)
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Renormalization achieved by replacing bare masses and the bare coupling 
with renormalized ones. Masses and coupling become dependent on the 
renormalization scale. The dependence is fully predicted in pQCD 

• the coupling ⇒	β function
• the masses ⇒	anomalous dimensions γm
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The beta-function

The renormalized coupling is 
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So, one immediately gets
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Roughly speaking:
(a) quark loop vacuum polarization diagram gives a negative contribution 
to b0  ∼ - 2nf /12𝜋

(b) gluon loop gives a positive contribution to b0  ∼ 11Nc /12𝜋

Since (b) > (a) ⇒	b0,QCD > 0                                                               
⇒	overall negative beta-function in QCD  
While in QED (b) = 0 ⇒ b0,QED < 0 

More on the beta-function

(a)

(b)

�QED =
1
3�

�2 + . . .
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More on the beta-function

9

• QCD: perturbative picture valid for scales 𝝁 >> 𝛬QCD (about 300 MeV) 

• QED: perturbative picture valid for scales 𝝁 << 𝛬QED   

Question: why does nobody talk about 𝛬QED? 



More on the beta-function
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• QCD: perturbative picture valid for scales 𝝁 >> 𝛬QCD (about 300 MeV) 

• QED: perturbative picture valid for scales 𝝁 << 𝛬QED   

Question: why does nobody talk about 𝛬QED? 

Answer:

(Note that the fact that QED is not a consistent theory up to very high 
scales implies that it must be an effective theory) 

⇤QED = me exp

⇢
� 1

2b0↵(me)

�
⇠ 10

90
GeV >> MPlanck



Back to the QCD beta-function

Perturbative expansion of the beta-function: 
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• nf is the number of active flavours (depends on the scale)
• today, the beta-function known up to five loops, but only first two 

coefficients are independent of the renormalization scheme
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Exercise: proof the above statement [hint: use the fact that at O(αs) the 
coupling in two different schemes is related by a finite change]



Active flavours & running coupling

The active field content of a theory modifies the running of the couplings  

Constrain New Physics by measuring the running at high scales? 

11



Renormalization Group Equation

Consider a dimensionless quantity A, function of a single scale Q. The 
dimensionless quantity should be independent of Q. However in quantum 
field theory this is not true, as renormalization introduces a second scale µ 
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Renormalization Group Equation

But the renormalization scale is arbitrary. The dependence on it must cancel 
in physical observables up to the order to which one does the calculation. 

Consider a dimensionless quantity A, function of a single scale Q. The 
dimensionless quantity should be independent of Q. However in quantum 
field theory this is not true, as renormalization introduces a second scale µ 
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Renormalization Group Equation

But the renormalization scale is arbitrary. The dependence on it must cancel 
in physical observables up to the order to which one does the calculation. 

So, for any observable A one can write a renormalization group equation 
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⌅µ2�s = �s(µ2)

⇤
µ2 ⌅

⌅µ2
+ µ2 ⌅�s

⌅µ2

⌅

⌅�s

⌅
A

�
Q2

µ2
,�s(µ2)

⇥
= 0

Consider a dimensionless quantity A, function of a single scale Q. The 
dimensionless quantity should be independent of Q. However in quantum 
field theory this is not true, as renormalization introduces a second scale µ 
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Renormalization Group Equation

But the renormalization scale is arbitrary. The dependence on it must cancel 
in physical observables up to the order to which one does the calculation. 

So, for any observable A one can write a renormalization group equation 
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Consider a dimensionless quantity A, function of a single scale Q. The 
dimensionless quantity should be independent of Q. However in quantum 
field theory this is not true, as renormalization introduces a second scale µ 

Scale dependence of A enters through the running of the coupling: 
knowledge of                    allows one to compute the variation of A with 
Q given the beta-function 

A(1,�s(Q2))
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Measurements of the running coupling

Current experimental results on αS

Bethke,hep-ph/0407021

αS(MZ) = 0.1182 ± 0.0027, MS, NNLO

jets & shapes 161 GeV
jets & shapes 172 GeV

0.08 0.10 0.12 0.14

(((( ))))s Z

-decays [LEP]

xF [ -DIS]
F [e-, µ-DIS]

decays

(Z --> had.) [LEP]

e e [ ]+
had

_
e e [jets & shapes 35 GeV]+ _

(pp --> jets)

pp --> bb X

0

QQ + lattice QCD

DIS [GLS-SR]

2

3

pp, pp --> X

DIS [Bj-SR]

e e [jets & shapes 58 GeV]+ _

jets & shapes 133 GeV

e e [jets & shapes 22 GeV]+ _

e e [jets & shapes 44 GeV]+ _

e e [ ]+
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_
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2
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jets & shapes 201 GeV
jets & shapes 206 GeV

DIS [ep –> jets]

αS is large at current scales.

Measurement αS is stable,
(αS(MZ) = 0.1183 ± 0.0027 in 2002).

The decrease of αS is quite slow – as the
inverse power of a logarithm.

Higher order corrections are and will con-
tinue to be important.

Quantum Chromodynamics at the LHCLecture I: Proton structure and Parton Showers – p.10/58

Summarizing:

• overall consistent picture: αs from very 
different observables compatible

• αs is not so small at current scales  

• αs decreases slowly at higher energies 
(logarithmic only) 

• higher order corrections are and will 
remain important 

�s(MZ0) = 0.1184 ± 0.007

World average
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Measurements of the running coupling

Current experimental results on αS

Bethke,hep-ph/0407021
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Measurement αS is stable,
(αS(MZ) = 0.1183 ± 0.0027 in 2002).

The decrease of αS is quite slow – as the
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Higher order corrections are and will con-
tinue to be important.

Quantum Chromodynamics at the LHCLecture I: Proton structure and Parton Showers – p.10/58

Questions:

• Why is the determination of αs from  
t-decays so accurate?   

• Why is the determination of αs from  
the four-jet rate so accurate?

�s(MZ0) = 0.1184 ± 0.007

World average
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The two faces of QCD

15

Confinement 
(large distance)

asymptotic freedom 
(short distance)

NB: no proof of confinement. We simply never observed quarks as free particles 



In the following we will concentrate on the perturbative regime of QCD. 

Next we’ll discuss generic properties of QCD amplitudes 

• Soft-collinear divergences (and how they are dealt with) 

• Kinoshita-Lee-Nauenberg theorem 

• The concept of infrared finiteness  

• Sterman Weinberg jets 

Next
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Let’s consider again the R-ratio

The soft approximation

17

R � �(e+e� � hadrons)
�(e+e� � µ+µ�)

� Nc

�

q

e2
q

Leading order result 



Let’s consider again the R-ratio

The soft approximation
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We have seen a good agreement between 
the leading order result and data, but 
there are various unanswered questions 

• Since free quarks do not exist, why is 
the leading order result so good? 

• In particular, why can one identify the 
cross-sections for the production of 
quarks to that of hadrons? 

• Can one probe QCD further by 
testing more exclusive observables? 



Quark-hadron duality 

19

The reliability of parton-level calculations to describe hadron-level 
observables is known as quark-hadron duality.  

This duality relies on the time separation between a hard scattering (partons 
are produced) and a soft process (quarks hadronize). Since the two processes 
happen at very different time-scales there is not quantum interference and 
the soft process does not alter the hard momentum flow “too much”

With this in mind, let’s apply the parton description and look for a better 
approximation of R, i.e. let’s compute QCD corrections, at least in some 
approximation  



QCD corrections are only in the final state, i.e. corrections to �� � qq̄

At leading order: 

Mµ
0 = ū(p1)(�ie�µ)v(p2)

p1

�ie�µ

The soft approximation

p2
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QCD corrections are only in the final state, i.e. corrections to �� � qq̄

At leading order: 
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The soft approximation

p2

20

Emit one gluon:

Mµ
qq̄g = ū(p1)(�igst

a/⇥)
i(/p1 + /k)
(p1 + k)2

(�ie�µ)v(p2)
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a/⇥)v(p2)

p1

p2

�ie�µ
k, �

+ _
_



QCD corrections are only in the final state, i.e. corrections to �� � qq̄

At leading order: 

Mµ
0 = ū(p1)(�ie�µ)v(p2)

p1

�ie�µ

The soft approximation

p2

Consider the soft approximation: k � p1, p2 ⇒	factorization of 
soft part (crucial 
for resummed 
calculations)
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i(/p1 + /k)
(p1 + k)2

(�ie�µ)v(p2)

� ū(p1)(�ie�µ)
i(/p2 + /k)
(p2 + k)2

(�igst
a/⇥)v(p2)

p1

p2

�ie�µ
k, �

+ _
_



Soft divergences

The squared amplitude becomes

|Mqq̄g|2 =
⌅

pol

����M
µ
qq̄(�igst

a)
⇥

p1�

p1k
� p2�

p2k

⇤����
2

= |Mqq̄|2CF g2
s

2p1p2

(p1k)(p2k)

|Mµ
qq̄g|2 =

⌅

pol

����ū(p1) ((�ie�µ)(�igst
a)v(p2))

⇥
p1⇥

p1k
� p2⇥

p2k

⇤����
2
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The above is a Lorentz-invariant amplitude. Go to the centre-of-mass frame: 



Soft divergences

The squared amplitude becomes

|Mqq̄g|2 =
⌅

pol

����M
µ
qq̄(�igst

a)
⇥

p1�

p1k
� p2�

p2k

⇤����
2

= |Mqq̄|2CF g2
s

2p1p2

(p1k)(p2k)

d⌅qq̄g|Mqq̄g|2 = d⌅qq̄|Mqq̄|2
d3k

2⇧(2⇤)3
CF g2

s
2p1p2

(p1k)(p2k)

= d⌅qq̄|Mqq̄|2⇧d⇧d cos ⇥
d⌅

2⇤

2�sCF

⇤

1
⇧2(1 � cos2 ⇥)

Including phase space, in this frame, in terms of energy and angle of the 
gluon one contains  

|Mµ
qq̄g|2 =

⌅

pol

����ū(p1) ((�ie�µ)(�igst
a)v(p2))

⇥
p1⇥

p1k
� p2⇥

p2k

⇤����
2
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Soft divergences

The squared amplitude becomes

|Mqq̄g|2 =
⌅

pol

����M
µ
qq̄(�igst

a)
⇥

p1�

p1k
� p2�

p2k

⇤����
2

= |Mqq̄|2CF g2
s

2p1p2

(p1k)(p2k)

d⌅qq̄g|Mqq̄g|2 = d⌅qq̄|Mqq̄|2
d3k

2⇧(2⇤)3
CF g2

s
2p1p2

(p1k)(p2k)

= d⌅qq̄|Mqq̄|2⇧d⇧d cos ⇥
d⌅

2⇤

2�sCF

⇤

1
⇧2(1 � cos2 ⇥)

Including phase space, in this frame, in terms of energy and angle of the 
gluon one contains  

d⌅qq̄g = d⌅qq̄
2�sCF

⇤

d⌃

⌃

d⇥

sin ⇥

d⇧

2⇤

The differential cross section becomes

|Mµ
qq̄g|2 =

⌅

pol

����ū(p1) ((�ie�µ)(�igst
a)v(p2))

⇥
p1⇥

p1k
� p2⇥

p2k

⇤����
2
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d⌅qq̄g = d⌅qq̄
2�sCF

⇤

d⌃

⌃

d⇥

sin ⇥

d⇧

2⇤

Cross section for producing a qq-pair and a gluon is infinite (IR divergent)

Soft & collinear divergences

ω →0: soft divergence

θ → 0: collinear divergence

23



d⌅qq̄g = d⌅qq̄
2�sCF

⇤

d⌃

⌃

d⇥

sin ⇥

d⇧

2⇤

Cross section for producing a qq-pair and a gluon is infinite (IR divergent)

Soft & collinear divergences

ω →0: soft divergence

θ → 0: collinear divergence

23

But the full O(αs) correction to R is finite, because one must include a 
virtual correction which cancels the divergence of the real radiation 

d⌅qq̄,v ⇥ �d⌅qq̄
2�sCF

⇤

d⌃

⌃

d⇥

sin ⇥

d⇧

2⇤

NB: here we kept only soft terms, if we do the full calculation one gets a 
finite correction of αs/π 



Soft & collinear divergences 

ω →0 soft divergence: the four-momentum of the emitted particle 
approaches zero, typical of gauge theories, even if matter (radiating 
particle) is massive 

θ → 0 collinear divergence: particle emitted collinear to emitter. 
Divergence present only if all particles involved are massless

24

NB: the appearance of soft and collinear divergences discussed in the 
specific contect of e+e- → qq are a general property of QCD  



Cancellation of IR divergences in R is not a miracle. It follows directly from 
unitarity provided the measurement is inclusive enough 

Infrared finiteness

In the infrared region real and virtual are kinematically equivalent but for a 
(-1) from unitarity

Compute and regulate real and virtual separately, until a cancelation of 
divergences is achieved 



Kinoshita-Lee-Nauenberg theorem: Infrared singularities in a massless 
theory cancel out after summing over degenerate (initial and final) states 

KLN Theorem

Physically a hard parton can not be distinguished from a hard parton plus a 
soft gluon or from two collinear partons with the same energy. They are 
degenerate states. 
Hence, one needs to add them to get a physically sound observable



Infrared safety (= finiteness)

So, the R-ratio is an infrared safe quantity. 

• are there other IR-safe quantities? 
• what property of R guarantees its IR-safety? 

In perturbation theory one can compute only IR-safe quantities, otherwise 
get infinities, which can not be renormalized away (why not…?) 

So, the natural questions are: 
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Sterman-Weinberg jets

First formulation of cross-sections which are finite in perturbation theory 
and describe the hadronic final state

Introduce two parameters ε and δ: 
a pair of Sterman-Weinberg jets are 
two cones of opening angle δ that 
contain all the energy of the event 
excluding at most a fraction ε

4.1 Sterman–Weinberg jets

Sterman and Weinberg [14] first realized that one can define a cross section which is calculable and finite

in perturbation theory, and characterizes in some way the hadronic final state. The definition goes as

follows.

We define the production of a pair of Sterman–Weinberg jets, depending on the parameters ϵ
and δ, in the following way. A hadronic event in e+e− annihilation, with centre-of-mass energy E,
contributes to the Sterman–Weinberg jets cross section if we can find two cones of opening angle δ that
contain more than a fraction 1 − ϵ of the total energy E. In other words ϵE is the maximum energy

allowed outside of the cones. An example of Sterman-Weinberg jet event is illustrated in fig. 11. We

Fig. 11: Sterman–Weinberg jets.

will now show that the computation of the cross section for the production of Sterman–Weinberg jets, in

the approximation introduced in the previous chapter, is infrared finite. The various contributions to the

cross section (illustrated in fig. 12) are as follows

• All the Born cross section contributes to the Sterman–Weinberg cross section, for any ϵ and δ
(fig. 12a).

• All the virtual cross section contributes to the Sterman–Weinberg cross section, for any ϵ and δ
(fig. 12b).

• The real cross section, with one gluon emission, when the energy of the emitted gluon l0 is limited
by l0 < ϵE (fig. 12c), contributes to the Sterman–Weinberg cross section.

• The real cross section, when l0 > ϵE, when the emission angle with respect to the quark (or
antiquark) is less than δ (fig. 12d), contributes to the Sterman–Weinberg cross section.

The various contributions are given formally by

Born = σ0 (78)

Virtual = −σ0
4αSCF

2π

∫ E

0

dl0

l0

∫ π

θ=0

d cos θ

1 − cos2 θ
(79)

Real (c) = σ0
4αSCF

2π

∫ ϵE

0

dl0

l0

∫ π

θ=0

d cos θ

1 − cos2 θ
(80)

Real (d) = σ0
4αSCF

2π

∫ E

ϵE

dl0

l0

[∫ δ

θ=0

d cos θ

1 − cos2 θ
+

∫ π

θ=π−δ

d cos θ

1 − cos2 θ

]
. (81)
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Sterman-Weinberg jets

First formulation of cross-sections which are finite in perturbation theory 
and describe the hadronic final state

Introduce two parameters ε and δ: 
a pair of Sterman-Weinberg jets are 
two cones of opening angle δ that 
contain all the energy of the event 
excluding at most a fraction ε

4.1 Sterman–Weinberg jets

Sterman and Weinberg [14] first realized that one can define a cross section which is calculable and finite

in perturbation theory, and characterizes in some way the hadronic final state. The definition goes as

follows.

We define the production of a pair of Sterman–Weinberg jets, depending on the parameters ϵ
and δ, in the following way. A hadronic event in e+e− annihilation, with centre-of-mass energy E,
contributes to the Sterman–Weinberg jets cross section if we can find two cones of opening angle δ that
contain more than a fraction 1 − ϵ of the total energy E. In other words ϵE is the maximum energy

allowed outside of the cones. An example of Sterman-Weinberg jet event is illustrated in fig. 11. We

Fig. 11: Sterman–Weinberg jets.

will now show that the computation of the cross section for the production of Sterman–Weinberg jets, in

the approximation introduced in the previous chapter, is infrared finite. The various contributions to the

cross section (illustrated in fig. 12) are as follows

• All the Born cross section contributes to the Sterman–Weinberg cross section, for any ϵ and δ
(fig. 12a).

• All the virtual cross section contributes to the Sterman–Weinberg cross section, for any ϵ and δ
(fig. 12b).

• The real cross section, with one gluon emission, when the energy of the emitted gluon l0 is limited
by l0 < ϵE (fig. 12c), contributes to the Sterman–Weinberg cross section.

• The real cross section, when l0 > ϵE, when the emission angle with respect to the quark (or
antiquark) is less than δ (fig. 12d), contributes to the Sterman–Weinberg cross section.

The various contributions are given formally by

Born = σ0 (78)

Virtual = −σ0
4αSCF

2π

∫ E

0

dl0

l0

∫ π

θ=0

d cos θ

1 − cos2 θ
(79)

Real (c) = σ0
4αSCF

2π

∫ ϵE

0

dl0

l0

∫ π

θ=0

d cos θ

1 − cos2 θ
(80)

Real (d) = σ0
4αSCF

2π

∫ E

ϵE

dl0

l0

[∫ δ

θ=0

d cos θ

1 − cos2 θ
+

∫ π

θ=π−δ

d cos θ

1 − cos2 θ

]
. (81)
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Why finite? the cancelation between 
real and virtual is not destroyed in 
the soft/collinear regions
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Sterman-Weinberg jets

Let’s compute the O(as) correction to the Sterman-Weinberg jet cross-
section in the soft-collinear approximation 

29

a) We have a Born term 𝜎B which is completely within the Sterman-
Weinberg jet definition: since there are only two quarks they keep all the 
energy inside the cones  



Sterman-Weinberg jets

Let’s compute the O(as) correction to the Sterman-Weinberg jet cross-
section in the soft-collinear approximation 

30

b) We have a virtual term which is also completely within the Sterman-
Weinberg jet definition (only two quarks)  



Sterman-Weinberg jets

Let’s compute the O(as) correction to the Sterman-Weinberg jet cross-
section in the soft-collinear approximation 

31

c) We have a real term: the emitted gluon can be emitted also outside the 
jet provided it carries only little energy, or.. 



Sterman-Weinberg jets

Let’s compute the O(as) correction to the Sterman-Weinberg jet cross-
section in the soft-collinear approximation 

32

d) .. or it can carry a considerable fraction of energy provided it is emitted 
inside the cones 



Adding all the contributions, the Sterman-Weinberg jet cross-section up to 
O(αs) in the soft-collinear approximation is given by 

Sterman-Weinberg jets

⇧1 = ⇧0

�
1 +

2�sCF

⌅
ln ⇤ ln ⇥2

⇥

Effective expansion 
parameter in QCD is 
often αsCF/π not αs

αs-expansion enhanced by 
a double log: left-over from 
real-virtual cancellation

• if more gluons are emitted, one gets for each gluon
- a power of αsCF/π
- a soft logarithm lnε
- a collinear logarithm lnδ

• if ε and/or δ become too small the above result diverges
• if the logs are large, fixed order meaningless, one needs to resum large 

infrared and collinear logarithms to all orders in the coupling constant
33



• Jets were discovered in the late 70s in electron-position collision 
• They provided the first direct evidence for the gluon (we’ll discuss indirect 

evidence later) 
• In the 80s and 90s jets provided many other stringent tests of QCD at LEP
• Today jets are one of the powerful tools to look for New Physics at the 

LHC 

Jets

34

High energy di-jet event at CMSGluon discovery: 3jet event in e+e-



An observable     is infrared and collinear safe if

Infrared safety: definition 

On+1(k1, k2, . . . , ki, kj , . . . kn) � On(k1, k2, . . . ki + kj , . . . kn)

whenever one of the ki/kj becomes soft or ki and kj are collinear 

O

i.e. the observable is insensitive to emission of soft particles or to collinear 
splittings

35



‣ energy of the hardest particle in the event

‣ multiplicity of gluons 

‣ momentum flow into a cone in rapidity and angle

‣ cross-section for producing one gluon with E > Emin and θ > θmin

‣ jet cross-sections

Infrared safety: examples 

36

Infrared safe ? 

Only for infrared safe quantities is a comparison of data and theory well 
defined to all orders in perturbation theory 
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Infrared safe ? 

NO

Only for infrared safe quantities is a comparison of data and theory well 
defined to all orders in perturbation theory 
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‣ energy of the hardest particle in the event

‣ multiplicity of gluons 

‣ momentum flow into a cone in rapidity and angle

‣ cross-section for producing one gluon with E > Emin and θ > θmin

‣ jet cross-sections

Infrared safety: examples 

36

Infrared safe ? 

NO
NO
YES
NO

DEPENDS

Only for infrared safe quantities is a comparison of data and theory well 
defined to all orders in perturbation theory 



Other IR safe quantities

37

Event shapes: describe the shape 
of the event, but are  largely 
insensitive to soft and collinear 
branching

• widely used to measure 𝛼s

• measure color factors
• test QCD
• learn about non-perturbative 

physics   



Example: spin of the gluon
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Example: non-abelian nature of QCD
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Example: fits of colour fators

40

Fits of colour factors from 4-jet 
rates and event shapes  

Well compatible with QCD:

CA = 2.89 ± 0.21

CF = 1.30 ± 0.09

CF =
4
3

CA = 3



Recap

41

In this lecture we have first discussed the UV behaviour of QCD 
• discussed renormalisation of UV divergences
• introduced the running of the coupling constant and the beta-function 

(in QED and QCD) 
• discussed measurements of the coupling constant 

We then moved to discuss the infrared behaviour of QCD  
• we have seen that soft and collinear divergences arise universally in 

QCD calculations 
• these divergences cancel in e+e- observables in inclusive observables 

(KLN theorem)
• we have performed a first genuine QCD calculation: the cross-section 

for Sterman Weinberg jets in e+e- collisions 
• perturbative QCD can be used to compute jet-cross section and other 

infrared-safe event shape variables
• comparison of theory and calculations provide stringent tests of QCD  



Next
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Processes with partons in the initial state 
Phenomenology: lecture 4 (p. 81)

PDF introduction Factorization & parton distributions

Recall Higgs production in
hadron-hadron collisions:

x
2 p
2

p1 p2

x 1
p 1

σ

Z H

σ =

∫

dx1fq/p(x1, µ
2)

∫

dx2fq̄/p̄(x2, µ
2) σ̂(x1p1, x2p2, µ

2) , ŝ = x1x2s

Total X-section is factorized into a ‘hard part’ σ̂(x1p1, x2p2, µ2) and
‘normalization’ from parton distribution functions (PDF).

Measure total cross section ↔ need to know PDFs to be able to test
hard part (e.g. Higgs electroweak couplings).

Picture seems intuitive, but
how can we determine the PDFs? NB: non-perturbative
does picture really stand up to QCD corrections?


