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LHC kinematics
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In this lecture we want to review the application of perturbative QCD in 
high-energy LHC collisions 

Before discussing calculations, it is important to understand the 
kinematics in proton-proton collisions 

The total longitudinal momentum of the colliding system is unknown (one 
can measure missing transverse momentum, but not missing longitudinal one)
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A more common parametrisation relies on rapidity and transverse mass 

Exercise: check that the two parametrisations are equivalent 
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Exercise: check that the rapidity transform linearly under a longitudinal 
boost 

Exercise: given two particles, can you easily construct a boost-invariant 
quantity? 
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For particles with negligible mass the rapidity coincides with the pseudo-
rapidity 

y = ⌘ ⌘ 1
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The pseudo-rapidity can then be easily translated to the detector 
geometric acceptance as used in experimental measurements 

Θ 10-4 10-3 10-2 0.1 0.5 1 𝜋/2

Y 9.9 7.6 5.3 3 1.36 0.6 0

(The other hemisphere has same but negative numbers) 



Rapidity coverage of LHC detectors 
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• For ATLAS and CMS: muons can be detected only in the central regions, 
while for jets and hadrons, hadronic calorimetry extends up to 4.5-5 
(essential for processes like vector boson fusion Higgs production)

• LHCb covers better the forward region, but only forward one
• Studies are ongoing to determine the required/possible rapidity coverage 

of future detectors    

The achieved maximum rapidity coverage is important in LHC detectors 
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Rapidity is also interesting from a theoretical point of view, as the single 
particle phase space is uniform in rapidity 

d3p

2E(2⇡)3
=

1

2(2⇡)3
d2pT dy

Exercise: derive the above expression (change variables and include the 
Jacobian of the transformation)  

The above relation has already deep implications: for instance incoherent 
radiation (e.g. soft underlying event) is to a large extend uniform in rapidity 



Dijet production
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Before discussing higher-order corrections, let’s discuss go through the 
leading order calculation of one of the main LHC process: di-jet production 

Sample diagrams (all must be included) Many partonic subprocesses contribute 

p1

p2

p3

p4

Mandelstam variables: ŝ = (p1 + p2)
2 t̂ = (p1 + p3)2 û = (p1 + p4)2



Dijet production
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The hadronic cross-section PDFs for initial state partons

Matrix elements Measurement function 

Phase space

We have seen that in the LAB frame p3 = (pT cosh y3, pT cos�, pT sin�, pT sinh y3)

p4 = (pT cosh y4,�pT cos �,�pT sin �, pT sinh y4)

Exercise: show that the rapidities are related to the Bjorken-x variables by 
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Exercise: show that the rapidities in the partonic centre-of-mass frame are given by 

ŷ3 =
1

2
(y3 � y4) = �ŷ4

Exercise: show that the scattering angle in the partonic frame is given by  

cos
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✓
y3 � y4

2

◆

this relation shows that the difference in rapidities between the jets gives direct access to the 
dynamics in the partonic frame  

d
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Exercise: show that in terms of rapidities the cross-section becomes  

The above expression can be integrated numerically and provides a leading order estimate of 
the cross section 



Dijet production
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Inclusive and dijet production are extensively studies at the LHC, both for SM measurements 
and in searches for New physics 

Direct determination of gluon PDF, constraints of other PDFS, measurement of 𝛼s, probe of 
QCD running at TeV scales … 



Dijet production
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Inclusive and dijet production are extensively studies at the LHC, both for SM measurements 
and in searches for New physics 

Search for excited quarks Search for gluions



Dijet production
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Inclusive and dijet production are extensively studies at the LHC, both for SM measurements 
and in searches for New physics 

Explore substructure of quarks

It is clear that the smaller the 
uncertainties, the more one can 
exclude exotic scenarios. 
Above we sketched a leading order 
calculation, in the following we’ll 
discuss higher-order corrections in 
a more generic case  



Perturbative calculations
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• Perturbative calculations are possible because the coupling is small at 
high energy 

• In QCD (or in a generic QFT) the coupling depends on the energy 
(renormalization scale)

• So changing scale the result changes. By how much? What does this 
dependence mean? 

• In the following will discuss these issues through examples

Perturbative calculations rely on the idea of an order-by-order expansion 
in the small coupling

� � A + B�s + C�2
s + D�3

s + . . .

LO NLO NNLO NNNLO



Hard cross section 
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Born level cross section straightforward in principle 

�LO =
�

m
d�m|M(0)({pi})|2S({pi})

m-particle phase space 
(e.g. Vegas)

Matrix element measurement function 
(constraint on phase space)  



Leading order with Feynman diagrams

1. draw all Feynman diagrams

2. put in the explicit Feynman rules and get the amplitude

3. do some algebra, simplifications

4. square the amplitude

5. integrate over phase space + flux factor + sum/average over outgoing/

incoming states 

Get any LO cross-section from the Lagrangian

Automated tools for (1-3): FeynArts/Qgraf, Mathematica/Form etc. 

15



Leading order with Feynman diagrams

1. draw all Feynman diagrams

2. put in the explicit Feynman rules and get the amplitude

3. do some algebra, simplifications

4. square the amplitude

5. integrate over phase space + flux factor + sum/average over outgoing/

incoming states 

Get any LO cross-section from the Lagrangian

Bottlenecks  

a) number of Feynman diagrams diverges factorially

b) algebra becomes more cumbersome with more particles

But given enough computer power everything can be computed at LO

Automated tools for (1-3): FeynArts/Qgraf, Mathematica/Form etc. 
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Diagrams for gluon amplitudes 
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Number of diagrams for gg → n gluons 

•number of diagrams grows very fast

•complexity of each diagrams grows with n 

Alternative methods? 



Techniques beyond Feynman diagrams 

✓Berends-Giele relations: compute 
helicity amplitudes recursively 
using off-shell currents

Berends, Giele ’88
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Techniques beyond Feynman diagrams 

✓Berends-Giele relations: compute 
helicity amplitudes recursively 
using off-shell currents

Berends, Giele ’88

✓CSW relations: compute helicity 
amplitudes by sewing together 
MHV amplitudes [- - + + ... + ]

Cachazo, Svrcek, Witten ’04
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Benefits and drawbacks of LO

fastest option; often the only one

test quickly new ideas with fully exclusive description

many working, well-tested approaches

highly automated, crucial to explore new ground, but no precision 

Benefits of LO:

Today’s high energy colliders

Collider Process status

HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

⇒ all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure their
properties limited by the quality of our understanding of QCD
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Example:  W+4 jet cross-section ∝ αs(Q)4

Vary αs(Q) by ±10% via change of Q ⇒ cross-section varies by ±40%

large scale dependences, reflecting large theory uncertainty

no control on normalization

poor control on shapes

poor modeling of jets

Drawbacks of LO:



Is it necessary to go beyond LO? 

19

Very early observation: 

at least NLO corrections are needed to describe data 

Drell Yan production is one of the first processes for which NLO 

corrections have been computed



Leading order n-jet cross-section

• Consider the cross-section to produce n jets.  The leading order result at 
scale µ result will be

�LO
njets(µ) = �s(µ)nA(pi, �i, . . .)

20
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• Instead, choosing a scale µ’ one gets 

So the change of scale is an NLO effect (∝αs), but this becomes more 
important when the number of jets increases (∝n) 

�LO
njets(µ

�) = �s(µ�)nA(pi, �i, . . .) = �s(µ)n

�
1 + n b0 �s(µ) ln

µ2

µ�2 + . . .

�
A(pi, �i, . . .)



Leading order n-jet cross-section

• Consider the cross-section to produce n jets.  The leading order result at 
scale µ result will be

�LO
njets(µ) = �s(µ)nA(pi, �i, . . .)

�LO
njets(µ)

�LO
njets(µ�)

=
�

�s(µ)
�s(µ�)

�n

• Notice that at Leading Order the normalization is not under control:
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• Instead, choosing a scale µ’ one gets 

So the change of scale is an NLO effect (∝αs), but this becomes more 
important when the number of jets increases (∝n) 
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NLO n-jet cross-section

Now consider n-jet cross-section at NLO.  At scale µ the result reads 

• So the NLO result compensates the LO scale dependence. The residual 
dependence is NNLO.

• Notice also that a good scale choice automatically resums large 
logarithms to all orders, while a bad one spuriously introduces large logs 
and ruins the PT expansion 

• Scale dependence and normalization start being under control only 
at NLO, since compensation mechanism kicks in  

• Scale variation is conventionally used to estimate theory uncertainty, but 
the validity of this procedure should not be overrated (see later) 

21

�NLO
njets(µ) = �s(µ)nA(pi, �i, . . . ) + �s(µ)n+1

�
B(pi, �i, . . . ) � nb0 ln

µ2

Q2
0

�
+ . . .



NLO calculations
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NLO accuracy requires to dress a process with one real or one 
virtual parton 

Sample diagrams shown. All diagrams must be included.

virtual 

real 

LO

NLO

requires loop 
integration over 
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NLO accuracy requires to dress a process with one real or one 
virtual parton 

Sample diagrams shown. All diagrams must be included.

virtual 

real 

LO

NLO

requires loop 
integration over 

We won’t have time to do detailed NLO calculations, but let’s 
look a bit more in detail at the issue of divergences/subtraction



Regularization procedures in QCD

Regularization: a way to make intermediate divergent quantities meaningful 

• In QCD dimensional regularization is today the standard procedure, 
based on the fact that d-dimensional integrals are more convergent if 
one reduces the number of dimensions.

• Divergences show up as intermediate poles 1/ε

• This procedure works both for UV divergences and IR divergences

Alternative regularization schemes: photon mass (EW), cut-offs, Pauli-Villard ... 
Compared to those methods, dimensional regularizatiom has the big virtue that it leaves 
the regularized theory Lorentz invariant, gauge invariant, unitary etc. 

�
d4l

(2�)4
� µ2�

�
ddl

(2�)d
, d = 4 � 2� < 4

• N.B. to preserve the correct dimensions a mass scale µ is needed
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Subtraction and slicing methods

• Consider e.g. an n-jet cross-section with some arbitrary infrared safe jet 
definition.  At NLO, two divergent integrals, but the sum is finite 

• Since one integrates over a different number of particles in the final 
state, real and virtual need to be evaluated first, and combined then 

• This means that one needs to find a way of removing divergences before 
evaluating the phase space integrals

• Two main techniques to do this
- phase space slicing ⇒ obsolete because of practical/numerical issues

- subtraction method ⇒ most used in recent applications

�J
NLO =

�

n+1
d�J

R +
�

n
d�J

V

24



Subtraction method

• The real cross-section can be written schematically as 

where FJ is the arbitrary jet-definition 

25

d�J
R = d�n+1|Mn+1|2F J

n+1(p1, . . . , pn+1)



Subtraction method

• The real cross-section can be written schematically as 

where FJ is the arbitrary jet-definition 

• The matrix element has a non-integrable divergence 

|Mn+1|2 =
1
x
M(x)

where x vanishes in the soft/collinear divergent region  
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• The real cross-section can be written schematically as 

where FJ is the arbitrary jet-definition 

• The matrix element has a non-integrable divergence 

|Mn+1|2 =
1
x
M(x)

where x vanishes in the soft/collinear divergent region  

2 Re{MV · M�
0} =

1
�
V

• IR divergences in the loop integration regularized by taking D=4-2ε 

25

d�J
R = d�n+1|Mn+1|2F J

n+1(p1, . . . , pn+1)



• The n-jet cross-section becomes 

Subtraction method
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�J
NLO =

� 1

0

dx

x1+�
M(x)F J

n+1(x) +
1
�
VF J

n
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�J
NLO =

� 1

0

dx

x1+�
M(x)F J

n+1(x) +
1
�
VF J

n

• Infrared safety of the jet definition implies 

lim
x�0

F J
n+1(x) = F J

n

• One can then add and subtract the analytically computed divergent part 

�J
NLO =

� 1

0

dx

x1+�
M(x)F J

n+1(x) �
� 1

0

dx

x1+�
VF J

n +
� 1

0

dx

x1+�
VF J

n +
1
�
VF J

n

• KLN cancelation guarantees that 

lim
x�0

M(x) = V



Subtraction method

• This can be rewritten exactly as 

⇒ Now both terms are finite and can be evaluated numerically

• Subtracted cross-section must be calculated separately for each process 
(but mostly automated now). It must be valid everywhere in phase space 

• Systematised in the seminal papers of Catani-Seymour (dipole 
subtraction, ’96) and Frixione-Kunszt-Signer (FKS method, ’96) 

• Subtraction used in all recent NLO applications and public codes 
(Event2, Disent, MCFM, NLOjet++, MC@NLO, POWHEG ... ) 
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�

J
NLO =

Z 1

0

dx

x

1+✏

�M(x)F J
n+1 � VF J

n

�
+O(1)VF J

n
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Ingredients at NLO

tree graph rates with N+1 partons 
➔ soft/collinear divergences 

set of subtraction terms  

A full N-particle NLO calculation requires:

virtual correction to N-leg process 
➔ divergence from loop integration,
    use e.g.  dimensional regularization 

bottleneck 
for a very 
long time 



Britto, Cachazo, Feng ’04

1) “... we show how to use generalized unitarity to read off the (box) 
coefficients. The generalized cuts we use are quadrupole cuts ...”

NB: non-zero 
because cut gives 
complex momenta

Aim: NLO loop integral without doing the integration

Virtual one-loop: two breakthrough ideas

Quadrupole cuts:  4 on-shell conditions on 4 dimensional loop 
momentum) freezes the integration. But rational part of the amplitude, 
coming from D=4-2ε not 4, computed separately

29



Aim: NLO loop integral without doing the integration

Ossola, Pittau, Papadopolous ’06

2) The OPP method: “We show how to extract the coefficients of 4-, 3-, 2- and 
1-point one-loop scalar integrals....”

Contents

−gµν + kµkν

k2 − m2
→

∑
ϵν(k)ϵµ(k)δ(k2 − m2) (1)

AN = +
∑

[i1|i4]

(
di1i2i3i4 I(D)

i1i2i3i4

)

+
∑

[i1|i3]

(
ci1i2i3 I(D)

i1i2i3

)
+

∑

[i1|i2]

(
bi1i2 I(D)

i1i2

)
+ R (2)

AN =
∑
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(
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i1i2i3i4

)
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∑

[i1|i3]

(
ci1i2i3 I(D)

i1i2i3

)
+

∑

[i1|i2]

(
bi1i2 I(D)

i1i2

)
+ R (3)

R =
∑

[i1|i4]

−
d(4,0)

i1i2i3i4

6
+

∑

[i1|i3]

+
c(2,0)
i1i2i3

2
+

∑

[i1|i2]

−
b(2,0)
i1i2

6
q2
i1,i2 (4)

1. Introduction

The current TEVATRON collider and the upcoming Large Hadron Collider need a good
understanding of the standard model signals to carry out a successful search for the Higgs
particle and physics beyond the standard model. At these hadron colliders QCD plays an
essential role. From the lessons learned at the TEVATRON we need fixed order calculations
matched with parton shower Monte Carlo’s and hadronization models for a successful
understanding of the observed collisions.

For successful implementation of numerical algorithms for evaluating the fixed order
amplitudes one needs to take into account the so-called complexity of the algorithm. That
is, how does the evaluation time grows with the number of external particles. An algo-
rithm of polynomial complexity is highly desirable. Furthermore algebraic methods can be
successfully implemented in efficient and reliable numerical procedures. This can lead to
rather different methods from what one would develop and use in analytic calculation.

The leading order parton level generators are well understood. Generators have been
constructed using algebraic manipulation programs to calculate the tree amplitudes directly
from Feynman diagrams. However, such a direct approach leads to an algorithm of double
factorial complexity. Techniques such as helicity amplitudes, color ordering and recursion

– 1 –

Coefficients can be determined by solving system of equations: no 
loops, no twistors, just algebra!

30

One-loop: two breakthrough ideas



Virtual (one-loop) amplitude
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• connection between NLO amplitudes 
and LO ones 

• input from supersymmetry/string 
theory

• sophisticated algebraic methods
• connections with formal theory and  

pure mathematics …   

the problem of computing NLO QCD corrections is now solved

Bottleneck for a long time…  but thanks to these and 
other theoretical breakthrough ideas



Automated NLO (aka NLO revolution)
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Example: single Higgs production processes (similar results available for 
all SM processes of similar complexity, backgrounds to Higgs studies) 



Automated NLO (aka NLO revolution)

32

Example: single Higgs production processes (similar results available for 
all SM processes of similar complexity, backgrounds to Higgs studies) 

✓A solved problem



NLO automation
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Various public tools developed: Blackhat+Sherpa, GoSam+Sherpa, Helac-NLO, 
Madgraph5_aMC@NLO, NJet+Sherpa, OpenLoops+Sherpa, Samurai, Recola ...

• Practical limitation: high-multiplicity processes still difficult because of 
numerical instabilities, need long run-time on clusters to obtain stable 
results (edge: 5-6 particles in the final state, depending on the 
process)

• Today focus on 
➡ automation of NLO for BSM signals 
➡ loop-induced processes: formally higher-order, but enhanced by 

gluon PDF
➡ automation of NLO electroweak corrections (necessary to match 

accuracy of NNLO).

Comparison to NLO is the standard now in most LHC analyses 



Uncertainties 
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The “unpleasant” feature that cross-sections depend on the choice of 
renormalization and factorization scale can be turned into something useful, 
i.e. a way to quantify the theoretical error

Example: R-ratio (again!)
Fix both scales to the scale at which the hard process occurs (Q) and vary 
them up and down by a factor 2 

NB: 
• the factor 2 is conventional
• it is a procedure that seemed to work 

well in practice
• in complicated processes large degree of 

freedom in the choice of the scale
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‣ improved stability of NLO result [but no decays]
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Figure 1. Scale dependence of the LO and NLO cross sections for tt̄ + 1-jet production at the Tevatron (left) and

the LHC (right) as taken from Ref. [34], with the renormalization scale (µr) and the factorization scale (µf ) set to µ.
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>
< 0) correspond to top-
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spectively, where incoming protons fly into the for-

ward direction by definition. Denoting the corre-

sponding NLO contributions to the cross sections by
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i.e. via a consistent expansion in αs. Note, however,

that the LO cross sections in Eq. (2) are evaluated in

the NLO setup (PDFs, αs). The results for the asym-

metry for different scale choices are shown in Fig. 2.

At LO we find an asymmetry of about −8%. The

scale dependence is rather small. This is a conse-

quence of the fact that αs cancels exactly between the

numerator and the denominator. In addition the resid-

ual factorization scale dependence also cancels to a

large extent in the ratio. At NLO we find a large cor-

rection compared to the LO result. The asymmetry

is almost washed out at NLO. The scale dependence

is increased in NLO which seems natural given the

small dependence in LO. To investigate the origin of

the large NLO corrections to the asymmetry we stud-

ied the dependence on pcut
T , the minimal pT used to

resolve the additional jet. The results are shown in

Tab. 1. A strong dependence of the cross section on

pcut
T is observed. For all pcut

T values we find that the
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1. LHC example of NLO: tt+1jet

‣ forward-backward asymmetry at the Tevatron compatible with zero

‣ LO scale uncertainty underestimates shift to NLO for the asymmetry

Dittmaier, Kallweit, Uwer ’08
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2. LHC example of NLO: WW+2jets

LO calculations: very large theoretical uncertainties

Example: cross-section for W+W- + 2 jet production at the LHC 

Melia, et al. ’11
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Scale choice: example of W+3 jets (problem more severe with more jets)

... large logarithms can appear in some distributions, invalidating even an NLO prediction.
Bern et al. ’09

3. LHC example of NLO: W+3jets



• few years ago: each NLO calculation resulted in a paper. Now, as for 
leading order, just run a code and get the results 

• possibility to do precise studies of signal and backgrounds using the 
same tool (very practical + avoid errors)

• what lead to this remarkable progress? the fact that 

1. leading order can be computed automatically and efficiently (e.g. via 
recursion relations) 

2.one can reduce the one-loop to product of tree-level amplitudes
3. it was well understood how to subtract singularities 
4. the basis of master integrals was known 

NLO revolution? 
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But for item 2. everything was there since the time of Passarino-Veltman 
(even item 2. was understood, but no efficient/practical method exited). 
We will later on compare this to the current status of NNLO 



Is NNLO needed? 
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LHC data clearly already requires NNLO
Same conclusion in all measurements examined so far

 With more data NLO likely to be insufficient

NLO

NNLO



Why is NNLO difficult
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calculation of two-loop 
master integrals (when many 
scales are involved)

methods to cancel 
(overlapping) divergences 
before integration

�
d�nd�2|Mtree|2n+2

�
d�nd�12Re|Mone�loop

n+1 Mtree
n+1|
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��
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1
�4

+ a3
1
�3

+ . . . + a0

�
�
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a4

1
�4

+ a3
1
�3

+ . . . + b0)
��

Cancelation manifest after phase space integration, but to have fully 
differential results must achieve cancelation before integration



Ingredients for NNLO 

41

At NNLO the situation is very different from NLO
1. leading order of very limited importance  
2. no procedure to reduce two-loop to tree-level (unitarity approaches 

still face many outstanding issues)
3. subtraction of singularities far from trivial 
4. basis set of master integrals not known, integrals not all/always 

known analytically
And all this even for simple processes (no full result exists for any 2 → 3 
scattering process) 

What changed in the last years (and is undergoing more changes) 

1. technology to compute integrals
2. extension of systematic subtraction to NNLO 



NNLO example: Drell-Yan

Drell-Yan processes: Z/W production (W → lν , Z → l+l-)

Very clean, golden-processes in QCD because

✓dominated by quarks in the initial state

✓no gluons or quarks in the final state (QCD corrections small)

✓ leptons easier experimentally (clear signature) 

⇒	as clean as it gets at a hadron collider

P1

P2

fq(x1)

fq(x2)
x2P2

x1P1

��, Z

l�

l+
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  NLO

most important and precise test of the SM at the LHC
best known process at the LHC: spin-correlations, finite-width 
effects, γ-Z interference, fully differential in lepton momenta 

Anastasiou, Dixon, Melnikov, Petriello ’03, ’05; Melnikov, Petriello ’06Figure 4: More general variations of the renormalization and factorization scales, for production
of an on-shell Z boson at the LHC, at central rapidity Y = 0. For each order in perturbation
theory (LO, NLO, NNLO), three curves are shown. The solid curves depict common variation of
the renormalization and factorization scales, µF = µR = µ, as used in the rest of the paper, but
extending the range of variation to M/5 < µ < 5M . The dashed curves represent variation of the
factorization scale alone, holding the renormalization scale fixed at M . The dotted curves result
from varying the renormalization scale instead, holding the factorization scale fixed at M .

sections. These corrections are the dσ(2)/dY terms defined in Eq. (4.1) (after renormal-

ization and mass factorization), convoluted with the MRST PDFs and with all partonic

channels included. We vary the scale in these terms, and normalize this variation to the

NLO cross section. We find that the NNLO corrections contribute a scale dependence

of ≈ 5% at central rapidities. When we form the complete NNLO cross section, which

requires adding these corrections to the convolution of the dσ(0)/dY and dσ(1)/dY terms

of Eq. (4.1) with NNLO PDFs, the width of this band is decreased to less than 1%. This

demonstrates a remarkable interplay between NNLO calculations and parton distribution

functions.

The small size of the NNLO corrections is partly due to large cancellations between

the various partonic channels. To illustrate this, we present in Fig. 6 the fractional contri-

butions of the various NNLO partonic corrections to the entire NNLO cross section, at Run

I of the Tevatron. We include the qg and qiqj channels (the latter includes qq and qq̄ inital

states); the gg subprocess is numerically unimportant in this process. The magnitude of

each order α2
s partonic correction, δσij , can be 7–8% of the complete NNLO cross section,
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NNLO example: Drell-Yan
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Drell-Yan: rapidity distributions 

Anastasiou, Dixon, Melnikov, Petriello ’03, ’05; Melnikov, Petriello ’06

Gauge boson production at the LHC

Gold-plated process

Anastasiou, Dixon, Melnikov, Petriello (03)

At LHC NNLO perturbative accuracy better than 1%

⇒ could use to determine parton-parton luminosities at the LHC

Recent developments in QCD – p. 32

☛ at the LHC: perturbative accuracy of the order of 1%
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NNLO vs LHC data

Impressive agreement between experiment and NNLO theory  

46

CMS-PAS-SMP-14-003



NNLO example: Higgs production

Inclusive Higgs production via gluon-gluon fusion in the large mt-limit:

NNLO corrections known since few years now:

virtual-virtual real-virtual real-real

47



NNLO example: Higgs production

3

the soft pieces are given in Eq. (25) of Ref. [2], while the

hard pieces, σ̂(n),h
ij (to order (1 − x)1) are:

σ̂(2),h
gg = σ0

{
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and

σ̂(2),h
qq̄,NS = σ̂(2),h

qq̄,S = σ̂(2),h
qq,NS = σ̂(2),h

qq,S =

σ0

{
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}
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(10)

For the sake of brevity, we have suppressed explicitly
scale dependent terms by setting µF = µR = MH (they
can be readily reconstructed using scale invariance) and
displayed terms only to order (1 − x)1. Terms to order
(1−x)1 dominate the corrections (see Fig. (2)), but we in-
clude terms to order (1−x)16 for all sub-processes in our
numerical analysis. The labels “NS” and “S” in Eq. (10)
denote the flavor non-singlet and singlet quark contribu-
tions, respectively. The four contributions are equal only
to order (1− x)1; their expansions differ at higher orders

of (1 − x) (except that σ̂(2),h
qq̄,S = σ̂(2),h

qq,S exactly). We note
in passing that our explicit calculation confirms the value

for the coefficient c(2)
03 for the gluon-gluon subprocess de-

rived in Ref. [4].

HADRONIC RESULTS

The hadronic cross section σ is related to the partonic
cross section through a convolution with the parton dis-

tribution functions. It has been argued [10] that conver-
gence is improved by pulling out a factor of x from σ̂ij

before expanding in (1 − x). We indeed observe a more
stable behavior at low orders of (1 − x) and will adopt
this prescription in what follows. Beyond fifth order,
however, it is irrelevant which is used.

In Fig. (1), we show the cross section at LO, NLO and
NNLO. At each order, we use the corresponding MRST

parton distribution set [16] [11, 12]. The NNLO distri-
butions are based upon approximations of the three-loop
splitting functions [13]. Studies using other parton distri-
butions, including the NNLO distributions of Alekhin [14]
will be presented elsewhere.
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FIG. 1: LO (dotted), NLO (dashed) and NNLO (solid) cross
sections for Higgs production at the LHC (µF = µR = MH).
In each case, we weight the cross section by the ratio of the
LO cross section in the full theory (Mt = 175 GeV) to the LO
cross section in the effective theory (Eq. (2)).

We next look at the quality of the expansion that we
use for the evaluation of the NNLO corrections. Fig. (2)
shows the NNLO K-factor (KNNLO ≡ σNNLO/σLO) for
the LHC starting from the purely soft limit ∝ (1 − x)−1

and adding successively higher orders in the expansion in
(1− x) up to order (1− x)16. Clearly, the convergence is
very good: beyond order (1−x)1, the curves differ by less
than 1%. Observe that the purely soft contribution un-
derestimates the true result by about 10-15%, while the
next term in the expansion, ∝ (1 − x)0, overestimates it
by about 5%. Note that the approximation up to (1−x)0

is not the same as the “soft+sl”-result of Ref. [2] or
the “SVC”-result of Ref. [3], since these include only the
ln3(1 − x) terms at that order.

We next consider the renormalization scale (µR) and
factorization scale (µF ) dependence of the K-factors. At
the LHC, we observe that the µF and µR dependence has
the opposite sign. In order to arrive at a conservative
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FIG. 2: K-factor for Higgs production at the LHC. Each line
corresponds to a different order in the expansion in (1 − x).
The renormalization and factorization scales are set to MH .

estimate of the scale dependence, we display two curves
corresponding to the values (µR, µF ) = (2MH , MH/2)
and (MH/2, 2MH) (see Fig. (3)). The scale dependence
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FIG. 3: Scale dependence at the LHC. The lower curve of
each pair corresponds to µR = 2MH , µF = MH/2, the upper
to µR = MH/2, µF = 2MH . The K-factor is computed with
respect to the LO cross section at µR = µF = MH .

is reduced when going from NLO to NNLO and, in con-
trast to the results in Ref. [2], the perturbative series up
to NNLO appears to be well behaved. The reason is that
both the newly calculated contributions from hard ra-
diation and the effect of the previously unavailable set
of NNLO parton distribution functions reduce the NNLO

cross section. Detailed studies of the individual effects

will be presented in a forthcoming paper.

Fig. 4 shows the results for the Tevatron at a center-of-
mass energy of

√
s = 2 TeV. Here the dependence on µR
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FIG. 4: Scale dependence for Tevatron Run II. The lower
curve of each pair corresponds to µR = µF = 2MH , the upper
to µR = µF = MH/2.

and µF has the same sign, so we set µR = µF ≡ µ and
vary µ between MH/2 and 2MH . The K-factor is larger
than for the LHC, but the perturbative convergence and
the scale dependence are satisfactory.

CONCLUSIONS

We have computed the NNLO corrections to inclusive
Higgs production at hadron colliders. We find reasonable
perturbative convergence and reduced scale dependence.
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NNLO: the next challenge
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An explosion of NNLO results in the last two years 

Things are developing rapidly, but a number of conceptual and 
technical challenges remain to be faced  

Talk given by G. Salam at LHCP2016
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An explosion of NNLO results in the last two years 

Things are developing rapidly, but a number of conceptual and 
technical challenges remain to be faced  

Talk given by G. Salam at LHCP2016

Every SM 2 to 2 process known at NNLO

No 2 to 3 process known at NNLO



NNLO uncertainty? 
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NNLO scale uncertainty bands of 1-2%. 

Is the theory uncertainty indeed 1-2%? 



NNLO vs LHC data
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Again, better agreement of LHC data with NNLO

Example: 

comparison of LHC data to NLO and NNLO for WZ production

1604.08576



NNLO:  Higgs +1jet
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Decays of Higgs to bosons also included. Fiducial cross-sections 
compared to ATLAS and CMS data

Good agreement on normalised distributions, less good agreement on 
unnormalised ones (but current data have large errors)

Chen at al. 1607.08817

Caola, Melnikov, Schulze 1508.02684



NNLO:  Z +1jet
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Normalised

Unnormalised

Gehrmann-De Ridder, Gehrmann, Glover, Huss, Morgan ’16
Boughezal, Liu, Petriello ’16

Boughezal, Ellis, Focke, Giele, Liu, Petriello ’15 

•inclusion of NNLO does not 
fully resolve tension between 
data and theory 

•better agreement in 
normalised distribution

•remember 2-3% luminosity 
error on data

1605.04295



Fully differential VBFH at NNLO
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Cacciari et al 1506.02660

• Allows to study realistic 
observables, with 
realistic cuts


• NNLO corrections 
much larger (10%) than 
expected (1%) 


• Important for coupling 
measurements
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t

N3LO
Two LHC processes known at N3LO 

Gluon fusion Higgs 
production (in the large mt 

effective theory)

Vector boson fusion Higgs 
production (in the structure 
function approximation, i.e. 

double DIS process)



Higgs production at N3LO
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• O(100000) interference diagrams (1000 at NNLO)


• 68273802 loop and phase space integrals (47000 at NNLO)


• about 1000 master integrals (26 at NNLO) 




Higgs production at N3LO
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Anastasiou et al 1602.00695

• N3LO finally stabilizes the perturbative expansion 


• also matched to resummed calculation (essentially no impact on 
central value at preferred scale mH/2 )



Higgs production: theory vs data
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Theory 15 years ahead of 
experiment! 

Next challenge: extend N3LO accuracy to differential distributions 
(hard but within reach?)

X

Theory predictions 
without higher orders

X
X



… and inclusive VBF at N3LO
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 Dreyer & Karlberg 1606.00840 

Again, NNLO was outside the NLO uncertainty band, while N3LO 
band (with sensible scale) is fully contained in the NNLO band   



Summary of perturbative calculations

• LO: fully automated. Edge: 10-12 particles in the final state

• NNLO: the new frontier. Lots of new 2 → 2 processes in the last year 
(2 → 1 more than10 years old).  Currently no 2 → 3 calculation for 
the LHC

• NLO: also automated. Edge: 4-6 particles in the final state

• NNNLO: fully inclusive Higgs production via gluon fusion (large mt 
effective theory) and vector boson fusion (factorised approximation)
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Higgs studies at the LHC
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• The discovery of the Higgs boson at the LHC was a milestone in 
particle physics


• Higgs boson is the only fundamental scalar particle ever 
discovered. Its study at the LHC is new territory  


• It is clear that this will be a long research program at the LHC                                                                        
[in comparison the b-quark was discovered forty years ago and, 
Belle II at SuperKEK, will now further study hadrons containing 
b-quarks] 



An extremely rich program 

62

Tool for discovery
- portal to BSM
- portal to hidden 

sector 
- portal to DM 

Precision measurements
- mass, width
- spin, CP, couplings 
- off-shell coupling, 

width interferometry 
- differential 

distributions

SM minimal or not? 
- 2HDM 
- MSSM, NMSSM 
- extra Higgs states, 

doubly-charged Higgs

Rare / beyond SM decays
- H → Zγ 
- H → μμ 
- H → cc 
- H → τμ, τe, eμ 
- H → J/Ψγ, Υγ , … 

… and much more 
- Higgs potential 
- di-Higgs 
- other FCNC decays 
- … 

H
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Two examples, out of many, where 
theoretical precision brings new 
opportunities in the Higgs sector



1. Higgs coupling to light quarks

64

• couplings to 2nd (and 1st) generation notoriously very difficult 
because they are very small 


• a number of ways to constraint the coupling of Higgs to charm:


‣ rare exclusive Higgs decays

‣ Higgs + charm production

‣ constraint from VH (H ➝bb) 

including charm mis-tagging

‣ constraint from Higgs width 

still largely unconstraint 




1. Higgs coupling to light quarks
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• Higgs produced dominantly via top-
quark loop (largest coupling)


• but interference effects with light 
quarks are not negligible


• provided theoretical predictions are 
accurate enough (few%?), constraint 
on charm (and possible strange) 
Yukawa can be significantly improved 

Bishara et al ‘16 



2. The Higgs potential
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Single Higgs 
done O(45pb)

Double Higgs 
very hard 
O(45fb)

Triple Higgs 
out of reach 
O(0.1fb)

Bounds on λ today from LHC data still very loose (about a factor 10) 

The Higgs boson is responsible for the masses of all particles 
we know of. Its potential, linked to the Higgs self coupling, is 
predicted in the SM, but we have not tested it so far 

VSM =
mh

2
h2 + �vh3 +

�

4
h4



2. The Higgs potential
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New idea: exploit indirect sensitivity to λ of single Higgs production 
Provides a wealth of new measurements (many production processes, 
many kinematic distributions), but theory and measurements must be 
accurate enough

Traditionally: suggested to measure it through the production of two 
Higgs bosons (but difficult because of very small production rates) 


λ λ

Double Higgs Single Higgs 

h
h

h
h

V

V



2. The Higgs potential
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New idea: exploit indirect sensitivity to λ of single Higgs production 
Provides a wealth of new measurements (many production processes, 
many kinematic distributions) to be used in a global fit (but theory must 
be accurate enough)

Bizon et al  ’16

L = LSM +
c6

2v2
O6

O6 = ��SM(H†H)3

See also  
De Grassi et al 1702.01737 

Di Vita  et al 1704.01953  
Maltoni et al 1709.08649  
Di Vita  et al 1711.03978 

[…]



Recap 
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In this lecture we have


Played around with LHC kinematics 


Looked at the LO calculation of di-jet production 


Understood the challenges to perform higher-order calculations


Reviewed the status of higher-order calculations  


Looked at two examples of ideas where precision can be used to 
extract information in a new way 



