Looking Forward

172

Projects Tend To Be Long

- LHC (the longest yet)
 - Inception in 1980s -
 - Experiments confirmed mid-1990s
 - Operation start 2007
 - Major upgrade 2025
 - End of operations planned ~2037 -----
- ✤ A full career!
- Worldwide planning is a must

Future Projects

Energy Frontier

- HE-LHC, FCC
- ILC, CEPC
- Baryon number violation
 - DUNE, Hyper-K
 - NNbar

High Luminosity LHC

- ✤ 2025: High Luminosity LHC upgrade
 - Go to 5-7.5 x 10³⁴, pile-up of 200
 - New interaction region focusing magnets and crab cavities
 - Significant detector "upgrades" _
 - Replace inner trackers, detector readout and trigger and data acquisition systems
 - Basically, only keep magnets, calorimeters and muon chambers
 - Overall, 1 GCHF construction project
 - Then run until ~2037 to collect 3000-4000 fb⁻¹
 - Still not enough to measure di-Higgs production (if it's SM strength!) -
 - Who knows, we may get smarter

High-Energy LHC

- Replace current 8.33 T dipoles with 16 T dipoles
 - 27 TeV center-of-mass energy -
 - 4x LHC luminosity: to keep same relative mass reach (wrt com energy), luminosity needs to scale by \sim (com energy)²
- But no new tunnel needed!
 - Just 27 km of 16 T magnets —
 - (Technology exists, but current production yield too low to build 27 km of magnets)
- \clubsuit Double the mass reach \Rightarrow x4 in fine-tuning
 - And can measure di-Higgs production! —

Rizzo, arXiv:1501.05583

Future Circular Collider

New 100 km ring, 100 TeV center-of-mass energy (16 T magnets)

Gustaaf Brooijmans

ICTP-SAIFR School 2018

FUTURE CIRCULAR COLLIDER (FCC) CERN, Switzerland Circumference: 90-70 km

CIRCULAR ELECTRON POSITRON COLLIDER (CEPC) China Circumference: 70-50 km

INTERNATIONAL LINEAR COLLIDER (ILC) Japan Length: 31 km

Parameters

parameter	FCC-hh		HE-LHC	(HL) LHC
collision energy cms [TeV]	100		27	14
dipole field [T]	16		16	8.33
circumference [km]	100		27	27
straight section length [m]	1400		528	528
# IP	2 main & 2		2 & 2	2 & 2
beam current [A]	0.5		1.12	(1.12) 0.58
bunch intensity [10 ¹¹]	1	1 (0.2)	2.2 (0.44)	(2.2) 1.15
bunch spacing [ns]	25	25 (5)	25 (5)	25
rms bunch length [cm]	7.55		7.55	(8.1) 7.55
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	25	(5) 1
events/bunch crossing	170	1k (200)	~800 (160)	(135) 27
stored energy/beam [GJ]	8.4		1.3	(0.7) 0.36
beta* [m]	1.1-0.3		0.25	(0.20) 0.55
norm. emittance [µm]	2.2 (0.4)		2.5 (0.5)	(2.5) 3.75

Why 100 TeV?

- At CERN, bigger ring cannot avoid significant geological features
- ✤ If can deliver the luminosity (3x10³⁵), mass reach ~7x LHC
 - Measure Higgs quartic coupling!

- Discover new physics, or push fine-tuning x50
- But no no-lose theorem...

al features HC

So Bigger Would Be Better

♦ VLHC

- 200 km ring _
- With permanent magnets, 40 TeV center-of-mass
- With superconducting magnets, 200 TeV...

<u>e+e- Colliders</u>

Precision machines

- At LEP and SLC, total crosssection = signal!
- But cross-section drops quickly, so at higher energy, need more luminosity
- Energy limited by length (for linear collider) or synchrotron radiation (for circular collider)

Linear vs Circular

Circular:

- Limited by synchrotron radiation: for FCC-ee, at $\sqrt{s} = 250$ GeV, deposit 5 kW/m (over ~100 km!)
- But good luminosity, as beam goes around many times

✤ Linear:

- Limited by accelerating gradient: O(50 MeV/m) achievable, so 1 TeV machine is ~20 km long
- Limited luminosity: each accelerated beam used only once
- Either way, huge power consumption: > 200 MW (!)

<u>e+e-Collider Physics</u>

Higgs factory

- Not more Higgses than at LHC, but clean environment allows access to more couplings
- New Physics difficult to probe at LHC
 - E.g. pair production of weakly interacting particles decaying to soft leptons

Top quark mass

Higgs Couplings

±1%

Non-Collider

Baryon number violation key to our existence, but not observed

- (Almost) an accidental symmetry in the SM
 - The accidental symmetry is really B-L -

Probe through proton decay, or neutron-anti-neutron oscillations

- Proton decay predicted by grand unification: if quarks and leptons part of a _ multiplet, "rotation" can turn a quark into a lepton: $p \rightarrow \pi e, K v, ...$
 - Mediating boson is a leptoquark -
- Neutron-anti-neutron oscillation motivated by neutrino oscillations

Proton Decay

- Direct probe of quark-lepton unification scale
 - Next generation large neutrino detectors well-suited to probe proton decay
 - Kamiokande = Kamioka Nucleon Decay Experiment
 - Current limits ~10³⁴ years (super-Kamiokande, 220 kton-years)

DUNE and Hyper-K

- Hyper-K is still water cherenkov
 - ~250 kton vs 50 kton for super-K _
 - But 10x the fiducial volume (only ~20 kton for super-K)
 - 3-10x the Super-K sensitivity, depending on background suppression
- DUNE is 4 x 10 kton LAr TPC
 - Good sensitivity to $p \rightarrow K v$
 - Complementary to water cherenkov

Neutral Particle Oscillations

- HUGE role in particle physics
 - Kaon-anti-kaon oscillations allowed us to discover CP violation
 - Another necessary condition to our existence...
 - B mesons-anti-B meson oscillations now CP violation "workhorse"
 - Also first indication top quark mass was so large -(~10 years before top quark discovery)
 - Low energy process that probes much higher energy scales

Neutral Particle Oscillations

- HUGE role in particle physics
 - Neutrino oscillations
 - Establish neutrinos have mass
 - Suggest the existence of a mass scale between Higgs and unification scales where lepton number is violated by 2 units
 - If link between quarks and leptons _ real, natural to expect baryon number violation by 2 units at similar scale
 - Opens the door to neutron-anti-neutron oscillations

Neutron-Anti-Neutron

- Potential V (if antisymmetric for n vs \overline{n})
 - Nuclear potential ~100 MeV
 - $\mu_n.B_{Earth} \sim 10^{-18} MeV$
 - Current limit: $\alpha < \sim 10^{-30}$ MeV
- Leads to strong suppression
 - Free neutron experiment requires substantial cancellation of Earth magnetic field, then:

- For free neutron experiment, magnetic field can be used to check result if signal is seen

 $P_{n \to \overline{n}} = \left(\frac{\alpha}{\hbar} \times t\right)^2 = \left(\frac{t}{\tau}\right)^2$

Neutron-Anti-Neutron Oscillations

Make a lot of neutrons, let them fly as long as possible, look for an antineutron

European Spallation Source

Under construction...

- Maximize flux of cold neutrons
 - Very low energy: travel at ~1000m/s
- State-of-the-art techniques
 - Last experiment was done in late 1980's
- Expect to get a factor 1000 improvement in sensitivity!
 - An opportunity not to be missed
- Hope to start experiment in late 2020's

The Proton Spin

For a long time, it was assumed the proton spin = sum(spins of constituent quarks)

Measuring Quark Spins

- Need to poke inside protons
 - Photons with wavelength < proton radius
 - Proton radius ~ 1 femto-meter, 10⁻¹⁵ m
 - That's a 1 GeV photon

Measuring Quark Spins

- Need to poke inside protons
 - Photons with wavelength < proton radius
 - Proton radius ~ 1 femto-meter, 10⁻¹⁵ m
 - That's a 1 GeV photon
 - SPS: accelerate protons to 450 GeV Use those to make photons 1-100 GeV

Measuring Quark Spin Orientations

- Need to poke inside protons
 - Photons with wavelength < proton radius
 - Proton radius ~ 1 femto-meter, 10⁻¹⁵ m
 - That's a 1 GeV photon
 - SPS: accelerate protons to 450 GeV
 - Use those to make photons 1-100 GeV
 - Scatter these off *polarized* protons
 - I.e. protons with spins aligned in specific direction

The Proton Spin

- For a long time, it was assumed the proton spin = sum(spins of constituent quarks)
 - In 1987, the contribution of constituent quarks to the proton spin was measured to be ~0! "Proton spin crisis"
 - Many measurements since
 - Basically, proton spin appears due to dynamics of constituents, quarks **and** gluons

- ♦ Why is the proton spin 1/2?
 - Quantized: some form of boundary condition
 - There are "excited proton states" of spin 3/2, 5/2, 7/2, ...
 - No integer spin "proton" though, presumably violates boundary conditions —
- Key message: proton spin originates in dynamics
 - Does that say something about quark/lepton spins? _
- Or, are we misinterpreting and is this the equivalent of a 2-slit experiment?

Convergence on "thoughts for the next machine"

- Substantial investment \Rightarrow careful weighing of goals and potential for return on investment
- Quoting Nima:

https://indico.bnl.gov/getFile.py/access?sessionId=9&resId=6&materialId=0&confld=571

LHC @ BTeV: Few % tuning LHC@33TeV: Sub-%tuning * Best for finding heavy particles * Best + most direct quantifier of tuning

Precision Higgs Couplings "L.H.C will get to 10%, Higgs facting to 1% A Can a <u>deviation</u> of 1% be solidly <u>established</u>?

& Doesn't LHC see underlying NP anyway P

Proton stability, couplings suggest ~10¹⁶ GeV is an important scale

- Can probe through EDMs, n- \bar{n} , $\mu \rightarrow e$, ... *important!* _
- Implies fine-tuning, so, new physics nearby?

(and mainly: stay critical of what you're told!)