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(2D) Ising Field Theory = scaling limit of the (2D) lattice Ising
model in @ magnetic field H # 0, near its ferromagnetic critical
point, T — T, H — 0, as R¢/a — oc.
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e Defines 2D Euclidean quantum field theory

e At the critical point — Scale invariant — Conformal Field T heory.

Ising CFT := " Minimal Model” /\/l3/4 (c=1/2) = Free massless
Majoranas (Onsager, 1944)



e Away from the critical point — massive QFT. Of interest in:

* Stat-Mech: Universality class of 2D Curie transition, and liquid-
vapor critical point (Determines universal scaling functions, cor-
relation functions, ...)

x Hep -Th: Massive QFT = Particle theory (Mass spectrum of
stable particles, resonance states, S-matrix)

IFT depends on one dimensionless parameter n (explained shortly)
= one-parameter family of particle theories. Toy model for a
number of interesting phenomena, such as "quark confinement’,
first-order transition, false vacuum decay, resonance states, etc.



Masses My, (n), the functions of certain parameter of the theory:
(from numerical analysis)
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1. Laboratory experiment



Quantum Criticality in an Ising Chain:
Experimental Evidence for
Emergent Eg Symmetry

R. Coldea,™* D. A. Tennant,” E. M. Wheeler,’t E. Wawrzynska,? D. Prabhakaran,*
M. Telling,? K. Habicht,” P. Smeibidl,® K. Kiefer?

Quantum phase transitions take place between distinct phases of matter at zero temperature. Near
the transition point, exotic quantum symmetries can emerge that govern the excitation spectrum of
the system. A symmetry described by the E; Lie group with a spectrum of eight particles was long
predicted to appear near the critical point of an Ising chain. We realize this system experimentally by
using strong transverse magnetic fields to tune the quasi—one-dimensional Ising ferromagnet
CoNb,0, (cobalt niobate) through its critical point. Spin excitations are observed to change character
from pairs of kinks in the ordered phase to spin-flips in the paramagnetic phase. Just below the
critical field, the spin dynamics shows a fine structure with two sharp modes at low energies, in a
ratio that approaches the golden mean predicted for the first two meson particles of the Eg spectrum.
Our results demonstrate the power of symmetry to describe complex quantum behaviars.

ymmetry is present in many physical sys-

tems and helps uncover some of their fimda-

mental properties. Continuous symmetries
lead to conservation laws; for example, the in-
variance of physical laws under spatial rotation
ensures the conservation of angular momentum.
More exotic continuous symmetries have been
predicted to emerge in the proximity of certain
quantum phase transitions {QPTs) (7, 2). Recent
experiments on quantum magnets (3 J) suggest
that quantum critical resonances may expose the
underlying symmetries most clearly. Remarlkably,
the simplest of systems, the Ising chain, prom-
1ses a very complex symmetry, described math-
ematically by the Eg Lie group (2, 6 9). Lie
groups describe continuous symmetries and are

important in many areas of physics. They range
in complexity from the U(1) group, which ap-
pears in the low-energy description of super-
fluidity, superconductivity, and Bose-Einstein
condensation (70, /1), to Eg, the highest-order
symmetry group discovered in mathematics (/2),
which has not yet been experimentally realized
in physies.

The one-dimensional {11) [sing chain n trans-
verse field (/0, 11, {3) 1s perhaps the most-studied
theoretical paradigm for a quantum phase transi-
tion. It is described by the Hamiltonian

H =% - J578%, — hS*

(1)
where a ferromagnetic exchange J > 0 between
nearest-neighbor spin-¥2 magnetic moments S; ar-

ranged on a 1D cham competes with an applied
external transverse magnetic field #. The Ising ex-
change J favors spontaneous magnetic order along
the z axis (|11 -~ 1) or [L L] - [}), whereas
the transverse field 4 forces the spins to point along
the perpendicular +x direction (| ——— <+ —)].
This competition leads to two distinct phases, mag-
netically ordered and quantum paramagnetic, sepa-
rated by a continuous transition at the critical field
h-=J72 (Fig. 1A). Qualitatively, the magnetic field
stimulates quantum tunneling processes between
T and | spin states and these zero-point quantum
fluctuations “melt” the magnetic order at & (10).

To explore the physics of Ising quantum crit-
icality in real materials, several key ingredients
are required: very good one-dimensionality of the
magnetism to avoid mean-field effects of higher
dimensions, a strong easy-axis (Ising) character,
and a sufficiently low exchange energy Jof a few
meV that can be matched by experimentally at
tamable magnetic fields (10 T ~ 1 meV) to access
the quantum cmtical point. An excellent model
systemn to test this physics is the insulating quasi-
1D Ising ferromagnet CoNbyOy (74 16), where
magnetic Co”" jons are arranged into near-isolated
zigzag chains along the ¢ axis with strong easy-
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Quantum critical point at A = 1,H = 0. IFT emerges in the
scaling Ilimit A — 1, H — 0 with the ratio
8
n ~ (A—1)/H15
kept fixed.
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2. "Understanding” a QFT:

At generic n IFT is non-integrable - no analytic solution exists,

nor is expected (except for few special Integrable points in the
parameter space)

How much one can hope to "understand” a full-fledged, non-
perturbative, non-integrable, (not even supersymmetric!) QFT?



I will discuss some features with data obtained by

e Numerical analysis (TCSA)

e Integrable QFT (integrable points)

e Interpolation between integrable points

e Special cases of resonance states accessible through

"integrability”



IFT: RG flow out of the fixed point M3 /4

AIFT :AC 1/2 CFT —|- P /€($>d2$ —|— ]’L/O‘(ib)dz

e(z) with (A, A) = (1/2,1/2) (" energy density");
mn~Te.—T ~A—-1
o(x) with (A, A) =(1/16,1/16) ("spin density");

h~H

Apart from overall scale, the theory depends on a single dimen-
sionless parameter
_m Te—T
= 8 8 -
|h|15 H1i5

Generally [i.e. except for (m,h) = (0,0)] IFT is massive.
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Qualitative picture (” McCoy-Wu scenario’)

e h = 0. Onsager's theory: IFT = Free Majorana fermions

A= / [zpagzp + 00, + im zpﬂ d°z = Free particles of mass M; = |m|

The spin field o is "semilocal” w.r.t. the fermions. The h =0
theory has two regimes:

m < 0 ("High-T"” regime): Single vacuum (o) = 0, free particle
of mass |m| = excitation over the vacuum; m ~ (T, — T)/a.

m > 0 ("Low-T" regime): Spontaneous breaking (o) = Lo, free
particle = kink interpolating between the two vacua.

e Low-T: Adding a weak magnetic field h = confining attraction
between the kinks (analogous to quarks) = Tower of "mesons”
(stable and resonances).
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" McCoy-Wu scenario” (1978): The mass spectrum interpo-
lates between the infinite tower of "mesons” at n —+ 400 (Low-T
regime) and one stable particle at n — —oo (High-T regime).

E.g. for G(k2) = f.t.(o(z)o(0)) (k2= w2 — p?)

; =OO\ a2 16n?
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Particle masses M, (measured in the units of \h\8/15), as the func-
tions of . Numerical results (via TCSA), and exact mass spec-
trum at integrable point n = 0.
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I will refer to the stable particle as Ay, and their masses (measured
in the units of |k|8/15) as M, = M,(n).

Questions one may ask:

What happens to the particle masses when they leave the spec-
trum of stable particles? (— resonances?)

The resonance states may also disappear. How this happens?

Analytic continuations of M,(n) as the functions of n?
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It is useful to discuss in terms of the elastic A1 + A1 — A1 + Ay
scattering amplitude S(0), defined as usual

| A1(01)A1(02))in, = S(01—062) | A1(01)A1(62))out +
-+ inelastic terms

01, 6-> - rapidities: (w;,p;) = (M7 cosh@;, Mq1sinh9;);
s = EZ\, = 4M; cosh?(6/2).

e S(0) is analytic in the #-plane with the branching singularities at
0 = £ 0x + inZ, associated with the inelastic thresholds

A1+A2—>X
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In complex a-plane (o = —i6)

Ima
Us' Us| s S
—Tt 0 Tt Req
1S Us | s S
S(0) satisfies
S(0)S(—0) =1, S(0) = S(imr —0)

and hence periodicity,

S(0) =S2ri+0).

One can limit attention to the strip —m < Sm 6 < « (" Principal strip”).
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Poles

S(0) may have poles in the Principal Strip. As (0)S(—0) = 1, any
pole at @ = ap has an associated " mirror” zero at —ap, and vice
versa. I will call

" Physical Strip” (PS): 0 < Sm6 < w. Poles in PS correspond
to stable particles (s-channel, or u-channel). There can be no
complex poles in PS.

"Mirror Strip” (MS): —m < Sm6 < 0. Poles in PS are manifested
as "mirror” zeros in the MS. Real poles in MS are "anomalous
thresholds’”, complex poles are resonance states.

18



Possible patters of poles e and zeros o on the principal sheet
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Residues

irp

S(s) ~—P _ 5(0) ~

27 .
s—Mp 0 — iop

Y

Mp = 2M4 cos%.

Stable particle — real ap € PS, and positive r,. The cross-channel
poles

r r
S(s) ~ P . S0) ~ —L
O =gz —s—wz POy,

have negative residues.

Many particle theories (including the one associated with IFT)
have " ¢3 property”: A1 appears as a ""bound state pole” in A1Aq
scattering = Fixed-position poles at

a1 = 27/3, a1 i=m—a1=7/3.

Resonances appear as complex poles in the MS.

20



Integrable points of IFT

(a) n = —oc0 (h=0, m < 0) Free particle A1, of mass M1 = —m
S(0) =—-1.

Trivial pattern - no poles, no zeros.

(b) n=0 (h# 0, m = 0). There are eight particles Ay, Ao, ...,

Ag, with purely elastic S-matrix (" Eg structure”).

(Mq, Mo, ..., Mg) ~ Perron-Frobenius vector of C(FEjg)

For AlAl — AlAl

sinh @ 4+ isin(27/3) sinh @ + isin(27/5) sinh 8 4+ isin(xw/15)
sinh @ — isin(2x7/3) sinh® —isin(2x/5) sinh® — isin(w/15)
Three pairs of poles ap, ap =7 — ap in PS

S(0) =

. 2T . 27 T

O‘l_?a ()42_?7 O‘3_E'

correspond to A1, Ao, A3z (A4, ...,Ag appear as poles in higher
amplitudes)
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n = 0.00
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Suppose we start with n» = 0, and then change this parameter to
negative values, all the way down to —oco. How the complicated

pattern at n» = 0 evolves into the trivial one corresponding to the
free theory n = —o0?
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Small nonzero n: Perturbation theory in m

ApT = A1 2 ceT + h/a(w) Pz + 2 /5(:1;) 42z |

o« Mn(n) = M + Py + ...
From M,/M; = 2 cos(ayp/2)
77 (1)

2
agzg—l—a(l)n—l— a3=1—5+a3 n-—+ ...

oSt = 0.378325... o =1.35226...,

Y
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When n becomes small negative both as and az move to the left

Ima
e G5 [ @) @
o a4. O O
ofe! a2 a1
w w Rea
OO OO O® L = J L = J @
[]
o a4. O O
lo Gguo d

n = —0.08
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Particle masses M, (measured in the units of \h\8/15), as the func-
tions of 7.

26



At certain n3 ~ —0.138 a3 leaves PS, and enters MS. A3 disap-
pears as a stable particle

Ima
a3 a2 ok}
{ Voo Red
@ OO 00 @ O L 1 g L 1 g O
()

n = —0.27
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At n1o =~ —0.477 o crosses m — a1 = w/3. Simultaneously, as
must cross —m /3, which happens when M,/M; = /3. le.

mo: Ms/M; = My/My =3

Ima
a3 of) o1
{ { /
(d)

n = —0.49

Rea
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B3 =*%imaz.d analytically extrapaiated, fropm thes domain n > 73,
where M3/Mj; is directly available through T CSA

B3 < —1 (a3 is complex) at n < n33 ~ —0.55
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At n33 =~ —0.51 the poles a3 and —m — a3 collide at —x/2, and
become complex poles

Ima
° Gg O
a2 a1
y y Red
O——CO Oan®; O o O
*
o (3 ®
(@)

n = —0.94
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At n—-nm+4+0, no~ —2.08 the pole as approaches zero

Ima

n= —1.87

O

O

O

a2
v
.
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o < O
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Rea
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And at n < np it crosses into MS. A> disappears from the spectrum,
so that below 7o only A1 is left.

Ima

Rea

o =
o <

Q

()

n = —2.29
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At n - —o0

b <o
N

Ima
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Pure imaginary h at m < 0.

IFT remains "real” at pure imaginary h, below the Yang-Lee sin-
gularity

2 =h?/(—m)P/* > —¢8 ~ —0.035846

@)

&= hi(-my’®

. 22
YL* | 1€ 0

i (@
vy o

€2 = 1/(—n)t®/4
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e YL = critical point. CFT = /\/12/5, with ¢ = —22/5 (J.Cardy,
1985),

My ~ (€2 4 ¢8)%/12

e Integrable at ¢2 — —¢3, with one particle, and

sinh @ 4 ¢sin ay 21
o] = —.

S(0) = — — :
sinh @ —2sin ay 3

(J. Cardy, G. Mussardo, 1989)
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Ima
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O O @ @
o U2 (d) O
sinhf 4+ 1sin27/3
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sinhf —isin2n/3
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Resonances

As 1 decreases from 0 to —oo, first A3, and then A,, become
resonances. But there are many more resonances ...

e n = 0O: Eight stable particles, with My, Ms, ..., Mg > 2M»>. At
n # 0 integrability is violated = decay channels open

Perturbation theory in n: A, — AmnA, decay amplitude ~ the
form-factor

(An(0) | £(0) | Am(61)A4(62)) # O
o

A

1
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A1
A1 A1
Aq A2
M4 = (0.047587 n?) My, s = (0.011000 n?) My,

( G. Delfino, P. Grinza, G. Mussardo, 2005).

Away from n = 0 all five " heavy"’ particles A4, Asg, ..., Ag become
resonances.
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What happens to As, As, ..., Ag when n decreases from zero?

e "EXxperimental’ observation: Some of the resonances, e.g. As
(but not A,), remain very narrow when n is not too far from zero
(As seen from numerics). Why?

e At n = 0 M, are given by components of Perron-Frobenius vector
of the cartan matrix of Eg, e.g.

Ao Mo = 2M; cosg — 1.61803 M;

As - Ms = 2M; cos,;—O — 1.98904 M;

A3 can be understood as weakly coupled A1 A1 bound state

£5 = 2My — M3 = 4Mj sin? g—o ~ 0.0109562 M;

42



Then one expects to have three- and four- and multi-particle
bound states:

In 141, particles in weakly bound states are well approximated by
non-relativistic QM with é-function attraction:

3 k-particle bound states with the binding energies

k3 — k
3!

E = €.

At small n, one then expects to have particles with the masses
close to 3Mq, 4M1, etc - weakly bound states of 3, 4, etc particles
Aq.
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Indeed, we have

2

Ms = 4M; cosg cos% — 2.95629 M; = 3M; — small
7

My = 8M; coszg cos3—g —3.89115 M; = 4M; — small

>
Mg = 8M; coszg cos% — 4.78338 My = 5M7 — small
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3M71 — Mg = 0.043704 M1, e3 = 0.043824 M7,
AM{ — M7 = 0.108843 M7, eq4 = 0.109562 M7,
5M; — Mg = 0.216613 M, e = 0.219124 Myj .

Here Mg, M7, Mg are exact, but ;. are given by the approximation

k3 —k
I

Remarkably, the PF vector of C(FEg) "knows' about weakly inter-
acting particles!

ED .

e At n = 0 there are weakly coupled multi-particle bound states

Az = (A14y), As = (A1A1A7),
A7 = (A1A1A1A1), Ag=(A1A1A1A1A7)
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Predictions:

e \When 7 is small negative, the " binding energy” of A3
e5 = 3M7 — M3 = 4Mj sin? %
becomes even smaller = Ag, A7, Ag (now resonances) are even
better approximated as the weakly coupled 3, 4, 5 particle bound
states.
The approximation
Mg =3M1 —e3, M7=4M1 —€e4, Mg=5bM; —c¢5

is expected to work even better. Also, the imaginary parts (I, =
—m My) are expected to be small

I_57 I_77 I_8 ~ 8%
(Analog of tetra-quark and higher exotic states in QCD?)

e At n < n3 the resonances Ag, A7, Ag disappear (poles leave the
principal sheet)

These predictions are well consistent with numerical data.
46



Q:

e \What about six-, seven-, and higher multi-particle bound states
at small n7? e5 ~ 0.219 My ~ M;

Interference with another particle channels? At n =20

6My —eg ~5.617 M1, M4+ Mg~ 5.623 M;

e \What about "missing” resonances Ay and Ag?

At n=20
s

.
Mj = 4M cos _ cos% — 2.404867 M,

Mg = 4M; cosg cos;—o — 3.218340 M;
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As n approaches n»

OM; — Mo = 4M; sin2 %

becomes small. Now A, becomes weakly coupled (A1A1), and
again, one expects to see weakly-coupled multi-particle bound
states. It is plausible that asn — 7>+ 0

Ag = (A1A1A1), Asg~(A1A1A1A7)
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There may be many more resonances

(a) Do not stem from any stable particles at integrable points
(b) Wide (I" > M;)

(c) High energy (M >> M7)

Because of (b) and (c) - difficult/impossible to extract from ex-
iIsting numerics.

Requires data about high energy scattering (hep-th)...
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Open questions and directions:

e Evolution of poles at n» > 0. How Eg spectrum evolves into
infinite tower of "mesons” at n — +o0?

e Fate of resonances

e Analytic continuation towards Yang-Lee critical point (at pure
imaginary h).
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e \Who is gonna to win today?
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