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Classical Lattice Models of Statistical Thermodynamics

I Is the framework of Statistical Thermodynamics able to
handle Phase Transitions ?



Brief History of Magnetic Phase Transition

I Pierre Curie, Paul Langevin and Pierre Weiss (1895-1910):

Boltzmann’s framework for non-interacting micro-magnets.

I Wilhelm Lenz and Ernest Ising (1920):

Basic elements are dipoles which turn over among two positions,

Z =
∑
σ1=±

∑
σ2=±

· · ·
∑
σN=±

exp[−βE (σ1, . . . , σN)], β =
1

kBT

I Werner Heisenberg and Paul Dirac (1928-1929):

E =
∑
i ,j

Jxijσ
x
i σ

x
j + Jyij σ

y
i σ

y
j + Jzijσ

z
i σ

z
j

I Rudolf Pierls (1936):

2D Ising model display spontaneous magnetization for low
temperatures prompting new interest.



Brief History of Magnetic Phase Transition
I Hendrick Kramers and Gregory Wannier (1941):

In 2D derived the Curie temperature and a combinatorial sums
translated into a linear algebra problem,

Z = Tr [TN ]

I Lars Onsager (1944):

2D Lenz-Ising model is exactly solvable since Λ0 > Λ1 > . . . was
found,

Z = ΛN
0

[
1 + (

Λ0

Λ1
)N + . . .

]
The free-energy has no power law singularity as hypothesized,

fs ∼ |T − Tc |2 log(|T − Tc |)

I Leo Kadanoff and Kenneth Wilson (1963-1975):

At criticality we have scale invariance and the Curie critical point is
universal.



Hamiltonian Limit
Thermal fluctuations (D+1) classical system ∼ quantum effects
D-spatial field theory,

I Path Integral with space-time lattice,

K (xa, ta, xb, tb) = 〈xa| exp [−iH(tb − ta)] |xb〉

=

∫
dxN−1 . . . dx1 〈xb|T |xN−1〉 〈xN−1|T |xN−2〉 . . . 〈x1|T |xa〉

with tb − ta = Nτ and T = exp(−iτH)

I Amplitude with periodic boundary,

Z =

∫
K (x0,Nτ, x0, 0)dx0 = Tr [TN ]

Free energy density Vaccum energy density

Correlation function Propagator

Correlation lenght Inverse mass gap



Modeling Adsorption in Surfaces

I Greg Dash and Michael Bretz (1971):

Thin films of gases adsorbed on regular crystal surfaces: graphite
has a hexagonal lattice.

The gas atoms slightly larger than a basic hexagon and two
adjacent hexagons cannot both be occupied.

C ∼ |T − Tc |−α, α ∼= 0.36



Tiling the Triangular Lattice
I Rodney Baxter (1980):

Consider a triangular lattice and place hexagonal tiles without
overlapping

Let g(m,N) be the number of ways of placing m hexagons on N
sites,

f (z) = lim
N→∞

log [ZN ] /N, ZN =

N/3∑
m=0

zmg(m,N)



Interaction Around Face Model

Spin σ = 0, 1 and instead sites of adsorption one use face sites

σiσj = 0 for all next-neighbors face variables
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The Ice Model
I Introduced by Pauling in 1935 to explain the experimental

fact that certain phase of Ice has a residual entropy.

The lattice sites are occupied by Oxygens O having four nearest
neighbors Hydrogens H atoms:O-O >>> O-H.



The Vertex Representation

I To make water molecule H2O two Hydrogens are close to the
central Oxygen and the other two are farther away.

> < > < > <> < > < < >
∧ ∨ ∨ ∧ ∧ ∨

∧ ∨ ∨ ∧ ∨ ∧

ω1 ω1 ω2 ω2 ω3 ω3

I The statistical configuration sits on the edges and can be
represented by an arrow whose tip points forwards the side
where the Oxygen O is sited.

I The residual entropy can be computed,

S = kB log [Λ0]



Brief History of Integrability
I Hans Bethe plane wave function (1931):

H = −
∑
i ,j

σxi σ
x
j + σyi σ

y
j + ∆σzi σ

z
j

I Elliott Lieb for ∆ = 1/2 (1967):

Tb1...bN
a1...aN = . . . . . .c1 c2 c3 c4 c5 cN c1

b1 b2 b3 b4 bN

a1 a2 a3 a4 aN

I Barry MacCoy and F. Wu (1968):

[T ,H] = 0,

provided the weights sit in the quadric,

ω2
1 + ω2

2 − ω2
3 − 2∆ω1ω2 = 0.



Face Models Yang-Baxter

∑
d

W (a1, a2, d , c1)W
′
(c1, d , b2, b1)W

′′
(d , a2, c2, b2)

=
∑
d

W
′′

(c1, a1, d , b1)W
′
(a1, a2, c2, d)W (d , c2, b2, b1)



Onsager Star-Triangle Relation

Wh(c , a)W
′
v (c , b)W

′′
h (b, a) =

∑
d

W
′′
v (c , d)W

′
h(d , a)Wv (d , b)

W
′′
h (a, b)W

′
v (b, c)Wh(a, c) =

∑
d

Wv (b, d)W
′
h(a, d)W

′′
v (d , c)



Vertex Models Yang-Baxter

∑
c1,c2,c3

W
′′c2,c3
a2,a3

W c1,b3
a1,c3

W
′b1,b2
c1,c2

=
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W
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• McGuire (1964), C.N. Yang (1968)


