Basic Notions in Algebraic Geometry

Marcio J. Martins

Universidade Federal de São Carlos Departamento de Física

July 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Ring and Fields

Commutative Ring R:

Consists of a set *R* and two binary operations * and + with the following conditions for $a, b, c \in R$: (i) Associative: (a + b) + c = a + (b + c) and (a * b) * c = a * (b * c), (ii) Commutative: a + b = b + a and a * b = b * a, (iii) Distributive: a * (b + c) = a * b + a * c, (iv) Identities: there are $0, 1 \in R$ such that a + 0 = a * 1 = a, (v) Additive Inverse: given $a \in R$ there is $b \in R$ with a + b = 0,

► Field K:

(vi) Multiplicative Inverse: given $a \in K$ $a \neq 0$ there is $c \in K$ with a * c = 1.

Projective Space $\mathbb{P}^n(K)$

► Definition:

The n-dimensional projective space over a field K is a set of equivalence classes of $K^{n+1}/\{0, 0, \ldots, 0\}$ under the equivalence relation,

$$(x_0, x_1, \ldots, x_n) \sim (\lambda x_0, \lambda x_1, \ldots, \lambda x_n)$$

for any $\lambda \in K/\{0\}$.

A way of looking at projective space:

Let
$$U_0 = \{(x_0, x_1, \dots, x_n) \in \mathbb{P}^n(\mathcal{K}) | x_0 \neq 0\}$$
 then
 $(x_0, x_1, \dots, x_n) = (1, x_1, \dots, x_n) \in \mathbb{A}^n(\mathcal{K})$

The set $\mathbb{P}^n(\mathcal{K})/U_0$ is clearly a copy of $\mathbb{P}^{n-1}(\mathcal{K})$ and therefore,

$$\mathbb{P}^n(K) = \mathbb{A}^n(K) \cup \mathbb{P}^{n-1}(K)$$

The idea of Ideal

- A subset $I \subset K[x_1, \ldots, x_n]$ is an ideal if it satisfies:
- (i) 0 ∈ *I*
- (ii) If $f,g \in I$ then $f + g \in I$,
- (iii) If $f \in I$ and $h \in K[x_1, \ldots, x_n]$ then $f * h \in I$.
 - Hilbert Basis Theorem,

Every ideal $I \in K[x_1, \ldots, x_n]$ has a finite generating set.

Hilbert Nullstellensatz,

A system of polynomial equations $f_1(x_1, \ldots, x_n) = \cdots = f_m(x_1, \ldots, x_n) = 0$ fail to have a common solution in \mathbb{C}^n if only if

$$1 \in < f_1(x_1, \ldots, x_n) \ldots f_m(x_1, \ldots, x_n) >$$

Change of Basis

• Let $I \subset K[x_1, x_2, x_3, y_1, y_2, y_3]$

$$x_1 + x_2 - y_1 = 0,$$

$$x_1 - x_2 - y_2 = 0,$$

$$x_1 + 2x_2 - y_3 = 0.$$

 $\begin{aligned} x_1 + x_2 - y_1 &= 0, \\ -2x_2 + y_1 - y_2 &= 0, \\ x_2 + y_1 - y_3 &= 0. \end{aligned}$

$$x_1 + x_2 - y_1 = 0,$$

$$-2x_2 + y_1 - y_2 = 0,$$

$$3y_1 - y_2 - 2y_3 = 0.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Groebner Basis

1. The ideal generated by the leading terms of polynomials in $I = \langle f_1, ..., f_n \rangle$ equals the ideal generated by the leading terms in the G - basis.

2. The leading term of any polynomial in I is divisible by the leading term of some polynomial in G.

3. The multivariable division by G of any polynomial in the ideal I gives zero as remainder.

For $I = \langle x^2 - y, x^3 - x \rangle$ the G-basis is not generated by the leading terms!.

Buchberger's Algorithm

$$I = \subset Q[x, y, z]$$

Mathematica

GroebnerBasis[{f1,f2,f3},{x,y,z}] $G = \langle 4z^4 + 2z^2 - 1, y - 2z^2, x - z \rangle$

Maple

with(Groebner); G:=Basis([g1,g2,g3],plex(x,y,z)); $G = \langle 4z^4 + 2z^2 - 1, y - 2z^2, x - z \rangle$

Singular

ring R=0, (x,y,z),dp; (global reverse ordering) ideal I= $x^2 + y^2 + z^2 - 1$, $x^2 + z^2 - y$, x - z; ideal G=std(I); $G = \langle y^2 + y - 1$, $y - 2z^2$, x - z >For an empty set you obtain $G = \langle 1 \rangle$

Implicitization Problem

Consider the spatial curve C defined by

 $x = t^4, y = t^3, z = t^2$

what are the equations for C in K[x, y, z] ?.

Compute the G-basis of
 I =< x - t⁴, y - t³, t² - z >⊂ K[t, x, y, z]

 G =< x - z², y² - z³, z - t², ty - z², tz - y >

and observe that the first two polynomials depend only on x, y, z.

Singular

ring R=0, (x,y,z,t),dp; ideal I= $x - t^4$, $y - t^3$, $z - t^2$; ideal C=eliminate(I,t); $C = \langle x - z^2, y^2 - xz \rangle$ Mapping

▶ Birational Equivalence: $S \setminus (z = 0) \cong \mathbb{C}^2 \setminus (uv = 0)$

$\mathbb{C}^2 \longrightarrow \overset{\sigma}{\longrightarrow}$	$S = z^{3} - $	$xy \subset \mathbb{C}^2$	
$(u,v) \longmapsto$	(u^2v, u)	$\left(u^{2}v, uv^{2}, uv\right)$	
$S = z^3 - xy \subset \mathbb{C}^3$	$\xrightarrow{\sigma^{-1}}$	\mathbb{C}^2	
(x, y, z)	\mapsto	(x/z, y/z)	

Rational Parametrization:

$$\begin{array}{ccc} \mathbb{C}^2 & \stackrel{\sigma}{\longrightarrow} & \mathrm{S} = x^3 + xyz + x + y^3 + yz^2 \subset \mathbb{C}^2 \\ (u, v) & \longmapsto & (f_1/f_4, f_2/f_4, f_3/f_4) \end{array}$$

$$\begin{split} f_1 &= u^3(u^2-2v), \quad f_2 &= 2uv-u^3, \\ f_3 &= u(v^2+u^6-1), \quad f_4 &= -1-v^2+u^2v+u^6 \end{split}$$

(u,v) = (1,-1) or (-1,1/3) leads to same point at S. . . .

Dimension

Consider the spatial curve C defined by

$$x = t^3, y = t^4, z = t^5$$

The ideal I(C) is generated by three polynomials !

$$I = \langle y^2 - xz, x^2y - z^2, x^3 - yz \rangle$$

Dimension with Singular

ring R=0, (x,y,z,),dp; ideal $I = \langle y^2 - xz, x^2y - z^2, x^3 - yz \rangle$; dim(groebner(I)); 1

Algebraic variety may not be given as complete intersection.

Differential Forms

• Let $V = \langle f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n) \rangle$ define the set,

$$\Omega^1(V) = \frac{\langle dx_1, \ldots, dx_n \rangle_{K[V]}}{\langle df_1, \ldots, df_n \rangle}$$

and the space of differential forms of degree q = dim[V] is,

$$\Omega^q(V) = \stackrel{q}{\wedge} \Omega^1(V)$$

• The plurigenera of V are non-negative integers,

$$P_l(V) = dim[\overset{l}{\otimes} \Omega^q(V)]$$

• For example in the case of a curve C we have,

$$P_1(C) = g, \quad P_l(C) = (2l-1)(g-1), \ l > 1.$$

• Kodaira Dimension $P_l(V) \sim l^{k(V)}$.

Complete Intersection

• An n-dimensional algebraic variety $V \in \mathbb{P}^{n+m}$ is a complete intersection,

$$V = < f_1(x_0,\ldots,x_{n+m}),\ldots,f_m(x_0,\ldots,x_{n+m}) >$$

• For such complete intersection,

$$k(V) = \begin{cases} -\infty, & \deg(f_1) + \dots + \deg(f_m) - (n+m+1) < 0. \\ 0, & \deg(f_1) + \dots + \deg(f_m) - (n+m+1) = 0. \\ n, & \deg(f_1) + \dots + \deg(f_m) - (n+m+1) > 0. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ