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The slides of these classes have been put together by looting
the excellent ones created by some of the teachers of the
“School on Dark Matter”, held at ICTP-SAIFR in Sao Paulo Iin

2016. (And some additional material.)

Reorganized and trimmed for a more compact purpose, for this
class | have used mostly material from classes of P.D.
Serpico’s, as well as E. Cypriano’s classes on lensing.

The complete material can be found at this address
http://www.ictp-saifr.org/school-on-dark-matter-2/

| strongly encourage you to download and study them to have
a broader view on the subject. Excellent exercises are
suggested, and references available.

Of course, do not hesitate to contact me for any question you
may have.




CMB, a dark matter probe
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CMB, a dark matter probe

[Planck coll.]



CMB, a dark matter probe
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Common ground to start with

Dark Matter

[e.g. Planck coll.]



Reality check,
latest CMB results

Standard BBN

Aver et al. (2015)

Aver et al. (2015)
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A story of LCDM
I: structure formation

age of Universe
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A story of LCDM
I1: the single halo

A “universal” DM profile”
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A story of LCDM
[11I: the dark matter distribution
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A story of LCDM
IV the small scale problems

Cusp vs core Missing satellite
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Spiral galaxies
disk dynamical structure

Disk Is Rotation supported:
observable velocity traces enclosed mass



Spiral galaxies
disk dynamical structure

Using observed circular velocities to infer the potential
(total enclosed mass)



Rotation Curves in local galaxies:
an evergreen classic

(with interesting twists)

Galaxy Rotation Curves:
A = Predicted B = Observed

Viotal > CONSL.

>
xcass
O
O
(¢))
>

Distance

discrepancy between observed and predicted (from visible matter only)



Rotation Curves in local galaxies:
an evergreen classic

external galaxy
NGC 6503
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[Begeman, Broeils & Sanders 1991]
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Not only the disk;

Jeans analysis

Fluid continuity equation




Jeans analysis

, kinematic ,
acceleration + . gravity -+ pressure
V1SCOS1tY




Jeans analysis:
a practical example in a specific case

cylindrical symmetry

From observations

02, = (20 km/s)* @ h = 300pc

Y = 50 Mgpe >



Some words about Gravitational lensing

Gravitational lensing geometry

Figure from Narayan & Bartelmann (1996; arXiv:astro-ph /9606001 )
» Parameters:

» Angular diameter distances: D,, Dy and Dy,

» Source position: 3 = 1/Ds - Impact parameter
» Image position: @ = £/Dy

» Deflexion angle: a = & Dy /Dx




Some words about Gravitational lensing

The Lensing Equation

g = _g—zg = Dds&(g)

» Using the angular quantities instead of the physical ones
we get:

» Then by using the physical deflexion angle we arrive to
the Lens Equation:

B=06-ab)




Some words about Gravitational lensing

The deflection angle

» From GR one can estimate the deflection angle due to a
mass point:

» The projected angle is then:

Dys 4 GM
a=|al=—>

Ds C2Dd|9‘

» Considering now a direction, as all the angles lies in the
image-lens direction, we have:
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The Einstein angle

The lens equation can be easily solved in this case.

Lets first define a ‘natural scale’, the Einstein angle for
this lens:




The Einstein angle

What is 'natural’ about the Einstein angle or radius 7

|fﬁ=0—)9=95

—

"he distance between two images (solutions) is 20g

"he density inside the the Einstein radius is the critical
lensing density

-

c> Ds
S 47 G Dd Dds

above which multiple imaging occur.




Lensing regimes

The lensing effect

» Gravitational lensing causes several effects on the
images of the sources:

1. Radial displacement
. Multiple imaging (given certain conditions)

. Magnification of the angular size

surface brightness conservation
» and flux

. Distortion
. Time Delay

» The prevalence/interest of one or more of those effects
over the others have to do with the lensing regime.




Lensing regimes

Lensing regimes

» Different lensing regimes differentiate themselves by:

1. The lens mass distribution
2. The distances involved

3. The impact parameter

he main lensing regimes are:

1. Micro lensing 0 <0 dist. LEpc
2. Strong lensing 0 <0 dist. ~ Gpc
3. Weak lensing 8 >0 dist. ~ Gpc




‘Micro Lenses

Micro lenses

» Typical Einstein radius

M 1/2 [)d -1/2 —1/2

» We cannot observationally resolve the multiple imaging,
but we can measure the variation of the flux due to the
magnification
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» Note that microlensing should produce symmetric and
achromatic light curves as above.




Strong Lenses




