Axion Experiments Lecture 1

AXIONS

Symmetry Magazine/ Sandbox Studio

Andrew Sonnenschein, Fermilab ICTP-SAIFR São Paulo, Brazil, August 2, 2018

Outline

- Axion lecture #1: Current/ Past generation axion experiments
 - Theory motivation
 - "Light Shining Through Walls"
 - Solar axions
 - Sikivie haloscope (resonant cavity) technique and current results
 - ADMX, HAYSTAC
- Axion lecture #2: Future experiments, R&D
 - Higher frequency and mass
 - High frequency R&D- Magnets, Cavities & Electronics
 - Broadband detectors- dish antenna
 - Open resonators- Madmax, Orpheus
 - Lower frequency
 - LC circuits
 - ABRACADABRA, DM Radio
 - CASPER

"WIMP Miracle": Current Status

- "WIMP Miracle" argument: Weakly interacting particles M_{wimp/boson}~100 GeV produce the right abundance of dark matter .
- Many discussions motivated by supersymmetry: Lightest Supersymmetric Particle may be neutral and stable.
- But by 2018 has the most promising part of parameter space already been explored?

WIMPS vs. Axions

- Both are assumed to be cold dark matter with density ~0.3 GeV/cm³ and velocity determined by depth of Milky Way gravitational potential (escape velocity ~300 km/ s or v/c~0.001).
- Axions are much lighter and colder. They are not in thermal equilibrium.
- Small energy and long wavelength imply different detection techniques.

	WIMPs (typical)	Axions
Mass M	~100 GeV	~2- 200 μeV post inflation PQ breaking
Velocity in galaxy	<0.001 c	<0.001 c (escape velocity)
Kinetic energy ½ M V ²	<100 keV	<10 ⁻¹⁰ eV
De Broglie Wavelength (h/ MV)	~10 ⁻¹⁵ m	~10- m

Axions-- Motivation

- Protons and neutrons have a charged substructure (quarks)
- Naïve expectation: they should have electric dipole moment of order 10⁻¹⁶ e-m ?

Electric Dipole Moments Violate CP (or T) Symmetry

- Small electric dipole moment of neutron could be explained by approximate CP symmetry of strong interaction.
- But the strong interaction Lagrangian appears to have CP- violating terms that don't need to be small.

CP Violation in QCD

• The QCD Lagrangian contains a term that changes sign under Parity or Time reversal

• Limits on the neutron electric dipole moment (< 3 x 10^{-26} e cm) constrain the CP violation parameter Θ < 10^{-9}

Peccei Quinn Solution

- Introduce a new field $\,\varphi\,$ coupled to GG with a spontaneously broken symmetry.
- To minimize vacuum energy, radial part of ϕ takes on a vacuum expectation value (VEV).
- CP violating term in QCD Lagrangian is cancelled out by the VEV of $\boldsymbol{\varphi}.$
- ϕ can still move in the axial direction– the axion!

Axion Mass

- QCD effects at the time of the QCD phase transition (quark-gluon plasma -> free particles) cause a small tilt in the Peccei Quinn potential producing an axion mass.
- Axion mass is determined by curvature of potential around minimum.

$$m_A = 5.70(7) \left(\frac{10^9 \,\text{GeV}}{f_A}\right) \,\text{meV}$$

Axion Inventors

Roberto Peccei

Frank Wilczek

- <u>Peccei & Quinn</u>: Postulate new field that dynamically zeros out CP violation.
- <u>Weinberg & Wilczek</u>: Implies a new Goldstone boson (the axion)

"Clean up" the Strong-CP problem

Production of Dark Matter by Vacuum Realignment

- After PQ symmetry breaking the Θ angle is a random number.
- Tilting of PQ potential below QCD phase transition causes the field to roll to its minimum, converting vacuum energy to axion particles.
- Axion dark matter density today determined by random initial value of Θ.
- Can assume different values in causally disconnected regions of space-> domain walls.

The QCD Axion- A Very Predictive Model

- Everything depends on just one unknown parameter
 – the axion decay constant f_a
 - The axion mass.

$$m_A = 5.70(7) \left(\frac{10^9 \,\mathrm{GeV}}{f_A}\right) \,\mathrm{meV}$$

• Coupling to gluons and photons.

$$\frac{a}{f_a}G_{\mu\nu}\tilde{G}^{\mu\nu} : G_{A\gamma\gamma}\mathbf{E}\cdot\mathbf{B}\,\phi_A \qquad G_{A\gamma\gamma} = \frac{\alpha}{2\pi f_A}\left(\frac{E}{N} - 1\right)$$

• The according to hundress*

$$\Omega_A^{\rm vr} h^2 \approx 0.12 \, \left(\frac{30 \ \mu {\rm eV}}{m_A}\right)^{1.165} \label{eq:Gamma-star}$$

*Vacuum realignment contribution for post inflation scenario, not including cosmic strings & domain walls...

Predictions Vs. Previous Experiment Constraints

Classical "post inflation" axion window: fine tuning of Θ not required for axions to make up 100% of observed dark matter

Axion 2d Sensitivity Plot: Photon Coupling vs Mass

- Constructed to resemble standard WIMP sensitivity plot.
- Allows for a more general parameter space of "axion like particles" or ALPS with independent mass & cross section.
- QCD axion appears along diagonal band.

Graham, Irastrorza, Lamoreaux, Linder and Van Bibber, arXiv: 1602.00039

"Light Shining Through Walls" Experiments

- Photons convert into axions in magnetic field, then pass through a wall.
- Convert back into photons so they can be detected.
- Probability of gamma->axion-> gamma round trip goes as $g_{a\gamma\gamma}^4$

GammeV at Fermilab

• 5 ns wide pulses from Nd: YAG laser

A. S. Chou, W. Wester et al., 2008

Constraints on $g_{a\gamma\gamma}$ from Completed LSW Experiments

Experiment	ω	P_g	β_g	Magnets	10-6		
ALPS (DESY) [61,62]	2.33 eV	4 W	300	$B_g = B_r = 5 \text{ T}$ $L_g = L_r = 4.21 \text{ m}$			
BFRT (Brookhaven) [64,65]	$2.47~{\rm eV}$	3 W	100	$\begin{array}{l} B_g=B_r=3.7~\mathrm{T}\\ L_g=L_r=4.4~\mathrm{m} \end{array}$	1		1 =
BMV (LULI) [66, 67]	$1.17 \ \mathrm{eV}$	$8\times 10^{21}~\frac{\gamma}{\rm pulse}$ (14 pulses)	1	$B_g = B_r = 12.3 \text{ T}$ $L_g = L_\tau = 0.4 \text{ m}$	Ge		BMV
GammeV (Fermilab) [68]	$2.33 \ \mathrm{eV}$	$4\times 10^{17}~\frac{\gamma}{\rm pulse}$ (3600 pulses)	1	$\begin{array}{l} B_g = B_r = 5 \ \mathrm{T} \\ L_g = L_r = 3 \ \mathrm{m} \end{array}$	<u> </u>		BFRT OSOAR
LIPSS (JLab) [69,70]	$1.03~{\rm eV}$	180 W	1	$\begin{array}{l} B_g=B_r=1.7~\mathrm{T}\\ L_g=L_r=1~\mathrm{m} \end{array}$	10-7		GammeV
OSQAR (CERN) [71,72]	$2.5~{\rm eV}$	15 W	1	$B_g = B_r = 9 \text{ T}$ $L_g = L_r = 7 \text{ m}$	E		ALPS(gas)
BMV (ESRF) [73]	$50/90~{\rm keV}$	10/0.5 mW	1	$B_g = B_r = 3 \text{ T}$ $L_g = 1.5, L_r \sim 1 \text{ m}$			
					10-4	10-3	

Table 1. Some experimental parameters of the past and current generation of LSW experiments.

 m_{ϕ} [eV]

Redondo & Ringwald 2010

Resonant Regeneration of Axion Signal

- Optical resonators are placed on both the source and receiver side of the wall.
- Resonators are phase locked to each other;
- Receiver power is enhanced by the product of the finesse of the two optical resonators.
 - Enhancement factor in signal power can be $\sim 10^5 \times 10^4 = \sim 10^9$ at optical frequencies
 - But coupling sensitivity scales only as power^{1/4}...

Sikivie, Tanner & Van Bibber 2007

ALPS I and ALPS II at DESY: Any Light Particle Search

parameter	scaling	ALPS I	ALPS IIc	sens. gain
BL (total)	$g_{\rm ay} \propto (BL)^{-1}$	22 Tm	468 Tm	21
PC built up (Plaser,eff.)	$g_{ m ay} \propto eta_{ m PC}^{-1/4}$	1 (kW)	150 (kW)	3.5
rel. photon flux n _{prod}	$g_{ay} \propto \dot{n}_{\rm prod}^{-1/4}$	1 (532 nm)	2 (1064 nm)	1.2
RC built up $\beta_{\rm RC}$	$g_{\rm ay} \propto \beta_{ m RC}^{-1/4}$	1	40,000	14
detector eff. DE	$g_{ay} \propto D E^{-1/4}$	0.9	0.75	0.96
detector noise DC	$g_{sy} \propto D C^{1/8}$	$1.8 \cdot 10^{-3} s^{-1}$	$10^{-6} s^{-1}$	2.6
combined			(3082

Aaron Spector, Patras 2018

ALPS II Sensitivity

DESY, | ALPSII: Overview and Status Report | Aaron Spector, June 19, 2018

Solar Axions

- Similar to "light shining through walls", but replace laser with the Sun.
- Electromagnetic fields in solar plasma convert X- ray photons to axions.
- Solar axion flux: 0.2% L $_{solar}$ or 3.75 x 10¹¹ cm⁻² s⁻¹ for $g_{a\gamma\gamma}=10^{-10}GeV^{-1}~$ (Raffelt, 2006)

IAXO technologies

Solar Axion Telescopes- Summary

Experiment	references	status	B(T)	L (m)	\mathcal{A} (cm ²)	focusing	g_{10}
Brookhaven	[38]	past	2.2	1.8	130	no	36
SUMICO	[46, 486]	past	4	2.5	18	no	6
CAST	[481, 483, 488, 491, 492]	ongoing	9	9.3	30	partially	0.66
TASTE	[499]	concept	3.5	12	2.8×10^{3}	yes	0.2
BabyIAXO	[500]	in design	~ 2.5	10	2.8×10^{3}	yes	0.15
IAXO	[487, 501]	in design	~ 2.5	22	2.3×10^{4}	yes	0.04

Irastorza and Redondo, 2018

Haloscope Technique

- Axions from galaxy halo convert to microwave photons in a magnetic field.
- Signal power:

$$P = 4 \cdot 10^{-22} \operatorname{W} \left(\frac{V}{200 \ \ell} \right) \left(\frac{B_0}{8 \text{ Tesla}} \right)^2 C_{nl} \left(\frac{g_{\gamma}}{0.97} \right)^2 \cdot \left(\frac{\rho_{\mathrm{a}}}{0.5 \cdot 10^{-24} \text{ g/cm}^3} \right) \left(\frac{m_{\mathrm{a}}}{1 \text{ GHz}} \right) \left(\frac{\min(Q_{\mathrm{L}}, Q_{\mathrm{a}})}{1 \times 10^5} \right)$$

Form Factor C_{nl} overlap of cavity mode $E \cdot B_0$ Dark Matter Density ρ_a Axion Mass m_a Resonator Quality Factor $Q_{\perp} \sim 10^5$ Axion Q from velocity dispersion $Q_a \sim 10^6$ Couplings to Photon $g_{\gamma} \sim 0.97$ for KSVZ model $g_{\gamma} \sim 0.36$ for DFSZ

See Pierre Sikivie, "Experimental Tests of the Invisible Axion" 1983 PRL

History

First and second generation haloscope experiments (1980s-90s) :

Cooled to 4 K w/FET transistor amplifiers, noise temperature range 3 - 20 K.

- BNL
- University of Florida
- Rochester/ Brookhaven/ Fermilab (RBF)
- ADMX- achieved KFVZ sensitivity

3rd generation (current):

Superconducting amplifiers <100 mK approaching standard quantum limit of noise. Microstrip Squid Amplifiers & Josephson Parametric Amplifiers.

- ADMX-G2.
- Haystac
- CAPP

4th Generation? Beyond standard quantum limit?

ADMX Experiment Design

Dilution refrigerator ³He/⁴He mixing chamber

Microwave Cavity

2017 Run: 150 mK 2018 Run: 90 mK

ADMX site: University of Washington

Center for Experimental Nuclear Physics and Astrophysics (CENPA)

ADMX DAQ & Controls

ADMX Magnets

Key Microwave Cavity Design Constraints

$$\begin{aligned} \frac{df}{dt} &\approx 1.68 \text{ GHz/year } \left(\frac{g_{\gamma}}{0.36}\right)^4 \left(\frac{f}{1 \text{ GHz}}\right)^2 \left(\frac{\rho_0}{0.45 \text{ GeV/cc}}\right)^2 \cdot \\ & \left(\frac{5}{SNR}\right)^2 \left(\frac{B_0}{8 \text{ T}}\right)^4 \left(\frac{V}{100l}\right)^2 \left(\frac{Q_L}{10^5}\right) \left(\frac{C_{010}}{0.5}\right)^2 \left(\frac{0.2 \text{ }K}{T_{sys}}\right)^2 \end{aligned}$$

- Maximize product of $B^2 \cdot V \cdot Q_L \cdot C_{lmn}$ to maximize axion-to-photon conversion power
 - B^2V set by the magnet bore: $(8T)^2 \cdot (\sim 100 \text{ liters})$
- Loaded Quality factor Q_L = frequency/bandwidth
 - $(Q_L \sim 10^5 \text{ for copper cavity } \sim 1 \text{ GHz})$
- Mode Form Factor C_{Imn}
- Tunability: must be able to shift resonant frequency over an appreciable range (typically 30-50%)

The Resonator

Tuning Rods

•

Microstrip Squid Amplifier (MSA)

- Very similar to conventional DC Squid.
- Flux to voltage converter sensitive to a fraction of a flux quantum.
- Adapted for high frequency use.
- Supplied to ADMX by Clarke group at UC Berkeley.

Microstrip SQUID Amplifier (MSA):

Microstrip Squid Amplifier (MSA)

- To couple a microwave signal into the SQUID:
 - Cover the washer with an insulating layer (350nm of SiO₂)
 - Add a spiral path of conductor around central hole
 - This creates a **microstrip** transmission line resonator between the input coil and SQUID washer.
- GaAs varactor used to tune the microstrip resonator.

Stripline Field Geometry

Noise Performance of Microstrip Squid Amplifiers

- $T_{Noise} = \frac{1}{k_B} \frac{Noise Power}{Bandwidth}$
- Achieved T_N= 48 mK at 600 MHz during testing at UC Berkeley
- 1.7 x quantum limit.
- In ADMX operation, system noise temperatures has additional contributions from:
 - Black body radiation in cavity
 - Attenuation
 - Post amplification stages

Cryogenic Electronics System Package- 2017/2018

MSA Operation in ADMX 2017/ 2018 Runs

- Amplifier package at higher temperature than resonator due to thermal short.
- Causes distinctive "dip" in noise power at cavity resonance.
- Typical system noise temperature was ~500 mK.

Experiment Operation Procedure

- The cavity frequency is scanned over a region until the desired SNR is achieved.
- Convolution with filter matched to expected axion linewidth.
- Typically we have ~10⁶ independent measurements on each axion linewidth, averaged to reduce noise by $\sqrt{10^6}$
- We then examine the combined power spectrum for signs of excess
- Excess power regions can be statistical fluctuations, synthetically injected signals, RF interference, or axions
- Excess power regions are rescanned to see if they persist
- Persistent candidates are subjected to a variety of confirmation tests: for example: magnet field changes or probing with other cavity modes.
- We do blind signal injection, so we always have candidates

Predicted Axion Signal Shape

Recent N-Body models actually suggest the axion lineshape is narrower than the standard virialized model.

Our analysis searches for both.

Adapted from: Lentz et al. Ap.J. 845 (2017)

You might have an axion if the signal...

- Can't be seen in the room outside of the magnetic field
- Persists all the time
- Follows the Lorentzian lineshape of the cavity
- Is suppressed in non TM010 modes
- Scales with the B² of the magnet
- Has a tiny daily and annual frequency modulation

No candidates passed tests in 2017 run.

First ADMX-G2 Result (Data from 2017 Run)

• Exclude DFSZ models at 90% CL from 2.66-2.82 μ eV.

ArXiv 1804.05750 & PRL April 2018

2018 Operations

• Improved performance in 2018 running– lower temperatures and more efficient data collection.

Setup: Cavity

Resonant Microwave Cavity

Rapidis, Patras 2018, June 17-22, 2018

HAYSTAC

TM₀₁₀-like mode: 3.6-5.8 GHz

cm

Piezo electric motor controls position of rod

S. Al Kenany, et al, NIM A854, (2017) 11-24.

Setup: Magnet & Cryogenics HAYSTAC

He³/He⁴ dilution refrigerator

Josephson Parametric Amplifiers

–Final phase at 127 mK

9.4 Tesla Magnet10L Magnet

Results of Phase I

HAYSTAC

Moving forward to higher frequencies

As search frequency increases:

- Expected axion coupling increases
- Cavity volume decreases, decreasing signal
- Cavity Q decreases, decreasing signal
- Quantum limit increases, increasing noise

Extra Slides

The TM_{010} and TM_{020} modes tune together: data from both modes are taken in parallel.

The TM₀₂₀ mode has acceptable "form factor."

Complementary frequency coverage.

For open cylinder

mode	Relative	Tuning	relative
	frequency	range (MHz)	power
TM ₀₁₀	1	400-900	1
TM ₀₂₀	2.3	920-2,100	0.41

Concurrent "Sidecar" High-Frequency Prototype ass axion search

Characteristic Frequency: TM010: 4-6 GHz TM020: 7 GHz

Prototype: not yet sensitive to QCD axions

- $g_{\gamma} \sim 0.36$ (DFSZ)
- g_γ ~ 0.97 (KSVZ)

• Power from the cavity is

• $Q_L \sim 70000 (GHz/f)^{2/3}$ (ASE) and $Q_a \sim 10^6$

$$P = 2.3 \cdot 10^{-26} \text{Watt} \left(\frac{V}{200\ell}\right) \left(\frac{B_0}{8 \text{Tesla}}\right)^2 C_{nl} \left(\frac{g_{\gamma}}{0.97}\right)^2 \cdot \left(\frac{\rho_{\text{a}}}{0.5 \cdot 10^{24} \text{g/cm}^3}\right) \left(\frac{m_{\text{a}}}{2\pi \text{GHz}}\right) \min(Q_{\text{L}}, Q_{\text{a}})$$

The signals are very weak

f_A : One Parameter Controls Everything

- f_A is the "axion decay constant", an unknown energy scale in the theory.
- Determines axion mass and all couplings

$$m_A = 5.70(7) \left(\frac{10^9 \,\mathrm{GeV}}{f_A}\right) \mathrm{meV}$$

Coupling to gluon field

Coupling to electromagnetic field

Coupling to fermions

$$\frac{\frac{a}{a}G_{\mu\nu}\tilde{G}^{\mu\nu}}{\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu}}$$
$$\frac{\frac{\partial_{\mu}a}{f_a}\bar{\Psi}_f\gamma^{\mu}\gamma_5\Psi_f}{\frac{\partial_{\mu}a}{f_a}\bar{\Psi}_f\gamma^{\mu}\gamma_5\Psi_f}$$

 f_A Originally identified with the electroweak symmetry breaking scale by Peccei and Quinn (~100 GeV), predicting axion mass to be ~ 100 keV.