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Outline
• Axion	lecture	#1:	Current/	Past	generation	axion	experiments	

• Theory	motivation	
• “Light	Shining	Through	Walls”		
• 	Solar	axions		
• Sikivie	haloscope	(resonant	cavity)	technique	and	current	results	

• ADMX,	HAYSTAC	

• Axion	lecture	#2:	Future	experiments,	R&D	
• Higher	frequency	and	mass	

• High	frequency	R&D-	Magnets,	Cavities	&	Electronics	
• Broadband	detectors-	dish	antenna	
• Open	resonators-	Madmax,	Orpheus	

• Lower	frequency		
• LC	circuits	
• ABRACADABRA,	DM	Radio	
• CASPER



“WIMP	Miracle”:	Current	Status
• “WIMP	Miracle”	argument:	Weakly	interacting	particles	Mwimp/boson∼100	
GeV	produce	the	right	abundance	of	dark	matter	.	

• Many	discussions	motivated	by	supersymmetry:	Lightest	
Supersymmetric	Particle	may	be	neutral	and	stable.	

• But	by	2018	has	the	most	promising	part	of	parameter	space	already	
been	explored?



WIMPS	vs.	Axions

WIMPs	(typical) Axions

Mass	M ∼100	GeV ∼2-		200	µeV	post	inflation	PQ	breaking

Velocity	in	galaxy	 <0.001	c	 <0.001	c	(escape	velocity)

Kinetic	energy	½	M	V2 <100	keV <10-10	eV

De	Broglie	Wavelength	(h/
MV)

∼10-15	m ∼10-	m

• Both	are	assumed	to	be	cold	dark	matter	with	density	~0.3	GeV/cm3	and	velocity	
determined	by	depth	of	Milky	Way	gravitational	potential	(escape	velocity	~300	km/
s	or	v/c~0.001).	

• Axions	are	much	lighter	and	colder.	They	are	not	in	thermal	equilibrium.	
• Small	energy	and	long	wavelength	imply	different	detection	techniques.



Axions--	Motivation
• Protons	and	neutrons	have	a	charged	substructure	(quarks)	
• Naïve	expectation:	they	should	have	electric	dipole	moment	of	order	
10-16	e-m	?



Electric	Dipole	Moments	Violate	CP	(or	T)	Symmetry	

• Small	electric	dipole	moment	of	neutron	could	be	
explained	by	approximate	CP	symmetry	of	strong	
interaction.	

• But	the	strong	interaction	Lagrangian	appears	to	
have	CP-	violating	terms	that	don’t	need	to	be	small.



CP	Violation	in	QCD

R.D.	Peccei,	Hep-ph/0607268

• The	QCD	Lagrangian	contains	a	term	that	changes	sign	under	Parity	or	Time	reversal

Strong	coupling	
constant Gluon	field	

strengths

• Limits	on	the	neutron	electric	dipole	moment	(<	3	x	10-26	e	
cm)	constrain	the	CP	violation	parameter	Θ<10−9



Peccei	Quinn	Solution
• Introduce	a	new	field		φ		coupled	to	GG	with	a	spontaneously	broken	symmetry.		
• To	minimize	vacuum	energy,	radial	part	of	φ	takes	on	a	vacuum	expectation	value	(VEV).	
• CP	violating	term	in	QCD	Lagrangian	is	cancelled	out	by	the	VEV	of	φ.	
• φ can	still	move	in	the	axial	direction–	the	axion!	

0	in	vacuum	state



Axion	Mass	
• QCD	effects	at	the	time	of	the	QCD	phase	transition	(quark-	gluon	
plasma	->	free	particles)	cause	a	small	tilt	in	the	Peccei	Quinn	
potential	producing	an	axion	mass.	

• Axion	mass	is	determined	by	curvature	of	potential	around	minimum.

     ∼ fA



Axion Inventors

• Peccei	&	Quinn:	Postulate	new	field	that	dynamically	zeros	out	CP	violation.	

• Weinberg	&	Wilczek:		Implies	a	new	Goldstone	boson	(the	axion)

Roberto Peccei Helen Quinn Frank WilczekSteven Wienberg

“Clean	up”	the	Strong-CP	
problem



Production	of	Dark	Matter	by	Vacuum	Realignment
• After	PQ	symmetry	breaking	the	Θ 
angle	is	a	random	number.	

• Tilting	of	PQ	potential	below	QCD	
phase	transition	causes	the	field	to	roll	
to	its	minimum,	converting	vacuum	
energy	to	axion	particles.	

• Axion	dark	matter	density	today	
determined	by	random	initial	value	of	
Θ.	

• Can	assume	different	values	in	causally	
disconnected	regions	of	space->	
domain	walls. 0.37
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The	QCD	Axion-	A	Very	Predictive	Model

• Everything	depends	on	just	one	unknown	
parameter–	the	axion	decay	constant	fa		

• The	axion	mass.	

• Coupling	to	gluons	and	photons.	

• The	cosmological	abundance*

     ∼ fA

*Vacuum	realignment	contribution	for	post	
inflation	scenario,	not	including	cosmic	strings	&	
domain	walls…	
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Predictions	Vs.	Previous	Experiment	Constraints

ADMX
(2013)

Yale

Astrophysical bounds
Rochester	
Brookhaven	
Fermilab	
U	Florida	
(1990s)

HAYSTAC

Classical	“post	
inflation”	axion	

window:	fine	tuning	
of	Θ	not	required	for	
axions	to	make	up	
100%	of	observed	

dark	matter
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Graham,	Irastrorza,	
Lamoreaux,	Linder	and	
Van	Bibber,	arXiv:
1602.00039	

Axion	2d	Sensitivity	Plot:		Photon	Coupling	vs	Mass		
• Constructed	to	resemble	standard	WIMP	sensitivity	plot.	
• Allows	for	a	more	general	parameter	space	of	“axion	like	particles”	or	ALPS	with	independent	mass	&	

cross	section.	
• QCD	axion	appears	along	diagonal	band.



Magnet Magnet
“Wall”

Laser

Photon	
detectorB gaγγ gaγγ

“Light	Shining	Through	Walls”	Experiments
	

	

	

Primakoff	Process

gaγγ



GammeV	at	Fermilab

• 5	ns	wide	pulses	from	Nd:	YAG	laser

A.	S.	Chou,	W.	Wester	et	al.,	2008



	

Redondo	&	Ringwald	2010



Resonant	Regeneration	of	Axion	Signal

Resonator	on	source	side	recycles	
photons	from	laser

Resonator	on	receiver	side	
amplifies	signal

Sikivie,	Tanner	&	Van	Bibber	2007

	



ALPS experiment

19

ALPS	I	and	ALPS	II	at	DESY:	Any	Light	Particle	Search

Aaron	Spector,	Patras	2018





Solar	Axions
• 	

Magnet
“Wall”

Photon	
detectorgaγγ gaγγaxion

axion
X-ray

CAST



Igor	G.	Irastorza	/	Universidad	de	Zaragoza

IAXO – Conceptual Design

• Large toroidal 8-coil magnet L = ~20 m  

• 8 bores: 600 mm diameter each 

• 8 x-ray telescopes + 8 detection systems 

• Rotating platform with services

AxionWIMP,	DESY,	Hamburg 22



Igor G. Irastorza / Universidad de Zaragoza

IAXO technologies

Baseline developed at: 
IAXO Letter of  Intent: CERN-SPSC-2013-022  
IAXO Conceptual Design: JINST 9 (2014) 
T05002 (arXiv:1401.3233)

IAXO magnet 
• Superconducting “detector” magnet.  
• Toriodal geometry (8 coils) 
• Based on ATLAS toroid technical solutions. 
• CERN+CEA expertise 
• 8 bores / 20 m long / 60 cm Ø per bore 

IAXO telescopes 
• Slumped glass technology with multilayers 
• Cost-effective to cover large areas 
• Similar to NuSTAR optics 
• Focal length ~5 m  
• 60-70% efficiency 
• LLNL+UC+DTU 
 + MIT + INAF

Focal length

14th AxionWIMP, DESY, Hamburg 23



Solar	Axion	Telescopes-	Summary

Irastorza	and	Redondo,	2018



Haloscope	Technique
• Axions	from	galaxy	halo	convert	to	microwave	
photons	in	a	magnetic	field.	

• Signal	power:	

	

See	Pierre	Sikivie,	
“Experimental	Tests	of	the	
Invisible	Axion”	1983	PRL
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History
First		and	second	generation	haloscope	experiments	(1980s-90s)	:	

	Cooled	to	4	K	w/FET	transistor	amplifiers,	noise	temperature	range	3	-	20	K.	
• BNL	
• University	of	Florida	
• Rochester/	Brookhaven/	Fermilab	(RBF)	
• ADMX-	achieved	KFVZ	sensitivity	

3rd	generation	(current):	

Superconducting	amplifiers	<100	mK	approaching	standard	quantum	limit	of	noise.	
Microstrip	Squid	Amplifiers	&	Josephson	Parametric	Amplifiers.	

• ADMX-G2.	
• Haystac	
• CAPP	

4th	Generation?	Beyond	standard	quantum	limit?
26



ADMX	Experiment	Design

Microwave	
Cavity

Dilution	
refrigerator	
3He/4He	mixing	
chamber

2017	Run:	150	mK	
2018	Run:	90	mK

27



ADMX site: University of Washington 
Center for Experimental Nuclear Physics and Astrophysics (CENPA)

Cleanroom	
(with	insert	hanging)	

ADMX	Magnet Helium	liquefier	

ADMX	DAQ	&	Controls



ADMX	Magnets

	field	cancellation	coil

ADMX	8-Tesla	x	50	cm	
solenoid



Key Microwave Cavity Design Constraints

• Maximize product of B2·V· QL ·Clmn to maximize                                                   
axion-to-photon conversion power  

• B2V set by the magnet bore: (8T)2·(~100 liters) 
• Loaded Quality factor QL = frequency/bandwidth  

     (QL ~ 105 for copper cavity ~1 GHz) 

• Mode Form Factor Clmn 

• Tunability: must be able to shift resonant frequency over an appreciable range 
(typically 30-50%) 

TM010	mode	
C010	~	0.69

TM011	mode	
C011	~	0.0

B-field



The	Resonator
Tuning	Rods

31

• Frequency	steps	typically		1/10	
cavity	line	width	~	2	KHz



DC	SQUID	as	an	RF	amplifier	(MSA)
Principle	of	SQUIDs	as	microwave	amplifiers

• Very	similar	to	conventional	DC	Squid.	
• Flux	to	voltage	converter	sensitive	to	a	fraction	of	a	flux	

quantum.	
• Adapted	for	high	frequency	use.	
• Supplied	to	ADMX	by	Clarke	group	at	UC	Berkeley.

Microstrip	Squid	AmplifierMicrostrip	Squid	Amplifier	(MSA)

V

0 1 2 Φ 0
Φ

δV

δΦ

Nb	coil,	isolated	from	
washer	
(input)

Nb	Counter	
electrode	
(output)

Nb	washer	
(ground)

Nb-AlOx-Nb	
junctions

Microstrip	SQUID	Amplifier	(MSA):	

Resistive	shunts



DC	SQUID	as	an	RF	amplifier	(MSA)
Principle	of	SQUIDs	as	microwave	amplifiers

• To	couple	a	microwave	signal	into	the	SQUID:	
• Cover	the	washer	with	an	insulating	layer	(350nm	of	
SiO2)	

• Add	a	spiral	path	of	conductor	around	central	hole	
• This	creates	a	microstrip	transmission	line	resonator	

between	the	input	coil	and	SQUID	washer.	
• 	GaAs	varactor	used	to	tune	the	microstrip	resonator.

Microstrip	Squid	AmplifierMicrostrip	Squid	Amplifier	(MSA)

MSA	Varactor	Tunability
Stripline	Field	Geometry



Noise	Performance	of	Microstrip	Squid	Amplifiers
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Cryogenic	Electronics	System	Package-	2017/2018

35



MSA	Operation	in	ADMX	2017/	2018	Runs
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Experiment	Operation	Procedure

37

• 	



Predicted	Axion	Signal	Shape

Recent	N-Body	models	
actually	suggest	the	axion	
lineshape	is	narrower	than	
the	standard	virialized	
model.	

Our	analysis	searches	for	
both.

38

Lineshape	scaled	to	current	
ADMX	run

Adapted	from:	Lentz	et	al.	Ap.J.	845	(2017)



You	might	have	an	axion	if	the	signal…

• Can’t	be	seen	in	the	room	outside	of	the	magnetic	field	

• Persists	all	the	time	

• Follows	the	Lorentzian	lineshape	of	the	cavity	
• Is	suppressed	in	non	TM010	modes	

• Scales	with	the	B2	of	the	magnet	

• Has	a	tiny	daily	and	annual	frequency	modulation

No	candidates	passed	tests	in	2017	run.

39



First	ADMX-G2	Result	(Data	from	2017	Run)

40ArXiv	1804.05750	&	PRL	April	2018	

• Exclude	DFSZ	models	at	90%	CL	from	2.66-2.82	µeV.



2018	Operations

41

• Improved	performance	in	2018	running–	lower	temperatures	
and	more	efficient	data	collection.

2017	
Excluded

2018	
In	Progress



		Setup: Cavity

S.	Al	Kenany,	et	al,	NIM	A854,	(2017)	11-24.

Resonant Microwave Cavity

5.1 cm

10.2 cm

25.4	cm

TM010-like mode: 
3.6-5.8 GHz

Piezo	electric	motor	controls	position	of	rod

42Rapidis,	Patras	2018,	June	17-22,	2018



		Setup: Magnet & Cryogenics

9.4 Tesla Magnet

He3/He4 dilution 
refrigerator

Final phase at 
127 mK

Josephson 
Parametric 
Amplifiers

10L Magnet

43Rapidis,	Patras	2018,	June	17-22,	2018



		Results of Phase I

L. Zhong, et al, Phys. Rev. D 97, 092001, (2018)
44Rapidis,	Patras	2018,	June	17-22,	2018



Moving	forward	to	higher	frequencies

• Expected	axion	coupling	increases	
• Cavity	volume	decreases,	decreasing	signal	

• Cavity	Q	decreases,	decreasing	signal	
• Quantum	limit	increases,	increasing	noise

As	search	frequency	increases:

45
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Magnet Magnet

“Wall”

Laser

Photon	
detectorB gaγγ gaγγ



Why	TM
020

?

The TM010 and TM020 modes tune together: 
data from both modes are taken in parallel. 

The TM020 mode has acceptable 

“form factor.” 

Complementary frequency coverage. 

For open cylinder 
  Relative       Tuning relative 
mode frequency    range (MHz)  power 

TM010 1     400-900 1 
TM020 2.3               920-2,100 0.41



Fermilab	"W&C"	Seminar	2018

Concurrent	“Sidecar”	High-Frequency	
Prototype

49

Smaller cavity = 
higher-mass axion search

Characteristic	
Frequency:	
TM010:	4-6	GHz	
TM020:	7	GHz	

Prototype:	not	
yet	sensitive	to	
QCD	axions



The	signals	are	very	weak

• Power from the cavity is 
    

• QL ~ 70000 (GHz/f )2/3 (ASE) and Qa ~106 

• gγ ~ 0.97 (KSVZ)  

• gγ ~ 0.36 (DFSZ)



fA	:	One	Parameter	Controls	Everything

• fA	is	the	“axion	decay	constant”,	an	unknown	energy	scale	in	the	theory.	
• Determines	axion	mass	and	all	couplings

• fA		Originally	identified	with	the	electroweak	symmetry	breaking	scale	by	Peccei	
and	Quinn	(~100	GeV),	predicting	axion	mass	to	be	~	100	keV.

Coupling	to	electromagnetic	field

Coupling	to	gluon	field

Coupling	to	fermions


