Axion Experiments Lecture 2

Andrew Sonnenschein, Fermilab ICTP-SAIFR São Paulo, Brazil, August 2, 2018

Outline

- Axion lecture #1: Current/ Past generation axion experiments
 - Theory motivation
 - "Light Shining Through Walls"
 - Solar axions
 - Sikivie haloscope (resonant cavity) technique and current results
 - ADMX, HAYSTAC
- Axion lecture #2: Future experiments, R&D
 - Higher frequency and mass
 - High frequency R&D- Magnets, Cavities & Electronics
 - Broadband detectors- dish antenna
 - Open resonators- Madmax, Orpheus
 - Lower frequency
 - LC circuits
 - ABRACADABRA, DM Radio

Haloscope Technique

- Axions from galaxy halo convert to microwave photons in a magnetic field.
- Signal power:

$$P = 4 \cdot 10^{-22} \operatorname{W} \left(\frac{V}{200 \ \ell} \right) \left(\frac{B_0}{8 \text{ Tesla}} \right)^2 C_{nl} \left(\frac{g_{\gamma}}{0.97} \right)^2 \cdot \left(\frac{\rho_{\mathrm{a}}}{0.5 \cdot 10^{-24} \text{ g/cm}^3} \right) \left(\frac{m_{\mathrm{a}}}{1 \text{ GHz}} \right) \left(\frac{\min(Q_{\mathrm{L}}, Q_{\mathrm{a}})}{1 \times 10^5} \right)$$

Form Factor C_{nl} overlap of cavity mode $E \cdot B_0$ Dark Matter Density ρ_a Axion Mass m_a Resonator Quality Factor $Q_{\perp} \sim 10^5$ Axion Q from velocity dispersion $Q_a \sim 10^6$ Couplings to Photon $g_{\gamma} \sim 0.97$ for KSVZ model $g_{\gamma} \sim 0.36$ for DFSZ

See Pierre Sikivie, "Experimental Tests of the Invisible Axion" 1983 PRL

Noise Performance of Microstrip Squid Amplifiers

- $T_{Noise} = \frac{1}{k_B} \frac{Noise \ Power}{Bandwidth}$
- Achieved T_N= 48 mK at 600 MHz during testing at UC Berkeley
- 1.7 x quantum limit.
- In ADMX operation, system noise temperatures has additional contributions from:
 - Black body radiation in cavity
 - Attenuation
 - Post amplification stages

Cryogenic Electronics System Package- 2017/2018

RC filtering for DC lines

MSA Operation in ADMX 2017/ 2018 Runs

- Amplifier package at higher temperature than resonator due to thermal short.
- Causes distinctive "dip" in noise power at cavity resonance.
- Typical system noise temperature was ~500 mK.

Signal to Noise

- •• $T_{Noise} = \frac{1}{k_B} \frac{Noise \ Power}{Bandwidth}$
 - Suppose we have $T_{Noise} = 0.5 \ Kelvin$
 - $P_{noise} = k_B T_{Noise} * Bandwidth = 0.5 \cdot 1.4 \times 10^{-23} W/Hz \cdot Bandwidth$
 - Bandwidth of axion is due to halo velocity dispersion $\frac{\Delta f}{f} \sim 10^{-6}$
 - ~ 1 kHz at 1 GHz axion frequency

• So
$$P_{noise} \sim 10^3 Hz \cdot \frac{10^{-23} W}{Hz} = 10^{-20} W$$

• Still about three orders of magnitude larger than the signal!

Noise reduction by averaging

World's Most Sensitive RF Receiver

GADM)

Dave Tanner, Patras 2018

Experiment Operation Procedure

- The cavity frequency is scanned over a region until the desired SNR is achieved.
- Convolution with filter matched to expected axion line shape.
- Typically we have ~10⁶ independent measurements on each axion linewidth, averaged to reduce noise by $\sqrt{10^6}$
- We then examine the combined power spectrum for signs of excess
- Excess power regions can be statistical fluctuations, synthetically injected signals, RF interference, or axions
- Excess power regions are rescanned to see if they persist
- Persistent candidates are subjected to a variety of confirmation tests: for example: magnet field changes or probing with other cavity modes.
- We do blind signal injection, so we always have candidates

Predicted Axion Signal Shape

Recent N-Body models actually suggest the axion lineshape is narrower than the standard virialized model.

Our analysis searches for both.

Adapted from: Lentz et al. Ap.J. 845 (2017)

You might have an axion if the signal...

- Can't be seen in the room outside of the magnetic field
- Persists all the time
- Follows the Lorentzian lineshape of the cavity
- Is suppressed in non TM010 modes
- Scales with the B² of the magnet
- Has a tiny daily and annual frequency modulation

No candidates passed tests in 2017 run.

First ADMX-G2 Result (Data from 2017 Run)

• Exclude DFSZ models at 90% CL from 2.66-2.82 μ eV.

ArXiv 1804.05750 & PRL April 2018

2018 Operations

• Improved performance in 2018 running– lower temperatures and more efficient data collection.

Setup: Cavity

Resonant Microwave Cavity

Rapidis, Patras 2018, June 17-22, 2018

HAYSTAC

TM₀₁₀-like mode: 3.6-5.8 GHz

Piezo electric motor controls position of rod

S. Al Kenany, et al, NIM A854, (2017) 11-24.

Setup: Magnet & Cryogenics HAYSTAC

He³/He⁴ dilution refrigerator

Josephson Parametric Amplifiers

–Final phase at 127 mK

9.4 Tesla Magnet10L Magnet

Results of Phase I

HAYSTAC

How to Speed up Axion Searches

- Effective scan rate of ADMX in 2018 was \approx 1 MHz/ day
- As we move up in frequency,
 - Expected axion coupling increases
 - Cavity volume decreases, decreasing signal
 - Cavity Q decreases, decreasing signal
 - Quantum limit increases, increasing noise

Scan Rate Vs Frequency & other parameters

$$\begin{split} \frac{df}{dt} &\approx 1.68 \text{ GHz/year } \left(\frac{g_{\gamma}}{0.36}\right)^4 \left(\frac{f}{1 \text{ GHz}}\right)^2 \left(\frac{\rho_{\theta}}{0.45 \text{ GeV/cc}}\right)^2 \cdot \\ & \left(\frac{5}{SNR}\right)^2 \left(\frac{B_0}{8 \text{ T}}\right)^4 \left(\frac{V}{100\text{l}}\right)^2 \left(\frac{Q_L}{10^5}\right) \left(\frac{C_{010}}{0.5}\right)^2 \left(\frac{0.2 \text{ } K}{T_{sys}}\right)^2 \end{split}$$

Higher Magnetic Field Increases Signal

Arrays ofQuantum SensorsCryogenic RFReduce NoiseResonators Increase(qubits, etc.)VolumeVolume

Beyond the Quantum Limit

- Quantum limit comes from trying to measure both amplitude and phase of a harmonic oscillator (mode of E field)
- Can we avoid measuring both amplitude and phase?
- Various proposals
 - "Squeezing the vacuum" using Josephson Parametric Amplifiers (Haystac)
 - Qubit single microwave photon detectors (R&D at Lawrence Livermore National Lab and Fermilab)
 - Single microwave photon counting using Rydberg atoms (R&D at Yale)

Qubit (FNAL/ Chicago)

Superconducting Materials for Magnets

The High-Temperature Superconductors (HTS) REBCO, Bi2212, Bi2223 will superconduct at fields >100T.

- For >25 T Solenoids, HTS is required.
- At 4 K, extremely high combinations of field and current-density attained!

(BI2212, Bi2223, & REBCO superconduct at > 100 T!)

Korean Institute for Basic Sciences Axion Institute research program

ib5

June 19th 2018

- New institute dedicated to axion research.
- 5 separate haloscope
 projects.

14th PATRAS Workshop, DESY

Multiple experiments planned for CAPP Center for Axion and Precision Physics Research, Korea.

Two high field HTS magnets already received.

CULTASK	Refrigerators	and Magnets
---------	---------------	-------------

Refrigerators			Magnets					
Model	T _B (mK)	Cooling power	Installa tion	B field	Bore (cm)	Material	Vendor	Delivery
LD400	10	18μW@20mK 580μW@100mK	2016	26T	3.5	HTS	SUNAM	2016
LD400	10	18μW@20 580μW@100	2016	18T	7	HTS	SUNAM	2017
(014)			9T	12	NbTi	Cryo-	2017	
HE3	300	25µW@300mK	2017				Magnetics	
LD400	10	18μW@20mK 580μW@100K	2017	8T	12	NbTi	AMI	2016
LD400	10	18μW@20mK 580μW@100K	2017	8T	16.5	NbTi	AMI	2017
DRS10 00	100	1mW@100mK	2018	25T	10	HTS	BNL/CAPP	2020
Kelvino x	<30	400 @120mK	2017	12T	32	Nb ₃ Sn	Oxford	2020
	Model LD400 LD400 HE3 LD400 LD400 DRS10 00 Kelvino x	RefrigModelT B (mK)LD40010LD40010HE3300LD40010LD40010LD40010LD40010S100S<30	Refrigerators Model T _B (mK) Cooling power LD400 10 18μW@20mK 580μW@100mK LD400 10 18μW@20 580μW@100 HE3 300 25μW@300mK LD400 10 18μW@20mK 580μW@100 LD400 10 18μW@20mK 580μW@100K DRS10 10 18μW@20mK 580μW@100K DRS10 100 1mW@100mK 580μW@100K Kelvino <30	Refrigerators Model T _B (mK) Cooling power Installa tion LD400 10 18μW@20mK 580μW@100mK 2016 LD400 10 18μW@20 580μW@100 2016 HE3 300 25μW@300mK 2017 LD400 10 18μW@20mK 580μW@100K 2017 LD400 10 18μW@20mK 580μW@100K 2017 DR510 100 1mW@100mK 580μW@100K 2018 DRS10 100 400 @120mK x 2017	Refrigerators Installa B field Model T _B (mK) Cooling power Installa tion B field LD400 10 18μW@20mK 580μW@100mK 2016 26T LD400 10 18μW@20 580μW@100 2016 18T HE3 300 25μW@300mK 2017 8T LD400 10 18μW@20mK 580μW@100K 2017 8T LD400 10 18μW@20mK 580μW@100K 2017 8T LD400 10 18μW@20mK 580μW@100K 2017 8T DR510 100 1mW @100mK 2018 25T Kelvino<<30	Model T _B (mK) Cooling power Installa tion B field Bore (cm) LD400 10 18μW@20mK 580μW@100mK 2016 26T 3.5 LD400 10 18μW@20 580μW@100mK 2016 18T 7 LD400 10 18μW@20 580μW@100 2016 9T 12 HE3 300 25μW@300mK 2017 8T 12 LD400 10 18μW@20mK 580μW@100K 2017 8T 12 LD400 10 18μW@20mK 580μW@100K 2017 8T 16.5 DR510 100 1mW@100mK 2018 25T 10 Kelvino <30	Model T_B (mK) Cooling power Installa tion B field Bore (cm) Material LD400 10 $18\mu W@20m K$ $S80\mu W@100m K$ 2016 26T 3.5 HTS LD400 10 $18\mu W@20m K$ $S80\mu W@100m K$ 2016 9T 12 NbTi HE3 300 $25\mu W@300m K$ 2017 8T 12 NbTi LD400 10 $18\mu W@20m K$ $S80\mu W@100 K$ 2017 8T 16.5 NbTi LD400 10 $18\mu W@20m K$ $S80\mu W@100 K$ 2017 8T 16.5 NbTi DR510 100 $1m W @100m K$ 2018 25T 10 HTS Kelvino <30	Refrigerators Magnets Model T _B (mK) Cooling power Installa tion B field Bore (cm) Material Vendor LD400 10 18µW@20mK 580µW@100mK 2016 26T 3.5 HTS SUNAM LD400 10 18µW@20 580µW@100 2016 18T 7 HTS SUNAM LD400 10 18µW@20 580µW@100K 2016 9T 12 NbTi Cryo- Magnetics LD400 10 18µW@20mK 580µW@100K 2017 8T 12 NbTi AMI LD400 10 18µW@20mK 580µW@100K 2017 8T 16.5 NbTi AMI LD400 10 18µW@20mK 580µW@100K 2017 8T 16.5 NbTi AMI DR510 100 1mW@100mK 2018 25T 10 HTS BNL/CAPP Kelvino <<30

June 19th 2018

ibs

CAPP

14th PATRAS Workshop, DESY

CAPP-PACE R&D

25T 10cm bore HTS magnet by BNL

- The first (of 24) pancake wound! test will follow
- 5 km of SC tape will be delivered next 5 months

MagLab 32 T SC USER MAGNET

- World's highest field "user" magnet- 32 Tesla with 32 mm bore.
- National High
 Magnetic Field
 Lab, Florida.

Total field	32 T				
Field inner YBCO coils	17 T				
Field outer LTS coils	15 T				
Cold inner bore	32 mm				
Current	172 A				
Inductance	619 H				
Stored Energy	9.15 MJ				
Uniformity	5x10 ⁻⁴ 1 cm DSV				

Commercial Supply:

- 15 T, 250 mm bore LTS coils
- Cryostat
- (Dilution Refrigerator)
- In-House development:

Mark Bird

- 17 T, 34 mm bore YBCO coils

10

 ADMX magnet conceptual design studies at NHMFL

Existing 32 T Magnet Weijers, Markiewicz, et al.

Some ADMX Magnet Concepts: 2015 – 2017 (Tanner)

- 2015 developed 24 T, 16 cm diameter version using Insulated REBCO technology, similar to 32 T magnet.
- 2017 developed 30 T, 16 cm diameter version using NI-REBCO technology, similar to 26 T magnet tested at MagLab.
 - NI-REBCO enables higher current density and higher fields from smaller magnets.

Ins- REBCO + LTS

Huub Weijers

Potential 30 T, 16 cm all NI-REBCO Seungyong Hahn, Denis Markiewicz

Mark Bird, NHMFL

Challenge of higher frequency axion searches

- Scaling single cavity to higher frequencies (f) Volume ~ (f)-3 !
- Quality factor also goes down as frequency increases ($Q_L \sim 10^5 \cdot (f)^{-2/3}$)
- Need to move to multi-cavity array's.

Frequency ~ 540 MHz Q_L – 100,000 Axion Mass ~ 2 µeV Volume – 135 liters

16" diameter

Frequency ~ 2.4 GHz Axion Mass ~ 9 µeV Q_L - 60,000 Volume ~ 2.6 liters

Frequency ~ 10 GHz Axion Mass ~ 36 µeV Q_L - 25,000 Volume - 0.025 liters

5" diameter

1" diameter

Tuning Cavities with Miniature Cryogenic Piezoelectric Actuators

Cryogenic Piezo Actuators (Attocube)- tested to 31 Tesla and 10 mK

ADMX 1-2 and 2-4 GHz Cavity Arrays

- Near term plan is to build arrays of power-combined higher frequency cavities
 - 4- Cavity array for 1.5- 2.5 GHz
 - 14- Cavity array for ~2.5-5 GHz

4- Cavity Array

14- Cavity (2x7) Array

R&D Towards Large Volume, High Frequency Resonators

- Challenging to fill a large volume with small tunable structures ("Swiss Watch" problem)
- Number of elements goes as f³
- Explore systems that allow simultaneous tuning of many elements with only a few mechanical motions.
 - Photonic bandgap cavity
 - "Comb Cavity"
 - Electronic fine tuning using nonlinear dielectrics

Maxwell's Equations With an Axion

$$\nabla \cdot \mathbf{E} = \rho_Q - g_{a\gamma} \mathbf{B} \cdot \nabla a$$

$$\nabla \times \mathbf{B} - \dot{\mathbf{E}} = \mathbf{J} + g_{a\gamma} (\mathbf{B}\dot{a} - \mathbf{E} \times \nabla a)$$

$$B_e \qquad |\mathbf{E}_a|$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} + \dot{\mathbf{B}} = 0$$

- The *a* field is now a classical field oscillating with a frequency corresponding to the axion mass ($f = m_a c^2/h$).
- In the presence of a uniform background magnetic field B_e, a small oscillating parallel electric field E_a field appears:

$$\mathbf{E}_a(t) = -g_{a\gamma}\mathbf{B}_e a(t)$$

Irastorza & Redondo 2006

Radiation from a Conducting Surface in a Magnetic Field

- A conducting surface must have no parallel E field at boundary.
- An outgoing wave cancels parallel component of axion-induced E field.

• Power of emitted wave
$$P_a/\mathcal{A} = \frac{1}{2}E_a^2 = 3.3 \times 10^{-27} \frac{W}{\mathrm{m}^2} \left(\frac{g_{a\gamma}}{2 \times 10^{-14} \mathrm{GeV^{-1}}}\right)^2 \left(\frac{10^{-4} \mathrm{eV}}{m_a}\right)^2 \frac{|\mathbf{B}_e|^2}{10 \mathrm{T}}$$

$$B_{e}$$

$$E_{\parallel} = 0$$

$$\int E_{a} \propto B_{e} \cos \omega t$$
Conducting slab

Conceptual Design for BRASS

- Broadband Radiometric Axion/ALP SearcheS:
 - -- Flat, permanently magnetized surface (Halbach array; 100 m², B~1T)
 - -- Focusing the signal with a parabolic reflector
 - -- Broadband recording (16+ GHz bandwidth, spectral resolution of 10-7).
 - -- Correlating signals from multiple modules
 - -- Natural synergy with VLBI and ALMA/APEX developments at MPIfR

BRASS on Axion/ALP Dark Matter

BRASS: Assuming 4K and 5hv detection sensitivity. BRASS-6: T_{sys} = 40 K, Band 1: 18 – 32 GHz.

B. Majorovits

Experimental approaches: Effect of Dielectric

Experimental approaches Dielectric haloscopes:

- Mixing of axion with photon in extremal B-field
 → Sources oscillating E-field
- Many surfaces with transition of ε:
- \rightarrow Coherent emission of photons from each surface
- Interference effects can be exploited

14th PATRAS workshop, Hamburg, 18-22 June 2018

ВX

"Quasi broadband" approach
Also works for kinetic mixing
à Sensitive to hidden photon, no B-field needed

https://madmax.mpp.mpg.de/ 35

4th PATRAS workshop, Hamburg, 18-22 June 2018

https://madmax.mpp.mpg.de/ 36

MAD MAX sensitivity projection

https://madmax.mpp.mpg.de/ 37

Open resonator design with dipole magnet

Orpheus Project (UW)

Open resonator would usually not couple to axion field (positive and negative E-fields cancel).

Manipulating modes with dielectrics or alternating the magnetic field leads to a net axion coupling.

Low Frequency Experiments with LC Circuits

• "Axion Current" $J_a = g_{a\gamma} B \dot{a}$ can source an oscillating magnetic field.

$$\nabla \times \mathbf{B} - \dot{\mathbf{E}} = \mathbf{J} + g_{a\gamma} (\mathbf{B}\dot{a} - \mathbf{E} \times \nabla a)$$

- Collect the magnetic flux with a transformer coil and measure with a SQUID.
- Can be resonant or non resonant.

LC Circuit projections using various magnets

ABRACADABRA Experiment

A Broadband/Resonant Approach to Cosmic Axion Detection with an Amplifying B-field Ring Apparatus

Theory:

Toroidal geometry for zero-field detection

Interchangeable readout: broadband (low freq.) or resonant (high freq.)

YK, Safdi, Thaler, Phys. Rev. Lett. 2016

Experiment:

Prototype specs: $R_{in} = 3 \text{ cm}, R_{out} = 6 \text{ cm}, h = 12 \text{ cm},$ $V = 680 \text{ cm}^3, B_{max} = 1 \text{ T}, G = 0.085$

ABRA-10cm @ MIT

*figures from Yoni Kahn

Thank you!

Extra Slides

Axion modifies Maxwell's Equations

In a constant background B₀ field, the oscillating axion field acts as an exotic, space-filling current source

$$\vec{J}_a(t) = -\frac{g_\gamma \alpha}{\pi} \left(\frac{\sqrt{2\rho_a}}{\Lambda_{\rm QCD}^2}\right) \vec{B}_0 m_a e^{im_a t}$$

which couples to EM via Faraday's law: $\vec{\nabla} \times \vec{B_r} - \frac{d\vec{E_r}}{dt} = \vec{J_a}$

• In the presence of a constant background magnetic field, the response of the electric