New physics results from Darkside-50

M. Ave (Universidade de São Paulo, Brazil)

Direct detection: Nuclear Elastic Scattering

Direct detection limits

20 GeV-1 TeV searches : first thought models constrained. The neutrino floor is the target of next generation detectors. **1 GeV-10 GeV searches** : weakly constrained (only a small set of dedicated experiments like DAMIC, CDMSLite).

DarkSide Collaboration

Italy, USA, Russia, Spain, France, China, Brasil, Poland

FAPESP (2016/09084-0)

• DS-50 \rightarrow 50 kg • DS-Proto \rightarrow ~1 ton • DS-20K \rightarrow ~20 ton • Argo \rightarrow ~200 ton

DS-20K

DS-50

A new collaboration has been formed with groups from DS-50, ArDM and DEAP-3600 to construct DS-Proto, DS-20K and Argo.

Goals and design

Goal : WIMP search down to the neutrino floor with almost no background

Design:

- Double Phase Time Projection Chamber: XYZ fiducialization and Single/Multiple Scatter identification.
- Argon target: discrimination through pulse shape and ionization to scintillation ratio.
- Underground argon naturally depleted in ³⁹Ar (~1400 compared to Atmospheric Argon)
- Outer detectors: shielding and veto neutrons

Time Projection Chamber

DS-50 46.4 kg total mass

Maximum drift time 375 µs

- S1 \rightarrow Scintillation signal (~10 µs pulse with two components)
 - Fraction of light within 90 ns : ER/NR discrimination
- S2 \rightarrow Ionization signal (~10 µs pulse, shape due to secondary scintillation)
 - Drift time: Z position
 - Fraction of light in each PMT: XY position
 - S2/S1 : ER/NR discrimination

PSD discrimination: the strength of the Argon target

Decreasing rejection power due to photo-statistics

WIMP search region:

- Intersection of desired ER leakage line (~1 event in 70 days in this example) with neutron recoil acceptance line.
- Effective threshold: ~30 keV^{ne}

The f90 ER leakage into the NR band is of the order of 1 in 10⁷

The outer detectors

Water Cherenkov Detector (WCD) 80 PMTs (8") 1000 tonnes

Shielding and anticoincidence, Radiogenic and Cosmogenic neutrons, Gammas and Cosmic Rays.

neutron rejection efficiency 99.64%.

¹⁴C purification was required to detect α from neutron capture (short range particle)

DS-50 long run: 532.4 days

Blind analysis

 blind enlarged box containing WIMP search region
 in the a F90 vs S1 parameter space (at event reconstruction level)

• model BG events: calibration data and MC tuning

 Refine cuts based on leakage BG events (≤ 0.1 events total)

- Test **BG models o**n outer strip of blind box
 - Unblind WIMP region

Backgrounds

Background	Events surviving all cuts
Surface Type 1	< 0.0007
Surface Type 2	0.00092 ± 0.00004
Radiogenic neutrons	< 0.005
Cosmogenic neutrons	< 0.00035
Electron recoil	0.08 ± 0.04
Total	0.09 ± 0.04

Alpha background abatement: Mainly fiducialization and energy range

~2.5 mBq/m² ²¹⁰Po surface activity ~2.1 µBq/kg ²²²Rn bulk activity

Surface alphas whose energy is not fully contained in the TPC are the most dangerous. But a loose fiducial cut is very effective against them.

The *wall effect* and *TPB scintillation* are also signatures of surface background

Neutron background abatement: LSV cuts : 99.64% rejection efficiency

Delayed LSV signal (neutron captures): 99.58%

σ =3837 barn on ¹⁰B (20% natural abundance)

$${}^{10}\text{B} + n \rightarrow \begin{cases} {}^{7}\text{Li} (1015 \text{ keV}) + \alpha (1775 \text{ keV}) & (6.4\%) \\ {}^{7}\text{Li}^{*} + \alpha (1471 \text{ keV}), {}^{7}\text{Li}^{*} \rightarrow {}^{7}\text{Li} (839 \text{ keV}) + \gamma (478 \text{ keV}) & (93.6\%) \end{cases}$$

$${}^{1}\text{H} + n \rightarrow {}^{2}\text{H} + \gamma (2223 \text{ keV}) \qquad I_{\gamma}/I_{\gamma}(\text{max}) = 100\% \quad \sigma = 0.33\text{b}$$

$${}^{12}\text{C} + n \rightarrow \begin{cases} {}^{13}\text{C} + \gamma (3090 \text{ keV}) & I_{\gamma}/I_{\gamma}(\text{max}) = 100\% \\ {}^{13}\text{C} + \gamma (4945 \text{ keV}) & I_{\gamma}/I_{\gamma}(\text{max}) = 67\% \quad \sigma = 0.0034\text{b} \\ {}^{13}\text{C} + \gamma (1860 \text{ keV}) & I_{\gamma}/I_{\gamma}(\text{max}) = 57\% \end{cases}$$

Prompt LSV signal (neutron thermalization): 99.27%

Phase-I Nov. 2013 – June 2014: 50% mass fraction of PC, 50% TMB, 2.5 g/L PPO

Phase-II Feb. 2015 – present: 95% mass fraction of PC, 5% TMB, 1.4 g/L PPO

Beta and gamma background

Prediction and refinement of the assayed activities.

³⁹Ar Atmospheric 1 Bq/kg Underground 0.7 mBq/kg

PMT gamma background dominates the budget.

Given the ER leakage into NR band, this background should not be a problem, **BUT**

Cherenkov mixed events spoils it

Fused silica Cherenkov effectively removed thanks to unusual high light fraction in a single PMT **Teflon Cherenkov** is the dominant background

To reach <0.1 background of Teflon Cherenkov it was required:

- New S1(f90) WIMP search region.
- XYZ fiducialization.

A cut in S2/S1 ratio was also applied

Cross section limits

Search with Low Radioactivity Argon" ArXiv:1802.07198

DS-50 results for 2-10 GeV WIMPs

- Argon/Xenon are sensitive to 1-10 GeV WIMPs if nuclear recoil detection threshold is <=1 keV^{ne}
- No ER/NR discrimination (Limits based on spectral shape)
- Sensitivity depends on overall background level.

Scintillation signal threshold too high. Ionization signal needs to be used.

For Argon, $1 \text{ keV}^{ne} \rightarrow 5-9 \text{ electrons}$

arXiv: 1802.06994

Accepted for publication in PRL

1 electron \rightarrow 23 PE (at the center of the TPC)

DS-50 is fully efficient for $N_{p} > 2$

Only events in TPC core are used (less background, a better single electron resolution)

DS-50 DATA Center PMT Getter Off 10 Events / [0.05 Ne- \times kg \times day] Getter On Ext 10 1 10-3 10-2 0 0.5 1 1.5 2 2.5 N_e-

For N_e <3 background is mostly due to impurities.

The N_e spectrum

The first 100 days of the UAr run have ³⁷Ar, very useful to calibrate the ER ionization yield at energies as low as 270 eV.

The expected N_e spectrum for WIMPs

The corresponding cross section limits

DS-50 has excellent sensitivity in the 2-10 GeV mass range.

Not possible without **Underground Argon** (1400 lower ³⁹Ar content than Atmospheric) Very good prospects for DS-Proto and DS-20K.

DS-20K

- New collaboration: DS-50, ArDM and DEAP-3600.
- Radio pure SiPMs
- Underground Argon procurement and purification (ARIA+URANIA)
- Data taking from 2022.
- Cherenkov BG abatement: 3M foil instead of PTFE.
- Neutron BG abatement: Cyogenic Veto system
- ~50 ton UAr
- <0.1 evt/100 ton yr
- Scalability for 300 ton.

Expected sensitivity

