
Herman P. Lima Jr (CBPF), Rafael Nobrega (UFJF)
hlima@cbpf.br, rnobrega@gmail.com

High-speed data acquisition and optimal
filtering based on programmable logic for

single-photoelectron (SPE) measurement setup

Experiment #7

Herman Lima Jr

Challenge

library ieee;
use ieee.std_logic_1164.all;

entity logica is
port (A,B,C : in std_logic;

D,E,F : in std_logic;
SAIDA : out std_logic);

end logica;

architecture v_1 of logica is
begin

SAIDA <= (A and B) or (C and D) or (E and F);
end v_1;

Herman Lima Jr

• Fundamentals of Digital Logic with VHDL Design, Stephen Brown, Zvonko
Vranesic, McGraw-Hill, 2000.

• The Designer’s Guide to VHDL, Peter Ashenden, 2nd Edition, Morgan Kaufmann,
2002.

• VHDL Coding Styles and Methodologies, Ben Cohen, 2nd Edition, Kluwer Academic
Publishers, 1999.

• Digital Systems Design with VHDL and Synthesis: An Integrated Approach, K. C.
Chang, Wiley-IEEE Computer Society Press, 1999.

• Application-Specific Integrated Circuits, Michael Smith, Addison-Wesley, 1997.

• www.altera.com (datasheets, application notes, reference designs)
• www.xilinx.com (datasheets, application notes, reference designs)
• www.doulos.com/knowhow/vhdl_designers_guide (The Designer’s Guide to VHDL)
• www.acc-eda.com/vhdlref/index.html (VHDL Language Guide)
• www.vhdl.org

References

Herman Lima Jr

Background required

 Digital Electronics:

 logic gates

 flip-flops

 multiplexers

 comparators

 counters

 ...

Herman Lima Jr

Agenda

 Digital electronics: evolution, current technologies

 Programmable Logic

 Introduction to VHDL (for synthesis)

Herman Lima Jr

Digital Electronics: evolution

ASIC Application-Specific Integrated Circuit
PLD Programmable Logic Device
DSP Digital Signal Processor
p Microprocessor
c Microcontroller

1950

1945

1958

1990

today

Transistors

Vacuum tubes

Integrated circuits
SSI, MSI, LSI, VLSI

ASIC
p
c

PLD DSP

SSI Small-Scale Integration (<100 trans.)
MSI Medium-Scale Integration
LSI Large-Scale Integration (p’s)
VLSI Very Large-Scale Integration (>106 trans.)

PLD
(FPGA)

Bipolar, CMOS, BiCMOS

Herman Lima Jr

Digital Electronics: current technologies

ASIC PLD DSP Controllers,
processors

Definition
Specific integrated

circuits

(specific applications)

CPLD,

FPGA

(user-programmable
applications)

High-performance
math processors

Microcontrollers,
computer

processors

Reconfigurable ? No
Yes

(hardware)

Yes

(software)

Yes

(software)

Basic features
Very high speed

Very high density

Low power

High speed

High density

Medium/high power

High speed,

Medium power

High speed,

Low power

Unit cost ($)
 qty low

 qty prohibitive

 qty high

 qty low

 qty medium

 qty medium

 qty low

 qty low

Design entry
level

Low / Medium

(schematics / code)

Low / Medium

(schematics / code)

High

(code)

Medium / High

(code)

Herman Lima Jr

Programmable Logic

• What is it? semiconductor device with programmable logic

• Applications any system that requires digital circuits of medium to high complexity
(high-speed, high density, segmented memory blocks).

• Features
 reprogrammable, in practice, for an indefinite number of times

 configuration technologies: SRAM, Antifuse, Flash

 external memory needed (EEPROM, flash) for the design (SRAM technology)

 portable languages for any tools (VHDL, Verilog)

 high density of programmable logic

 high density of flip-flops (ideal for synchronous designs)

 rich libraries of basic blocks (multiplexers, decoders, ...)

 dedicated blocks (DSP, memory, processors, PLL, SERDES, ...)

 several electrical standards for interfacing (LVTTL, LVCMOS, LVDS, ...)

 programmable through IP Cores (ex: communication interfaces (PCIe))

 migration FPGA ASIC (ex: Hardcopy Series, from Intel)

Field Programmable Gate Array

Herman Lima Jr

FPGA structure

• Matrix of logic blocks.

• Horizontal and vertical
connection channels.

• Logic Block: location of the
available logic elements.

• I/O blocks: communication
with the external circuits.

• Interconnection switches:
connection inbetween logic
blocks and between logic
blocks and I/O pins.

Programmable Logic

Herman Lima Jr

Logic Blocks

• Look-Up Table (LUT): cells with
memory and multiplexers.

• LUTs are used to implement a
logic function.

• Number of memory cells equal to
2(number of inputs).

• Implementation is transparent to
the designer.

• Memory cells are volatile.

Programmable Logic

Herman Lima Jr

Example of logic block composed of a 3-inputs LUT and a register (D flip-flop).

Programmable Logic

Herman Lima Jr

Example of design

• LUT with 2 inputs.

• 4 wires of interconnnection.

• Blue cells are activated.

• f = f1 + f2 = x1x2 + x2x3

• Interconnection switches are
programmed by SRAM
memory cells.

Configuration scheme of the interconnection wires.

Example of implementation of a combinational function.

Programmable Logic

Herman Lima Jr

Comparison of a low cost FPGA and a high performance FPGA:

Cyclone IV family (1)

(16 options)

Stratix IV family (1)

(17 options)

Technology L=60 nm (1,2V or 1,0V core voltage) L=40 nm (0,9V core voltage)

Logic Elements 6.272 - 149.760 72.600 - 813.050

Clock control 2 - 8 PLLs 3 - 12 PLLs

Memory blocks 270 – 6.480 kbits 6462 – 20.736 kbits

Multipliers 15 - 360 (18 bits X 18 bits) 384 - 1288 (18 bits X 18 bits)

Transceivers 2 - 8 (3,125 Gbps) 8 - 48 (11,3 Gbps)

I/O pins (max) 72 – 528 289 - 976

Programmable I/O yes yes

Unit Price (US$) from US$12 up to US$645 from US$800 up to US$24.270

(1) www.altera.com

Programmable Logic

Herman Lima Jr

 Brief history

 Important standards for synthesis

 Objects in VHDL

 Structural description

 Functional description

 Interface (entity)

 Implementation (architecture)

Introduction to VHDL

 Packages

 Components

 Concurrent and Sequential
Assignments

 Processes

 Keywords

 Simulation

Herman Lima Jr

• Modern digital systems may be too complex to be described only by
schematics.

• In early 80’s there is a need of another method to describe very complex
integrated circuits. The outcome is the creation of the Hardware Description
Languages (HDL’s).

• Most popular languages: VHDL (Europe) e Verilog (USA).

• Languages featuring even higher level of abstraction are already available in
order to modeling and verify complex digital systems (ex: SystemVerilog e
SystemC).

Introduction to VHDL

Herman Lima Jr

Introduction to VHDL

Herman Lima Jr

• VHDL is a language to describe digital electronic circuits of medium to high
complexity. Not recommended for simple designs.

• The name stantds for: VHSIC Hardware Description Language, with VHSIC
meaning Very High Speed Integrated Circuit.

• Created from a north american project due to the demand of a new
standard language to describe the structure and funcionality of very
complex integrated circuits.

• Adopted and standardized by the Institute of Electrical and Electronics
Engineers (IEEE).

Introduction to VHDL

Herman Lima Jr

• Important features:
– Structural description, that is, a design is composed of sub-designs and these

ones are interconnected.

– Specification of functions using similar statements used in standard programming
languages (if, for, while).

– Complete simulation of a design prior to the manufacturing of an integrated
circuit (ASIC), or the configuration of a programmable logic device (FPGA).

• Advantage over schematics:
– Better readability of a design. Possibility of partitioning a design more easily,

decoupling its blocks.

– Use of parameters that modify the funcionality of performance of a design.

– Cost reduction on prototyping.

– Time reduction to insert a new product in the market.

• VHDL Modeling - Simulation - Synthesis

Introduction to VHDL

Herman Lima Jr

Important standards for synthesis in VHDL

• IEEE 1076-1993
Define the base (core) of the language for modeling, simulation and synthesis.

• IEEE 1076.6-1999
Define the subset specific for synthesis (Register Transfer Level - RTL).

• IEEE 1164-1993 (STD_LOGIC_1164)
Define a multi-value logic system for signals:

‘U’ Unitialized ‘W’ Weak Unknown
‘X’ Forcing Unknown ‘L’ Weak 0
‘0’ Forcing 0 ‘H’ Weak 1
‘1’ Forcing 1 ‘-’ Don´t Care
‘Z’ High Impedance

• IEEE 1076.3 (Numeric Standard)
Define the numeric types signed and unsigned, and the respective arithmetic and

conversion functions for use with synthesis tools.

Introduction to VHDL

Herman Lima Jr

Objects in VHDL

• There are 3 types of objects: signals, constants and variables.

• The name of an object can make use of any alphanumeric caracter, obeying the
following rules: (1) it cannot be a VHDL keyword, (2) it must begin with a letter, (3) it
cannot finish with underscore (_), and (4) it cannot present two underscore caracters
together.

• For synthesis, signals (signal keyword) are the most important, since they represent the
communication wires between blocks of the design.

• There are 3 places where a signal may be declared: in the entity, in the declaration part
of the architecture, and in the declaration part of a package.

• Declaration of a signal: signal <signal_name> : [type] ;

• The signal type defines its possible values and manipulation.

Introduction to VHDL

Herman Lima Jr

Common types of objects in VHDL

• bit and bit_vector
– defined in the standards IEEE 1076 and IEEE 1164

– bit type may assume values ‘0’ or ‘1’

– bit_vector type is simply a linear array of bit objects

– ex: signal c: bit_vector (1 to 4); c(1) <= ‘1’; c <= “1010”;

• std_logic and std_logic_vector
– defined in the standard IEEE 1164

– in order do use them, it must be included the following lines of code:
library ieee;

use ieee.std_logic_1164.all;

– provide greater flexibility than bit types, allowing the following values: ‘0’, ‘1’, ‘Z’, ‘-’,
‘L’, ‘H’, ‘U’, ‘X’ ou ‘W’

– values ‘0’, ‘1’, ‘Z’ and ‘X’ are the most useful for simulation and synthesis

Introduction to VHDL

Herman Lima Jr

Common types of objects in VHDL (cont.)

• signed and unsigned
– defined in the packages numeric_std and std_logic_arith

– the packages also define the implementation of the arithmetic operators (+, -, *)

– they are similar to the type std_logic_vector, arrays of std_logic

– their use help to clearly indicate in the code what representation is being used for the
data (signed or unsigned)

• integer
– defined for use with arithmetic operators (IEEE 1076)

– the number of bits is not specified in the code, like a std_logic_vector object

– by definition, an integer makes use of 32 bits, allowing values from -(231-1) to 231-1

– integers may use less than 32 bits through the use of the range keyword

signal x : integer range -127 to 127;

Introduction to VHDL

Herman Lima Jr

Common types of objects in VHDL (cont.)

• boolean
– may assume the logic values TRUE or FALSE, corresponding to ‘1’ and ‘0’;

– ex: signal flag : boolean ;

• Enumeration type
– type defined by the designer;

– very useful for defining the name of the states in Finite State Machines;

– ex: type state_id is (initiate, process);

signal y : state_id ;

...

y <= process;

Introduction to VHDL

Herman Lima Jr

Constants in VHDL

constant

– an object of type constant cannot change its value throughout the code;

– a constant object may be defined without a value only inside packages;

– useful for improving the readability of the code;

– ex: constant z : std_logic_vector(2 downto 0) := “011”;

object name object type value

Introduction to VHDL

Herman Lima Jr

STRUCTURAL description:
• An electronic system may be described as a module with inputs and outputs.

• The output values may be function of:
– only the current input values (combinational circuit)

– current input values and internal states (sequential circuit)

F
A

B

Y

G
A

B

Y

H
A

B

Y

I
A

B

Y

FA

B

Y

entity

ports

Introduction to VHDL

Herman Lima Jr

FUNCTIONAL description:
• The electronic system is simply described by its function

(ex: Y = (A and B) or (A and B).

• Sequential systems obviously cannot be described only as a function of the
inputs.

A VHDL design may be based on interconnected components in a complex

hierarchy. Each component has an interface (entity) and an implementation

(architecture), as follows:
entity <entity_name> is

port (a,b: in bit;
y: out bit);

end <entity_name>;

architecture <arq_name> of < entity_name > is
begin

end <arq_name>;

interface

implementation

component
(full design)

Introduction to VHDL

Herman Lima Jr

Interface (entity):

• Define the access ports to the design.

• Basic generic form:

• Possible modes of a port:
in the port is an input.

out the port is an output. The value of the associated signal cannot be used
inside the architecture to define another signal. The position of the signal is
always to the left of the assignment operator (<=).

inout the port may be used as input or output.

buffer the port is an output, but its value can be read inside the architecture. It
can be to the left or to the right of the assignment operator (<=).

entity <entity_name> is
port (<signal1_name>: [mode] [type];

<signal2_name>: [mode] [type]);
end < entity_name >;

Introduction to VHDL

Herman Lima Jr

Implementation (architecture):

• Define the actual implementation of the design.

• Basic generic form:

architecture <arch_name> of <entity_name> is
[signals declarations]
[constants declarations]
[types declarations]
[components declarations]
[attributes specifications]

begin
[component instantiation]
[concurrent assignment]
[process]
[generation]

end <arch_name>;

Introduction to VHDL

Herman Lima Jr

Example: 8 bits comparator

library ieee;

use ieee.std_logic_1164.all;

entity compare is

port (A,B: in std_logic_vector(0 to 7);

EQ: out std_logic);

end compare;

architecture one of compare is

begin

EQ <= ‘1’ when (A=B) else ‘0’;

end one;

A [0...7]

B [0...7] A=B ?
EQ

Schematics representation:

• The circuit is combinational.

• VHDL keywords in blue.

• VHDL is not case-sensitive.

Introduction to VHDL

Herman Lima Jr

Introduction to VHDL

VHDL keywords (IEEE Std.1076-1993)

