School on School and Workshop on Dark Matter
D ‘\ /% 0 and Neutrino Detection
9 July 23 - August 3, 2018

&‘ % ' u Sao Paulo, Brazil
ICTP-SAIFR/IFT-UNESP

High-speed data acquisition and optimal
filtering based on programmable logic for
single-photoelectron (SPE) measurement setup

Experiment #7

Herman P. Lima Jr (CBPF), Rafael Nobrega (UFJF)
hlima@cbpf.br, rnobrega@gmail.com

ICTP | International Centre for Theoretical Physics
SAIFR | South American Institute for Fundamental Research

Gampus of IFT-UNESP - Sao Paulo, Brasil

Challenge

A .
% ieee;
B % ieee.std_logic_1164.
logica
e ssenes ——— (A,B,C : std logic;
C YDy, OR3 D,E,F : td logic;
% ~ : : [SAIDA /E,F : std_logic;
b -, \'_\\, - v SAIDA : std_logic) ;
A . o togica;
logica
: T
% : SAIDA <= (A B) (c b))
F % v_1;
122 S -

References

Fundamentals of Digital Logic with VHDL Design, Stephen Brown, Zvonko
Vranesic, McGraw-Hill, 2000.

The Designer’s Guide to VHDL, Peter Ashenden, 2" Edition, Morgan Kaufmann,
2002.

VHDL Coding Styles and Methodologies, Ben Cohen, 2" Edition, Kluwer Academic
Publishers, 1999.

Digital Systems Design with VHDL and Synthesis: An Integrated Approach, K. C.
Chang, Wiley-IEEE Computer Society Press, 19909.

Application-Specific Integrated Circuits, Michael Smith, Addison-Wesley, 1997.

www.altera.com (datasheets, application notes, reference designs)

www.xilinx.com (datasheets, application notes, reference designs)
www.doulos.com/knowhow/vhdl designers quide (The Designer’s Guide to VHDL)
www.acc-eda.com/vhdlref/index.html (VHDL Language Guide)

www.vhdl.org

Background required

» Digital Electronics:

v logic gates
v flip-flops

v multiplexers
v’ comparators

v’ counters

v

» Digital electronics: evolution, current technologies

» Programmable Logic

» Introduction to VHDL (for synthesis)

Digital Electronics: evolution

[Vacuum tubes] 1945
[Transistors] 1950
1958

Integrated circuits
SSI, MSlI, LSI, VLSI

MSI| — Medium-Scale Integration
LS| — Large-Scale Integration (up’s)

SSI — Small-Scale Integration (<100 trans.) {
VLS| — Very Large-Scale Integration (>108 trans.)

} Bipolar, CMOS, BiCMOS l

1990

ASIC — Application-Specific Integrated Circuit
PLD — Programmable Logic Device l

DSP — Digital Signal Processor
up — Microprocessor * * ¢ ¢

uc — Microcontroller toda

(FPGA)

Digital Electronics: current technologies

Controllers,

ASI PLD DSP
S C S processors
. CPLD, _
Specific integrated . Microcontrollers
Definition circuits FPGA High-performance | oo ter
(specific applications) (user-programmable math processors processors
applications)
Yes Yes Yes
. o N
Reconﬂgurable : © (hardware) (software) (software)
. very h.lgh spee.d H_Igh spee.d High speed, High speed,
Basic features Very high density FlEn sl Medium power Low power
Low power Medium/high power P P
Unit cost ($) T gty = low T gty = high T gty = medium T gty = low
{ gty = prohibitive d gty = low J gty = medium J gty = low
Design entry Low / Medium Low / Medium High Medium / High
level (schematics / code) (schematics / code) (code) (code)

Programmable Logic

Field Programmable Gate Array

* What is it? = semiconductor device with programmable logic

» Applications = any system that requires digital circuits of medium to high complexity
(high-speed, high density, segmented memory blocks).

» Features
v’ reprogrammable, in practice, for an indefinite number of times

v' configuration technologies: SRAM, Antifuse, Flash

v" external memory needed (EEPROM, flash) for the design (SRAM technology)
v’ portable languages for any tools (VHDL, Verilog)

v" high density of programmable logic

v" high density of flip-flops (ideal for synchronous designs)

v’ rich libraries of basic blocks (multiplexers, decoders, ...)

v" dedicated blocks (DSP, memory, processors, PLL, SERDES, ...)

v" several electrical standards for interfacing (LVTTL, LVCMOS, LVDS, ...)

v’ programmable through /P Cores (ex: communication interfaces (PCle))

v migration FPGA — ASIC (ex: Hardcopy Series, from Intel)

Programmable Logic

FPGA structure

S Interconnection switches

« Matrix of logic blocks. /O block

. Horizon’gal and vertical
connection channels.

* Logic Block: location of the
available logic elements.

* /O blocks: communication
with the external circuits.

I/O block
H2a19 O1

* Interconnection switches:
connection inbetween logic
blocks and between logic
blocks and I/O pins.

1/O block

Programmable Logic

Logic Blocks

« Look-Up Table (LUT): cells with
memory and multiplexers.

« LUTs are used to implement a
logic function.

* Number of memory cells equal to
2(number of inputs)_

* Implementation is transparent to
the designer.

« Memory cells are volatile.

3|
o 1N
i X X
0/ |~ | Y |
o1 N 0 0| 1
o 0o 1 0
T 1 0 0
x5 : 11 I
(a) Circuit for a two-input LUT (b) £y = X X2+ X X3
X
1 NS
0 |
g I
0 —N
i
372 é

(c) Storage cell contents in the LUT

Programmable Logic

1
T \
e \ Select
: \
3 \
\ \
\ \
\\ \\ Out
\ \
'\ ‘ Flip-flop
1]‘1\1\
\
\
In2
]n3

Clock

Example of logic block composed of a 3-inputs LUT and a register (D flip-flop).

Programmable Logic

Example of design

LUT with 2 inputs. L
4 wires of interconnnection. ak_i
Blue cells are activated. | X X X
=1 =% 1 xx; 7 =
» Interconnection switches are

programmed by SRAM
memory cells. g " 8

fT- Ja ()3

SRAM SRAM SRAM

x_._
x_

&t
=
[
—ooco
4,
— :
s
oo -
=0
(]

-0 o0

Example of implementation of a combinational function.

{ To other wires)

Configuration scheme of the interconnection wires.

Programmable Logic

Comparison of a low cost FPGA and a high performance FPGA:

Cyclone IV family)
(16 options)

Stratix IV family ()
(17 options)

Technology

L=60 nm (1,2V or 1,0V core voltage)

L=40 nm (0,9V core voltage)

Logic Elements

6.272 - 149.760

72.600 - 813.050

Clock control

2-8PLLs

3-12PLLs

Memory blocks

270 —6.480 kbits

6462 — 20.736 kbits

Multipliers

15 - 360 (18 bits X 18 bits)

384 - 1288 (18 bits X 18 bits)

Transceivers

2 - 8 (3,125 Gbps)

8 - 48 (11,3 Gbps)

1/0 pins (max)

72 —528

289 - 976

Programmable 1/O

yes

yes

Unit Price (US$)

from US$12 up to US$645

from US$800 up to US$24.270

(1) www.altera.com

Introduction to VHDL

> Brief history » Packages
» Important standards for synthesis » Components
» Objects in VHDL » Concurrent and Sequential

Assignments

» Structural description

» Processes
» Functional description

» Keywords
> Interface (entity)

» Simulation
» Implementation (architecture)

Introduction to VHDL

* Modern digital systems may be too complex to be described only by
schematics.

* Inearly 80’s there is a need of another method to describe very complex
integrated circuits. The outcome is the creation of the Hardware Description
Languages (HDL'’s).

* Most popular languages: VHDL (Europe) e Verilog (USA).

« Languages featuring even higher level of abstraction are already available in
order to modeling and verify complex digital systems (ex: SystemVerilog e
SystemC).

Introduction to VHDL

Switch-level modeling

ASIC timing

Concurency

Design modularization

Gate-level modeling

Gate-level timing

Four-state logic

Event handling

Basic data types

Basic behavioral constructs
Dynamic generation of hardware
Configurations

Simple assertions

Assertions (formal methods)
Dynamic-memory allocation
Pointers

Multidimensional arrays

Records

Enumeration

Automatic variables

Signed numbers

User-defined logic types
User-defined resolution functions
Void type

Union

Behavioral constructs

Classes with methods and inheritance
Sequential regular expressions
Temporal-property definitions
Scheduling for testbench and assertions
Semaphores

Stimulus generation

Constrained random data generator
Coverage monitoring

Strings and strings operations
Standard C interface

Transaction modeling

Module encryption

VHDL
1993

>

2< 3€ € 52 e 2 < € < B 32 32

< 3 € B2 b 2 < < <

><

Verilog
1995

X

€ € € < 2K < 2% < <

System(

22 o< 2 o 2 < X <

< < 2 2 < 2K <

E ol

Verilog
2001

X

Al - - e -

System
Verilog 3.1
X

€ € € € < € € € < € 3T € € D€ € € pC € pC

S 2 2 € 5€ D€ D€ 32 3€ 2 € M D2

Verilog
2005

X

P 2 2 D < € < pE € <

> <

>

VHDL
200X

<

2 P K P o 2K o 3 2 2K K o2 3PS 2 X 2 2K 2 o2 K X

PSP € < < < < <

< < < o2<

Introduction to VHDL

 VHDL is a language to describe digital electronic circuits of medium to high
complexity. Not recommended for simple designs.

* The name stantds for: VHSIC Hardware Description Language, with VHSIC
meaning Very High Speed Integrated Circuit.

» Created from a north american project due to the demand of a new
standard language to describe the structure and funcionality of very
complex integrated circuits.

» Adopted and standardized by the Institute of Electrical and Electronics
Engineers (IEEE).

Introduction to VHDL

* Important features:

— Structural description, that is, a design is composed of sub-designs and these
ones are interconnected.

— Specification of functions using similar statements used in standard programming
languages (if, for, while).

— Complete simulation of a design prior to the manufacturing of an integrated
circuit (ASIC), or the configuration of a programmable logic device (FPGA).

« Advantage over schematics:

— Better readability of a design. Possibility of partitioning a design more easily,
decoupling its blocks.

— Use of parameters that modify the funcionality of performance of a design.
— Cost reduction on prototyping.
— Time reduction to insert a new product in the market.

« VHDL = Modeling - Simulation - Synthesis

Introduction to VHDL

Important standards for synthesis in VHDL

- [IEEE 1076-1993
Define the base (core) of the language for modeling, simulation and synthesis.

 [IEEE 1076.6-1999
Define the subset specific for synthesis (Register Transfer Level - RTL).

* IEEE 1164-1993 (STD_LOGIC_1164)
Define a multi-value logic system for signals:

‘U’ — Unitialized ‘W — Weak Unknown
‘X — Forcing Unknown ‘L’ - Weak 0

‘0’ — Forcing 0 ‘H — Weak 1

‘1’ —> Forcing 1 ‘> — Don’t Care

‘" — High Impedance

* [EEE 1076.3 (Numeric Standard)
Define the numeric types signed and unsigned, and the respective arithmetic and

conversion functions for use with synthesis tools.

Introduction to VHDL

Objects in VHDL

There are 3 types of objects: signals, constants and variables.

The name of an object can make use of any alphanumeric caracter, obeying the
following rules: (1) it cannot be a VHDL keyword, (2) it must begin with a letter, (3) it
cannot finish with underscore (_), and (4) it cannot present two underscore caracters
together.

For synthesis, signals (signal keyword) are the most important, since they represent the
communication wires between blocks of the design.

There are 3 places where a signal may be declared: in the entity, in the declaration part
of the architecture, and in the declaration part of a package.

Declaration of a signal: signal <signal _name> : [type] ;

The signal type defines its possible values and manipulation.

Introduction to VHDL

Common types of objects in VHDL

« bit and bit_vector
— defined in the standards IEEE 1076 and IEEE 1164
— bit type may assume values ‘0’ or ‘1’
— bit_vector type is simply a linear array of bit objects
— ex: signalc: bit vector (1to4); c(1)<=1; c¢<=10107%

 std_logic and std_logic_vector
— defined in the standard IEEE 1164

— in order do use them, it must be included the following lines of code:
library ieee;
use ieee.std_logic_1164.all;

— provide greater flexibility than bit types, allowing the following values: ‘0’, ‘1°, °Z’, *-,
GL!’ ‘H” ‘U5, GX! Ou ‘W!
— values ‘0’, ‘1’, 'Z" and ‘X’ are the most useful for simulation and synthesis

Introduction to VHDL

Common types of objects in VHDL (cont.)

« signed and unsigned

defined in the packages numeric_std and std_logic_arith
the packages also define the implementation of the arithmetic operators (+, -, *)
they are similar to the type std_logic_vector, arrays of std_logic

their use help to clearly indicate in the code what representation is being used for the
data (signed or unsigned)

* integer

defined for use with arithmetic operators (IEEE 1076)

the number of bits is not specified in the code, like a std_logic_vector object

by definition, an integer makes use of 32 bits, allowing values from -(231-1) to 23'-1
integers may use less than 32 bits through the use of the range keyword

signal x : integer range -127 to 127;

Introduction to VHDL

Common types of objects in VHDL (cont.)

 boolean
— may assume the logic values TRUE or FALSE, corresponding to ‘1’ and ‘0’;
— ex: signal flag : boolean ;

 Enumeration type
— type defined by the designer;
— very useful for defining the name of the states in Finite State Machines;
— ex: type state id is (initiate, process);
signal y : state id ;

y <= process,

Introduction to VHDL

Constants in VHDL

constant
— an object of type constant cannot change its value throughout the code;
— a constant object may be defined without a value only inside packages;
— useful for improving the readability of the code;

— ex: constant z : std_logic_vector(2 downto 0) := “0117;

object name object type value

Introduction to VHDL

STRUCTURAL description:

* An electronic system may be described as a module with inputs and outputs.

« The output values may be function of:
— only the current input values (combinational circuit)
— current input values and internal states (sequential circuit)

ports A F5A F
N .G
A / \Y : A
F I Y Y,
B - A B
L . H Y I
/ B B
:

entity

Introduction to VHDL

FUNCTIONAL description:
» The electronic system is simply described by its function
(ex:Y = (K and B) or (A and §).

» Sequential systems obviously cannot be described only as a function of the
inputs.

A VHDL design may be based on interconnected components in a complex
hierarchy. Each component has an interface (entity) and an implementation

(architecture), as follows:
(

N\

entity <entity_name> is
port (a,b: in bit;
y: out bit);
end <entity_name>;

interface <

component < -
(full design)

architecture <arq_name> of < entity_name > is
: : begin
implementation J

\ . end <arg_name>;

Introduction to VHDL

Interface (entity):

» Define the access ports to the design.
« Basic generic form:

entity <entity name> is
port (<signal1l_name>: [mode] [type];
<signal2_name>: [mode] [type]);
end < entity name >;

» Possible modes of a port:
in = the portis an input.

out = the port is an output. The value of the associated signal cannot be used
inside the architecture to define another signal. The position of the signal is
always to the left of the assignment operator (<=).

inout = the port may be used as input or output.

buffer = the port is an output, but its value can be read inside the architecture. It
can be to the left or to the right of the assignment operator (<=).

Introduction to VHDL

Implementation (architecture):

» Define the actual implementation of the design.
« Basic generic form:

architecture <arch_name> of <entity name> is
[signals declarations]
[constants declarations]
[types declarations]
[components declarations]
[attributes specifications]

begin
[component instantiation]
[concurrent assignment]
[process]
[generation]

end <arch_name>;

Introduction to VHDL

Schematics representation:

Example: 8 bits comparator

library ieee;

use ieee.std logic 1164 .all;

entity compare is
port (A,B: in std _logic vector(0 to 7);
EQ: out std logic);
end compare;

architecture one of compare is
begin

EQ <= ‘1" when (A=B) else ‘0’;
end one;

A[O...7]

— o

B [0...7] A=B? —»

N

e The circuit is combinational.
* VHDL keywords in blue.

 VHDL is not case-sensitive.

abs
access
after
alias

all

and
architecture
array
assert
attribute
begin
block
body
buffer
bus

case
component

canfiguration

constant

disconnect
downto

else
elsif
end
entity
exit

file

for
function

generate
generic
group
guarded
if

impure
in
inertial
inout

is

VHDL keywords (/EEE Std.1076-1993)

label
library
linkage
literal
loop

map
mod

nand
new
next
nor
not
null

of

on
open
or
others
out

Introduction to VHDL

package
port
postponed
procedure
process
protected
pure

range
record
register
reject
rem
report
return
rol

ror
select
severity
shared
signal

sla

sll

sra

sri
subtype

then

to
transport
type
unaffected
units

until

use

variable
wait
when

while
with

xnor
xaor

