School and Workshop on Dark Matter and Neutrino Detection Dark Matter — Direct Detection Lecture 2

Enectalí Figueroa-Feliciano Northwestern

COLEGIO DE FISICA FUNDAMENTAL E INTERDISCIPLINARIA DE LAS AMERICAS

Outline

- Lecture 1:
 - The dark matter problem
 - WIMP and WIMP-like DM detection
- Lecture 2:
 - WIMP detection technologies
 - Current and future limits
- Lecture 3:
 - More 1-10 GeV DM detection technologies
 - To the Neutrino Floor, and beyond!

- Lecture 4:
 - The SuperCDMS Experiment
 - meV 1GeV direct detection
- Lecture 5:
 - Indirect sterile neutrino detection

Last Time: Separating Signal from Background...

• By Detector **Response**

- Obtain particle identification from the physics of the detector response to different types of particle interactions.
- By Astrophysical Modulation
 - Annual Modulation in the WIMP recoil spectrum. Earth's velocity through the galactic halo is max in June, min in December (DAMA/LIBRA).
 - Daily modulation of the incident WIMP direction. Measure the direction of the short track produced by nuclear recoil. (DM-TPC)
- Can be Event-by-Event or Statistical

Last time: Particle ID Through Detector Response

Phonons 10 meV/ph 100% energy

CRESST **ROSEBUD** CaWO₄, BGO $ZnWO_4$, Al_2O_3 ...

CLEAN DAMA DEAP NAIAD **ZEPLIN I XMASS**

Scintillation

~ I keV/ γ few % energy

Xe, Ar, Ne Nal(TI)

CRESST I CUORE TeO₂, Al₂O₃, LiF

> CDMS **EDELWEISS** Ge, Si

ArDM **DarkSide** LUX WArP **XENON ZEPLIN II, III** Xe, Ar, Ne

Ionization $\sim 10 \, eV/e$ 20% energy

ANAIS **CoGeNT** COSME COUPP **DM-TPC** DRIFT IGEX

Ge, CS_2 , C_3F_8

Annual Modulation Earth's motion about the Sun produces small changes in velocity relative to the dark halo → Modulates expected rate of dark matter interactions detected on Earth

WIMP Wind

v₀~220km/s

60°

Cygnus

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

If you see a signal, check for an annual modulation

OR

If you have irreducible backgrounds, use the modulation to pick out a signal

A dark-matter-induced modulation will have extrema in June and December (whether it's max or min depends on target and threshold)

Annual Modulation

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

Modulation Signal

Target: Ge

$$\sigma_{SI} = 1 \times 10^{-4} \text{ pb}$$

 $M_{\chi} = 10 \text{ GeV/cm}^2$

The modulation shape is target dependent!

Diurnal Modulation (a.k.a. Directional Detection)

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

Summary of Nuclear Recoil Direct Detection Requirements

- 1: Large Exposure (Mass x Time)
- 2: Low Energy Threshold
- 3: Low Backgrounds

4: Discrimination between Signal and Backgrounds

WIMP Direct Detection Technologies, Experiments, and Current Results

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

DAMA/LIBRA: a Model-Independent Signal

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

2-6 keV

Non-dark matter explanations for the modulation

Alternative sources of modulation have been proposed

DAMA has addressed come of these

Source	Main comment	Cautious upper limit (90%C.L.)	
RADON	Sealed Cu box in HP Nitrogen atmosphere, 3-level of sealing, etc.	<2.5×10 ⁻⁶ cpd/kg/keV	
TEMPERATURE	Installation is air conditioned+ detectors in Cu housings directly in contact with multi-ton shield→ huge heat capacity + T continuously recorded	<10 ⁻⁴ cpd/kg/keV	Slide taken fro DAMA/LIBRA
NOISE	Effective full noise rejection near threshold	<10 ⁻⁴ cpd/kg/keV	Further discus
ENERGY SCALE	Routine + intrinsic calibrations	<1-2 ×10 ⁻⁴ cpd/kg/keV	EPJC 56:333 (2
EFFICIENCIES	Regularly measured by dedicated calibrations	<10 ⁻⁴ cpd/kg/keV	EPJC 72:2064
BACKGROUND	No modulation above 6 keV; no modulation in the (2-6) keV <i>multiple-hits</i> events; this limit includes all possible sources of background	<10 ⁻⁴ cpd/kg/keV	EPJC 74:3196
SIDE REACTIONS	Muon flux variation measured at LNGS	<3×10 ⁻⁵ cpd/kg/keV	

Modulation Amplitude in Signal is ~ 1x10⁻² cpd/kg/keV

Checking DAMA with Nal Detectors

Northern Hemisphere	Gran Sasso DAMA/LIBRA 250 kg running	Boulby DM-Ice North 37 kg R&D 250 kg planned	Canfranc ANAIS 37 kg R&D 250 kg planned	Y2L KIMS 45 kg R&D 200 kg planned	Gran Sasso SABRE R&D	Kamioka PICO-LON KamLAND- PICO R&D
Southern Hemisphere		South Pole DM-Ice 17 kg running 250 kg planned			Stawell SABRE Lab completion 2017	rock

Ultra-pure crystal development underway by DM-Ice, KIMS, ANAIS, SABRE, and **PICO-LON collaborations**

South Pole offers:

- Ultra-clean and ultra-stable environment
- Seasonal variation unambiguously different from dark matter modulation
- IceCube offers muon monitoring and veto as well as experience .
- NSF-run South Pole Station for logistical support

Note: Annual Modulation is also being looked for with other detector technologies!

The COSINE-100 Experiment @ Yangyang

- Model-independent test of DAMA's result
- 106 kg of same target material (Nal(Tl))
- Located 700 m underground at Yangyang Underground Lab in Korea
- Physics run began Sept. 2016

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

The SABRE Experiment @ LNGS & Stawell

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

Ultrapure Nal:TI Target Detector

- Intrinsic radioactivity limits WIMP sensitivity. SABRE has made the most radiopure NaI:TI to date.
 - 'Astrograde' powder (Sigma Aldrich). Carefully-developed powder preparation and growth protocols (Princeton + RMD).
- Lower radioimpurity than DAMA.
- Production growth underway.
- High QE + low background PMTs: 1 keV threshold

DAMA powder	DAMA crystals	Astro-Grade	SABRE crystal	
[ppb]	[ppb]	[ppb]	[ppb]	
100	~13	9	9	
n.a.	< 0.35	< 0.2	< 0.1	
~ 0.02	$0.5 - 7.5 \times 10^{-3}$	<10 ⁻³	$< 10^{-3}$	
~0.02	$0.7 - 10 \times 10^{-3}$	<10 ⁻³	$< 10^{-3}$	

The ANAIS Experiment @ Canfranc

10.7 kg BICRON

ANAIS-112:

- Commissioning in March-April 2017

Calibration and general assessment from April to July 2017 Dark matter run is underway since 3rd, August 2017: first year of data taking is about to be successfully completed

DM-ICE 17

Location: South Pole, Antarctica Depth: 2457 m (2200 m.w.e) Deployment: Dec. 2010 Science Run: Jun. 2011 – Jan. 2015 Uptime: > 99% Exposure: 60.8 kg-yr Target: Nal(TI) Mass: 2 x 8.5 kg

Still going...

DAMA/LIBRA: Dark Matter or Not?

This question will be answered in a year or two!

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

The Model-Dependent Playing Field

Current Limits

How Far Can We Push?

To Neutrinos, and Beyond!

Noble Liquid Detectors

CLEAN DEAP **ZEPLIN I XMASS**

Xe, Ar, Ne

Scintillation

~ I keV/ γ few % energy

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

Phonons

10 meV/ph 100% energy

ArDM DarkSide LUX / LZ WArP XENONIT **ZEPLIN II, III** Xe, Ar, Ne

Ionization

~ 10 eV/e 20% energy

Noble Liquid Time Projection Chambers

Slide curtsey of Rafael Lang

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

- Obtain vertex position from S2 hit pattern and drift time
- Ratio of S2/S1 provides nuclear/electron recoil discrimination

Noble Liquid Time Projection Chambers

Signal Production in Noble Liquids

- Electron Recoils and Nuclear Recoils are Separated in Log(S2/S1) vs S1 plane
- Look for WIMPs below the mean of the nuclear recoil distribution (the red line in the plot)

Noble Liquid Time Projection Chambers

NOT TO SCALE!

XENON1T: Current World-leading Limit > 6 GeV

Laboratori Nazionali del Gran Sasso

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

XENON1T: Current World-leading Limit > 6 GeV

LARGEST 2-PHASE LXE TPC

2-tonne Active Volume (3.2 t total)

121+127 low-background Hamamatsu 3" PMTs 1m-long Drift Region Drift Field ~100 V/cm

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

XENONnT

- Upgrades required for XENONnT
 - Larger cryostat inner vessel
 - New TPC
 - Additional ~200 PMTs, PMTs with lower radioactivity currently under development
 - Additional DAQ electronics
 - LXe
- Target mass of ~6 tons, sensitivity to spinindependent WIMP-nucleon elastic scattering cross sections of $1.6\times10^{-48}\,\mathrm{cm}^2$

Darwin Large Xe Experiment Concept

Bottom photosensor array

Exposure: 200 t y

LUX-ZEPLIN (LZ)

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

- LZ: Funded G2 Experiment
- 50 x LUX fiducial volume
- 10 Ton Xenon, 7 Ton Active, 5.6 Ton fiducial
- Begin taking data in 2019

The DarkSide Program: Liquid Argon TPC

DarkSide-50

- **Global Argon Dark Matter Collaboration** GADMC incorporates members from all existing argon experiments DarkSide-20k is a 50 tonne
- dual-phase argon TPC, 30 tonne fiducial
- background events in 100
- >20 m² SiPM detectors goal of 0.1 "instrumental" tonne-years

Dual Phase Liquid Argon TPC

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

PSD parameter: **F90** = fraction of light in first 90 ns

98 <mark>N</mark>

Dual Phase Liquid Argon TPC

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

discrimination power

Single-phase Noble Liquid Detectors

XMASS

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

DEAP3600

Noble Liquids Will Cover the High Mass Region!

And are also looking for light DM as well!

- Limit is for 95 live-days of data (with 13,775 kg·day exposure). Result from the complete LUX exposure is forthcoming.
 - CRESST-II 2015
 - CDMSlite 2016
 - $\nu cleus \ 2017$
 - CRESST-III 2017
 - CDEX-10 2018
 - DarkSide-50 Binomial 2018
 - XENON100 2016
 - LUX 2016
 - LUX 2018 observed 90% CL
 - ••••• Expected 90% CL median
 - Expected 90% CL $\pm 2\sigma$
 - Expected 90% CL $\pm 1\sigma$

This work

Cryogenic Crystal Detectors: Low Mass DM

CRESST I CUORE TeO₂, Al₂O₃, LiF

CRESST **ROSEBUD** CaWO₄, BGO $ZnWO_4$, Al_2O_3 ...

Scintillation

~ I keV/ γ few % energy

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

Phonons 10 meV/ph 100% energy

CDMS **EDELWEISS** Ge, Si

Ionization ~ 10 eV/e

20% energy

Cryogenic Crystal Detectors

The Phonon Channel

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

Microcalorimeters 102: Transition-Edge Sensros

- Refrigerator temperature has to be close to absolute zero
- Thermometer is a Superconducting Transition-Edge Sensor (TES)
- Readout is done with Superconducting Quantum Interference Devices (SQUIDs)

CDMS II

4.6 kg Ge (19 x 240 g) 1.2 kg Si (11 x 106g) 3" Diameter 1 cm Thick

2 charge + 4 phonon

9.0 kg Ge (15 x 600g) **3" Diameter** 2.5 cm Thick

2 charge + 2 charge 4 phonon + 4 phonon

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

SuperCDMS Soudan

SuperCDMS SNOLAB

Funded G2 Experiment Data Taking in 2020 25 kg Ge (18 x 1.4 kg) 3.6 kg Si (6 x 0.6 kg) 4" Diameter 3.3 cm Thick 2 charge + 2 charge 6 phonon + 6 phonon

SuperCDMS SNOLAB @ the Ladder Lab

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

EDELWEISS

- 2 GeNTDs heat sensor per detector
- Electrodes: concentric Al rings
 (2 mm spacing) covering all faces
- XeF₂ surface treatment → low leakage current (<1 fA) between adjacent electrodes J Low Temp Phys (2014) 176: 182-187
- R&D with 32 g combined with the objective of testing the above-ground sensitivity to sub-GeV WIMPs
- Optimized NTD heat sensor on a 32g crystal, no electrodes (i.e. 1 keV = 1 keV_{NR})
- Kept at 17 mK in IPNL low-vibration dilution fridge [ArXiv:1803.03463]
- Stable $\sigma = 18 \text{ eV}$ baseline resolution
- One day blinded for WIMP search in [0-2] keV region

CHESSI

- CRESST: phonon + light
- Scintillating CaWO₄ crystals as target
- Separate cryogenic light detector to detect scintillation light signal
- New small 24g detectors optimized for light DM
- 4.5 eV sigma Baseline Resolution

CaWO₄ iSticks (with holding clamps & TES)

scintillating housing

light detector (with TES)

block-shaped target crystal

CRESST New Results

Energy spectrum of accepted events

Yellin 1D optimum interval method

Energy spectrum expected for DM

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

10⁶

10⁵

 10^{4}

 10^{3}

 10^{2}

10

 10^{-2}

 10^{-3}

10-4

10⁻⁵

10⁻⁶

10

10

10

 10^{-10}

10-11

0.1

Section (pb)

eon Cross

Particle-Nu

Dark Matter

The Low Mass Region Is an Exciting Place To Look for DM!

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

Dark Matter Mass [GeV/c^2]

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

End of Lecture 2

