School and Workshop on Dark Matter and Neutrino Detection Dark Matter — Direct Detection

Enectalí Figueroa-Feliciano Northwestern

Lecture 3

COLEGIO DE FISICA FUNDAMENTAL E INTERDISCIPLINARIA DE LAS AMERICAS

Outline

- Lecture 1:
 - The dark matter problem
 - WIMP and WIMP-like DM detection
- Lecture 2:
 - WIMP detection technologies
 - Current and future limits
- Lecture 3:
 - More DM detection technologies
 - To the Neutrino Floor, and beyond!

- Lecture 4:
 - The SuperCDMS Experiment
 - meV 1GeV direct detection
- Lecture 5:
 - Indirect sterile neutrino detection

114 N

Last Time: Low Mass Region

Dark Matter Mass [GeV/c^2]

PICO Bubble Chamber: Superheated Liquids!

-2012

COUPP

2013-17 PICO-2L

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

See next talk by Andrew Sonnenschein 2018-

PICO Bubble Chamber: SD and SI limits!

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

CCD-based DM Search

- Silicon CCD technology highly advanced thanks to utility in astronomical and satellite-based imaging
- WIMPs scatter coherently off of Si nuclei, which recoil and yield detectable ionization signals
- CCDs are "exposed", i.e. collect charge, for O(1 day) and images are then read out for analysis

16 Mpix CCD LBNL designed 6 cm x 6 cm 15-μm pixel pitch 675-μm thick

CCD-based DM Search

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

See talks by Juan Estrada

Directional Detection

- Measure WIMP-induced recoil directions with efficient electron-recoil discrimination even at low energy (<20 keV).
- Discriminate and measure Solar neutrino coherent scattering with directionality (⁸B)
- Probe for WIMPs below neutrino floor.

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

Directional Detection

- Measure WIMP-induced recoil directions with efficient electron-recoil discrimination even at low energy (<20 keV).
- Discriminate and measure Solar neutrino coherent scattering with directionality (⁸B).
- Probe for WIMPs below neutrino floor.

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

A review of the discovery reach of directional Dark Matter detection Physics Reports 627 (2016)

Sky map in galactic coordinates of recoils from 100 GeV WIMPs on ¹⁹F, E>50 keV

Galactic dipole: - strongest predicted direct detection signature - unambiguous proof of cosmological origin

Directional Detection: Non-TPC From Kentaro Miuchi's talk at IDM

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

Directional Detection: TPC **Experimental concept Recoil nuclear track detection < 100keV** challenge: short track a few mm in low pressure gas a few 100 nm in solid **Typical approach:** low pressure gas TPC (time projection chamber)

2D readout + timing \rightarrow 3D tracking

Directional Detection: TPC

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

From Kentaro Miuchi's talk at IDM

Review of other Nuclear Detection Technologies

- Silicon CCDs: DAMIC & Sensei
- Bubble Chamber Experiments
 - PICO and COUPP
 - Excellent SD Sensitivity
 - (currently running at SNOLAB)
 - Xenon Bubble Chamber
- Directional Detection Experiments
 - DRIFT, DMTPC, NEWAGE, MIMAC
- New Ideas
 - DNA and/or organic detectors?
 - Molecular dissociation / inelastic collisions?

125 N

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

Neutrino Backgrounds

126 N

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

Low-Energy Neutrino Cross Sections

Neutrino Sources for Dark Matter Detectors

- Solar (v_e)
- Diffuse Supernova Neutrino Background (all flavors)
- Atmospheric (all flavors)
- Geothermal (\bar{v}_e)
- Reactor (\bar{v}_e)
- Internal ($\beta\beta$ decays, \bar{v}_e)
- Supernova (burst, so not really a background, all flavors)

Solar Neutrino pp Chain

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

Diffuse Supernova Background

Mostly from Core Collapse Supernovae

Mpc⁻³ 10^{-3} R 10-4 CC ratio

Atmospheric Neutrinos

Table 1

 From Cosmic Ray interaction in atmosphere.

Stopping μ deca μ decay in flight Stopping π deca π decay in flight K decay in flight

Total fraction of each flavor

Total fraction and contribution by the different production channels are given.

	v_{μ}	\bar{v}_{μ}	ve	ve
iy	0.078	0.070	0.124	0.148
t	0.378	0.470	0.876	0.852
y	0.003	0.007	0.00002	~0
t	0.541	0.453	0.00003	0.00005
t	0.0005	0.0003	0.0007	0.0006
	0.329	0.338	0.183	0.150
1				

Fraction of each neutrino flavor with energy below 100 MeV

Battistoni 2009

132 N

Geoneutrinos and Reactor Neutrinos

S

Flux

Geo v

- Geoneutrinos are plentiful, but too low energy and are thus subdominant to the Solar v flux.
- Reactors vs can are only important if physically close to a reactor, so we can safely ignore them.

10(cm⁻² 10^{4} 10^{-10} 10^{2} 10 10^{-1}

Neutrino Sources: Solar, Atm, DSNB

Coherent Elastic ν -Nucleus Scattering (CE ν NS)

$$\sigma_o \simeq \frac{4m_r^2}{\pi} f A^2 - \operatorname{atom}_{\text{coupling constant}}$$

• Same type of process occurs with neutrinos:

$\frac{d\sigma}{dT} = \frac{G_F^2}{4\pi} \left[N - Z(1 - 4\sin^2\theta_W) \right]^2 \left(1 - \frac{M_A T}{2E_T^2} \right) \frac{V}{F} (Q^2)^2$

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

Dark Matter detectors are getting good enough to be sensitive to this signal!

CEvNS Cross Sections

Neutrino CEvNS Recoil Spectrum

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

Fitting the 8B CEvNS Signal As Dark Matter

• The reconstructed parameters are target dependent mass [GeV/c² 10 9 8 WIMP $4m_{r}^{2}$ SI: $\sigma_o \simeq -$ -atomic mass J π coupling constant

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

138 N

Fitting the 8B CEvNS Signal As Dark Matter

cm²]

section

Cross

nucleon

- The reconstructed parameters are target dependent
- They also depend on the assumed interaction mechanism

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

139 N

Fitting the Individual CEvNS Signals As Dark Matter

We can map where each neutrino component would land on the WIMP SI cross section - mass plane

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

Nuclear form factor prevents WIMP mass determination for at high masses

Fits to the Entire Neutrino Background as WIMPs

14 **N**

The "Neutrino Floor"

WIMP Discovery Limit

- To asses the discovery potential of WIMP searches, we define the WIMP **Discovery Limit**
- the signal.
- neutrino background, so we define a likelihood function:

 Using a likelihood ratio test, we determine what cross section of WIMPs would be detected at 3σ or better 90% of the time

 Definition of WIMP Discovery Limit: If the true WIMP model lies above this limit, then a given experiment has a 90% probability to obtain at least a 3σ detection of

• We want to gauge the significance of an excess in our data from the expected

143 N

Formally, there is no Neutrino Floor

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

14

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

Formally, there is no Neutrino Floor

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

Saturation above 100 GeV WIMP Masses from Atm ν

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

Formally, there is no Neutrino Floor

The WIMP Discovery Limit

- calculations, one at low mass and one at high mass.
- The low mass threshold is set to get no pp neutrino events
- The high mass threshold is set to get no ⁸B events
- The curve is not a sensitivity curve! Reiterating the definition:
 - If the true WIMP model lies above this limit, then a given experiment has a 90% probability to obtain at least a 3σ detection of the signal.

Target	Sample Experiment	$\mathbf{E}_{\mathrm{th}}^{\mathrm{low}}$ (eV)	$\mathbf{E}_{\mathrm{th}}^{\mathrm{high}}$ (keV)	$\mathbf{Exposure}^{\mathrm{low}}$ (ton-yr)	Exposure ^{high} ($\times 10^3$ ton-yr)
Xe	LZ/XENON1T	3	4	0.19	9.3
Ge	SuperCDMS/CoGeNT	5.3	7.9	0.38	15.6
Si	SuperCDMS/DAMIC	14	20	1.26	73.1
Ar	DEAP/DarkSide	9.6	14.4	0.72	32.5
$CaWO_4$	CRESST	25	35	1.48	24.4
C_3F_8	PICO	33	47.7	2.02	25.1
CF_4	MIMAC/DMTPC	33	47.7	2.39	22.9
$CF_{3}I$	PICO/COUPP	33	47.7	2.42	23.8

• The curve we publish in our papers is constructed from two separate

F. Ruppin, J. Billard, EFF, L. Strigari: 1408.3581

WIMP Discovery Limit for Different Targets

Spin Independent Interaction

WIMP Discovery Limit for Different Targets

Spin Independent Interaction

WIMP Discovery Limit for Different Targets

Electron Recoil Backgrounds from Neutrinos

Baudis 2012, Schumann 2015

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

Low-Energy Neutrino Cross Sections

- Cross Section is 10,000 times smaller than CNS... \bullet
- But you get a much higher recoil due to the small mass of the electron.
- Thus pp and ⁷Be will dominate at 10 keVee recoil

Neutrino Energy [MeV]

Electron Recoil Backgrounds

Adding both NC and CC interactions

Comparison between Exposure and Sensitivity

Strategies to Push Beyond the Neutrino "Floor"

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

Target Complementarity

- The reconstructed parameters are target dependent
- Maybe we can eliminate the various targets?

Target Complementarity: Spin Independent

Target Complementarity: Spin Dependent

Directional Detectors and the Neutrino Background

- We see a "dark matter wind" in the laboratory due to the motion of the solar system in the Galaxy.
- This wind changes apparent direction in the lab frame due to the diurnal rotation of the Earth
- The direction of the dark matter wind does not overlap with the position of the Sun in the sky, and thus the direction of solar neutrinos is always different than the dark matter wind.
- We can use this to differentiate dark matter signals from neutrino backgrounds!

C.A.J. O'Hare, A.M. Green, J. Billard, EFF, L.E. Strigari, arXiv:1505.08061

Directional Detectors and the Neutrino Background

DM-Sun (009) Separation Minimum ation Š Maximum 20°) σ \mathbf{O} Se Sun

C.A.J. O'Hare, A.M. Green, J. Billard, EFF, L.E. Strigari, arXiv:1505.08061

Directional Detectors and the Neutrino Background

- study we ignored other backgrounds!)
- study motivates their continued development

Directional Detectors can keep dark matter searches "background free" from solar neutrinos (note in this

Atmospheric Neutrinos look isotropic to directional detectors, and thus still form an irreducible background • The technology to perform directional detector searches at these exposures is not yet at hand, but this

C.A.J. O'Hare, A.M. Green, J. Billard, EFF, L.E. Strigari, arXiv:1505.08061

165 N

The "Neutrino Floor" will be a hard wall for a while...

Enectali Figueroa-Feliciano \ ICTP-SAFIR \ July 2018

End of Lecture 3

167 N