Neutrinoless double beta decay with CUPID-Mo

Pia Loaiza

ANDES workshop, Sao Paulo, 4-6 August 2018

Two neutrino double beta decay

Certain isotopes are forbidden from decaying through standard beta decay because $m(Z,A) < m(Z\!+\!1,A)$

$$2\beta 2\nu$$

$$(Z,A) \rightarrow (Z+2,A) + 2e^- + 2\bar{\nu_e}$$

- Allowed in the Standard Model
- Observed for 12 isotopes
- $\mathbf{T}_{1/2}^{2\beta 2
 u} \sim 10^{19-21}~\mathrm{ys}$
- Important constraint for nuclear matrix elements calculation

2β**0**ν

$$(\mathsf{Z},\mathsf{A})
ightarrow (\mathsf{Z}+2,\mathsf{A}) + 2\mathsf{e}^{-}$$

If the neutrino is a **Majorana particle**, then the process of zero-neutrino double beta decay should be observable

- Experimentally not observed
- Implies lepton number violation
- Offers strong support for the explanation of baryon asymmetry via leptogenesis

• Current bounds
$$\mathsf{T}_{1/2}^{2eta 0
u} > 10^{24-26}$$
 ys

Experimental signature for $2\beta 0\nu$ decay

Background

- $\bullet\,$ The signal is a peak at the $Q_{\beta\beta}$ value
- The most energetic γ line from natural radioactivity is at 2615 keV \rightarrow Q_{$\beta\beta$} > 2 3 MeV for most promising isotopes

 $2\beta 0\nu$ experiments measure decay rates, $\mathsf{T}^{2\beta 0\nu}_{1/2}$

How $T_{1/2}^{2\beta0\nu}$ is connected to neutrino masses?

(In case of process induced by light ν exchange, mass mechanism)

 $m_{\beta\beta} = m_1 |U_{e1}|^2 + m_2 |U_{e2}|^2 e^{i\alpha} + m_3 |U_{e3}|^2 e^{2i\beta}$

Theoretical ingredients

J. Engel and J. Menéndez, Rep. Prog. Phys. 80, 046301

 g_A is quenched in $2\beta 2\nu$ decay. Is the renormalization the same for $2\beta 0\nu$?

- $g_A = 1.269$ free nucleon (no quenching)
- $g_A, eff \sim 0.6 0.8$

If quenching exists, the sensitivity to $m_{\beta\beta}$ will descrease

CUPID-Mo

- High energy resolution (5 keV FWHM, \sim 0.2 %, at 2 β 0 ν ROI)
- 0.2 0.5 kg each crystal \rightarrow scalability to a ton scale array
- High efficiency(\sim 70 90 %)

Lessons learnt from CUORE

Irreducible background due to α particles emitted at the surfaces and degraded in energy

 $b \sim 10^{-2}$ counts/kev kg v

Current solution: scintillating bolometers

Scintillating bolometers

$\boldsymbol{\alpha}$ discrimination in a scintillating bolometer

EDELWEISS-III cryogenic facility at LSM (France)

Laboratoire Souterrain de Modane 1.7 km rock overburden (~4.8 km w.e.) 5 μ/day/m²; 10⁻⁶ n/day/cm² (>1 MeV) Deradonized air flow (~30 mBg/m³) EDELWEISS set-up Clean room (ISO Class 4) ³He/⁴He inverted wet cryostat Passive shield Modern lead (18 cm) Roman lead (2 cm; 14 cm at 1 K plate) Polyethylene (external ~ 50+5 cm and 10 cm at 1 K plate) Background monitors Muon veto (98.5% covering) Neutron counter

Neutron counte Radon counter

Electronics, DAQ (Samba)

Low noise cold electronics AC bias, modulation (100 kHz) \rightarrow demodulation (up to 1 kHz) 16-bit or 14-bit ADC Trigger and/or Stream data

From D. Poda

5

Tests of Li¹⁰⁰MoO₄ scintillating bolometers

- Multiple tests with natural and enriched crystals in LSM and LNGS
- Longest run with 4 LMO crystals in the Edelweiss cryostat using Edelweiss electronics and DAQ (November 2016 - April 2017) [AIP Conf. Proc. 1894, 020017 (2017)]

From D. Poda2

Energy resolution

Measured with a Th source (mixed $^{232}{\rm Th}$ and $^{238}{\rm U}$) which allows to have several points for energy calibration

• The energy resolution (5 keV FWHM at $Q_{\beta\beta}$) required to build a next generation $2\beta 0\nu$ experiment is achieved

α rejection

AIP Conf. Proc. 1894, 020017 (2017)

$$DP = rac{|\mu_{eta/\gamma} - \mu_lpha|}{\sqrt{\sigma^2_{eta/\gamma} + \sigma^2_lpha}}$$

Detector	FWHM (keV)	Light Yield $\gamma/(\beta) = \alpha/\gamma/(\beta)$ separati	
	at 2615 keV	(keV/MeV)	above 2.5 MeV
enrLMO-1	5.8(6)	0.41	9σ
enrLMO-2	5.7(6)	0.38	9σ
enrLMO-3	5.5(5)	0.73*	14 σ^*
enrLMO-4	5.7(6)	0.74*	14 σ^*

* with reflecting foil

Rejection of α 's at the level of 9σ

CUPID-Mo

First measurements with 4 bolometers

From D. Poda

CUPID-Mo

Crystal radiopurity

• 228 Th < 3 μ Bq/kg

- 226 Ra < 3 μ Bq/kg
- ²¹⁰Po : [20 450] μBq/kg

High radiopurity of $\rm Li_2^{100}MoO_4~crystals \rightarrow$ no background in $2\beta0\nu$ region from internal contamination $_{\rm CUPID-Mo}$

Gamma/Beta background

Connectors and cabling were changed for CUPID-Mo Full estimation of background in progress Reasonable expectation : b $\sim 10^{-2}$ - 10^{-3} cts/kev kg y

0 = 4.9 MeV

CUPID-Mo demonstrators

Phase I:

- 20 cylindrical Li¹⁰⁰₂MoO₄ crystals
 - $ightarrow\,$ $\sim\,$ 2.5 kg of 100 Mo
- Edelweiss set up at LSM
- Start physics data taking end July 2018

Phase II:

- Additional 26 cubic crystals (20 + 26 cryst.)→
 ~ 5 kg of ¹⁰⁰Mo
- CUPID-0 set up at LNGS
- Planned start data taking mid-2019

CUPID-Mo Phase I

- Li₂¹⁰⁰MoO₄ crystals diam 44 × 45 mm
- Light detectors Ge wafer, diam 44.5 mm x 70 μm
- NTD temperature sensors
- Copper holders radiopure NOSV copper
- Spacers PTFE
- Ball bonding, 25 μ m gold wires

CUPID-Mo in Edelweiss set-up

What's the near future? A possible scenario

Adapted from A. Barabash 'Brief review on double beta decay experiments'. arXiv:1702.06340

- g = 1.27
- Phase-space factors from :
- [12] Kotila J and Iachello F 2012 Phys. Rev. C 85 034316.
- [13] Mirea M Pahomi T and Stoica S 2015 Rom. Rep. Phys. 67 872 UPID-Store L S et al. 2017 Phys. Rev. C 95 024305.

NME from :

- [3] Hyvarinen J and Suhonen J 2015 Phys. Rev. C 91 024613.
- [4] Simkovic F Rodin V Faessler A and Vogel P 2013 Phys. Rev. C 87 045501.
- Barea J Kotila J and Iachello F 2015 Phys. Rev. C 91 034304.
- [6] Rath P K et al. 2013 Phys. Rev. C 88 064322
- [7] Rodriguez T R and Martinez-Pinedo G 2010 Phys. Rev. Lett. 105 252503.
- [8] Monendez J Poves A Caurier E and Nowacki F 2009 Nucl. Phys. A 818 139.
- [9] Neacsu A and Horoi M et al. 2015 Phys. Rev. C 91 024309.
- [10] Mustonen M and Engel J 2013 Phys. Rev. C 87 064302.

CUPID: Cuore Upgrade with Particle IDentification

Follow-up of CUORE, towards a **ton scale bolometric experiment** with a factor 100 background reduction.

R&D efforts in three axis:

- Li¹⁰⁰MoO₄ scintillating bolometers
- **2** ¹³⁰TeO₂ Cherenkov bolometers
- **3** Zn⁸²Se scintillation bolometers

Based on the result of on-going R&D and demonstrator experiments, $Li_2^{100}MoO_4$ is identified as a promising baseline and $^{130}TeO_2$ Cherenkov as a mature viable alternative.

Purpose: fully explore the $m_{\beta\beta}$ Inverse Hierarchy region

 $\bullet~b \, \sim \, 10^{-4}$ counts/kev kg y

•
$$T_{1/2} > 10^{27} \text{ y}$$

CUPID collaboration will be formed in the near future CUPID kick-off meeting planned fall 2018

Next generation experiments

- Study of neutrinoless double beta decay is one of the most urgent topics in particle physics and cosmology
- The bolometric approach is a viable technique confirmed at large scale by the CUORE results
- A promising technology based on enriched $Li_2^{100}MoO_4$ scintillating bolometers was developed and is now applied to the CUPID-Mo demonstrator
- CUPID (Cuore Upgrade with Particle IDentification) is one of the most promising next-generation searches

CUPID-Mo collaboration

Follow up of LUMINEU collaboration (ANR-French funding, 2012-2017)

http://cupid-mo.mit.edu

- CSNSM Orsay, CEA/DRF Gif-sur-Yvette, IPNL Lyon, LAL Orsay, FRANCE
- KIT Karlsruhe, GERMANY
- INFN Bicocca and Roma, LNGS INFN L'Aquila, ITALY
- KINR Kyiv, UKRAINE
- JINR Dubna, ITEP Moscow, NIC Novosibirsk, RUSSIA
- MIT Boston, UCB/LBNL Berkeley, US
- CUPID-China: Fudan Shangai, USTC Hefei, CHINA

EXTRA SLIDES

Experiment	Mass (kg)	t (y)	Sensitivity T _{1/2} (y)	Sensitivity <m<sub>v> meV</m<sub>
CUPID	200	10 (2022? - 2032)	2.2 .10 ²⁷	6 - 17
nEXO	5000	10 (2025? - 2035)	10 ²⁷ 10 ²⁸	6 - 53
LEGEND	200	4 (2022? - 2026)	1.0 . 10 ²⁷	34 - 91
KamLAND- Zen	1000	3 (2020? - 2023)	6.0.10 ²⁶	26 - 69
SNO+	8000	5 (2020?- 2025)	7.1026	20-73
SuperNEMO	100	?	1.0 . 10 ²⁶	40-140

For CUPID-Mo:

Assuming $b=10^{-4}$ counts /keV kg y, 10 year running, 8 keV energy window, 78% efficiency