IFT UNESP, Sao Paolo

August 2018

innovating nanoscience

End-to-end materials discovery with electronic structure theory and machine learning

Stefano Sanvito (<u>sanvitos@tcd.ie</u>) School of Physics and CRANN, Trinity College Dublin, IRELAND

CRANN

How many inorganic materials can you name?

Fe, $Fe_{1-x}C_x$, Si, U, $Nd_2Fe_{14}B$, $YBa_2Cu_3O_7$...

Only about 150,000

The question

and an index of product on the

Internet of materials

Can we find out what we are looking for ? Can we navigate such materials space?

Suppose you have a new magnetic application what is its ideal material(s) ?

Fe, Co, Ni, Nd₂Fe₁₄B, LaMnO₃, Fe₃O₄

Finding new magnets: why?

Novel rare-earth-free permanent magnets

US permanent magnets market ~15B\$ (2016)

223

Data storage industry has multiple requirements

MRAM / STT Oscillators

 \Box High $T_{\rm C}$ (>600K)

- □ High spin polarization (*P*~100%)
- Low Gilbert damping
- Low saturation magnetization

□ Compatible with epitaxial growth of oxides

Magnetism is rare

Magnetism is complicated

SrMO₃

C. Franchini, T. Archer, J. He, X.-Q. Chen, A. Filippetti and S. Sanvito, Phys. Rev. B 83, 220402(R) (2011)

The magnetic genome project

with Stefano Curtarolo, Duke

The magnetic genome project

The magnetic genome project

REVIEW ARTICLE

The high-throughput highway to computational materials design

Stefano Curtarolo^{1,2}*, Gus L. W. Hart^{1,3}, Marco Buongiorno Nardelli^{2,4,5}, Natalio Mingo^{2,6}, Stefano Sanvito^{2,2} and Ohad Levy^{1,2,8} Finding *descriptors*

Materials selection Search the database for 1) new materials, 2) physical insights

Database Creation (AFLOW)

nature

materials

<u>Rational materials storage</u> Creating searchable database where to store information

Virtual Materials Growth

Simulating existing materials
Simulating new materials

tronic structure method: tional theory (VASP)

The AFLOW consortium

www.aflowlib.org

S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L.W. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, O. Levy, Comp. Mat. Sci. **58**, 227 (2012)

Virtual Materials Growth (existing materials)

Only ~150,000 are known to us

ICSD: Inorganic Crystal Structure Database

- 1,616 crystal structures of the elements
- 28,354 records for binary compounds
- 55,436 records for ternary compounds
- 54,144 records for quarternary and quintenary
- About 113,000 entries (75.6%) have been assigned a structure type.
- There are currently 6,336 structure prototypes.
- Lots of redundancy

Virtual Materials Growth (existing materials)

Duke calculated single elements, binary, ternary and some quaternary (about 60,000)

Calculations:

- AFLOW manages the run (large code)
- DFT done with VASP (pseudo-potential, plane-wave)
- Calculations at the DFT GGA-PBE level
- Relaxation performed \rightarrow new space group worked out
- Basic electronic structures collected (including: spinpolarization, effective mass, magnetic moment, etc.)

S. Curtarolo, W. Setyawan, G. L. W. Hart, M. Jahnatek, R. V. Chepulskii, R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M. Mehl, H. T. Stokes, D. O. Demchenko, and D. Morgan, Comp. Mat. Sci. **58**, 218 (2012)

Heusler alloys

~1000 claimed ...

~90 magnetic ...

Heusler alloys

					5*	0	1		7								CRA	NN.
hydrogen 1 H 1.0029							A		/									2 He 4.0008
3 Li	4 Be				é		-						5 B	e C	7 N	8 O	9 F	10 Ne
Elitt sodium 11 Na	12 Mg	~	236	6,00)0/	0.5	Μ	cal	cul	ate	d !	!	alunteum 13 Al	siliecen 14 Si	phosphorus 15 P	15.999 sufter 16 S	17 CI	20.180 97000 18 Ar
19 K			21 Sc	22 Ti	23 V		25 Mn	Fe		28 Ni		30 Zn	Ga Ga	Ge	33 As	34 Se	35 Br 70.004	36 Kr
37 Rb	38 Sr (7.60		39 Y	40 Zr 91.224	41 Nb	42 Mo		44 Ru	45 Rh	46 Pd 10.0		48 Cd	49 In	Sn Sn	51 Sb 121.70	52 Te	53 1 126.00	54 Xe 101.20
55 Cs	56 Ba	57-70 ×	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 0s	77 17 152.22	78 Pt	79 Au	BO Hg	81 TI 204.38	Pb	Bi Bi	B4 PO	85 At	86 Rn
B7 Fr Fr	Ra pps	89-102 ★ ★	103 Lr 1262	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun				114 Uuq			0171	

*Lanthanide series	57 La	Ce	59 Pr	60 Nd	Pm	52 Sm	Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb
* * Actinide series	178.91 actirixm 89	141.12 thotan 90	140.91 protectment: 91	144.24 arankum 92	nickinkm 93	106.36 (Anonium 94	americans 95	157.25 outen 96	155.53 betkrifutt 97	002.50 californiem 98	164.93 etrateintam 99	100 100	108.95 mendefinition 101	173.64 sobelium 102
	Ac	Th 222.04	Pa	0	Np	Pu	Am	Cm	BK	Cf	Es	Fm	Md	No

Database

Rational materials storage

www.aflowlib.org

S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L.W. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, O. Levy, Comp. Mat. Sci. **58**, 227 (2012)

Database

ELECTRONIC PROPERTIES

Band Gap: Magnetic Moment: Electron Mass(FIX): Spin Polarization (E_F): 0.000 eV (metal) 7.382 μ_B XXX (m₀) 0.666

Fit Band Gap:
Magnetic Moment/atom:
Hole Mass(FIX):
Spin Decomposition per atoms:

0.000 eV 1.845 μ_B/atom XXX (m₀) {1.758,1.758,4.019,-0.054} μ_B

Comp. Mat. Sci. 49, 299-312 (2010)

The magnetic genome project nature REVIEW ARTICLE Finding *descriptors* materials The high-throughput highway to computational materials design Materials selection Stefano Curtarolo^{1,2}*, Gus L. W. Hart^{1,3}, Marco Buongiorno Nat Stefano Sanvito^{2,2} and Ohad Levy^{1,2,8} Search the database for 1) new materials, 2) physical insights Database Creation (AFLOV Rational materials storage Creating searchable database where to store information Virtual Materials Growth Simulating existing materials Simulating new materials Robust electronic structure method: density functional theory (VASP)

Back to the magnets

S. Sanvito et al., *Accelerated discovery of new magnets in the Heusler alloy family*, Science Advances **3**, e1602241 (2017)

A look at the full database

Property: Can be made ?

Descriptor 0: Enthalpy of formation

Stability analysis

TM³

Look at the transition metal intermetallics

tiydrogen 1 H																		2 He
3 Li	4 Be				3	86 ,	54	0					5 B	C to at a	ntropin 7 N	B B 15,000	9 F	10 Ne
11 Na	12 Mg		0			•			J				13 Al	14 Si 24.095	15 P	16 S	17 CI 30,453	18 Ar 39.948
19 K	20 Ca		21 Sc 44.000	22 Ti	23 V		25 Mn	Fe		28 Ni		30 Zn	31 Ga	32 Ge	33 As	34 Se 71.56	35 Br 29,004	36 Kr 81.00
37 Rb	38 Sr (7.62		39 Y	40 Zr 01.204	41 Nb	42 Mo	43 TC	4 Ru	45 Rh			48 Cd	49 In	so Sn	51 Sb	52 Te	53 1 126.00	54 Xe
CS	56 Ba	57-70 ×	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 0s	77 17 180.22	78 Pt	190.07	BO Hg	81 TI 204.38	B2 Pb	Bi Bi	B4 Po	85 At	86 Rn
B7 Fr	Ra	89-102 ¥ ¥	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun	Uuu	112 Uub		114 Uuq				

*Lanthanide series	57 La	Ce	59 Pr	60 Nd	Pm	Sm	Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb
* * Actinide series	AC	144.12 thotan 90 Th	Pa	92 U	ngokanam 93 Np	Pu Pu	attentions 95 Am	96 Cm	97 Bk	98 Cf	etrateintam 90 Es	100 Fm	101 Md	sobelum 102 NO

Prediction of $T_{\rm C}$

Descriptor 2: Critical temperature

Known Heusler ferromagnets

 Co_2XY Generalized regression model based on
valence, volume, spin decomposition Fe_2MnY valence, volume, spin decomposition

Ni₂MnY

Mn₂XY Rh₂MnY

 Cu_2MnY Pd_2MnY Au_2MnY

Material	V (Å)	μ	ΔE (eV)	Т	 T
Со	47.85	2.0	-0.30	3007	352
Mn	48.93	2.0	-0.32	3524	760
Mn	54.28	9.03	-0.17	1918	?

Analysis

 $Co_2 YZ$

 $Co_2 YZ$

 X_2 MnZ

 X_2 MnZ

X₂MnZ

K. Shirakawa et al., J. Magn. Magn. Mater. 70, 421 (1987)

 Mn_2YZ

Mn₃Ga

K. Rode et al., Phys. Rev. B 87, 184429 (2013)

Descriptor 3: Magneto-crystalline anisotropy

Little magnetic anisotropy in cubic symmetry. Tetragonal distortion does not much better!

T. Graf et al., in *Handbook of Magnetic Materials*, Elsevier (2013)

Tetragonal distortion

Tetragonal distortion

 Rh_2VSn Rh_2CrSn Rh_2FeSn Rh_2CoSn

Pd₂NbSn Pd₂TbSn Pd₂DySn

Stoner Criterion vs band Jahn-Teller distortion

Among our 22:

- <u>2 turn diamagnetic</u> Co₂NbZn Co₂TaZn
- 3 remain magnetic

$$X_2$$
MnZ
 P_F ~0, T_C ~300-400, T_N ~2000-5000

A different workflow

V

ML

This is all about processing data

$(\{Z_i\}, \{N_i\}, \{\zeta_i\}, \{M_i\}, V)$

James Nelson

CRANN

41

Looking for new permanent magnets:

 $T_{\rm C} > 500 \,{\rm K}$

Targeted screening

~50 CRANN

 T_C

From DFT + MFA

Targeted screening

K

MCA

From DFT-SO + magnetic force theorem

Targeted screening

 Fe_2MnS Mn_2CuS Mn_2MgS Fe_2GeCo Mn_2CuAl Cr_2ZnSb Mn_2ZnAl Fe_2NiSb

Accurate = Selective

Useful materials will be left out

CRANN

Who won the last National lottery ?

Strategy: use machine learning to screen the NOT hard magnets

CRANN

Receiver operating curve (ROC)

60% TPR with 0 FPR

Need ~80 data for learning

250,000 candidates 2000 candidates 229 candidates

80 used for DFT + ML 80 used for DFT + ML 249,000 remaining 1920 remaining 149 remaining ML TPR 60% (50:50 population)

1000 used for DFT + ML

Don't calculate 30% = 50Don't calculate $30\% = \sim 650$ Don't calculate 30% = -80,000

Two issues in materials science

Our "big data" are not big yet

S. Sanvito et al., *Accelerated discovery of new magnets in the Heusler alloy family*, Science Advances **3**, e1602241 (2017)

Co₂MnTi

 $T_{\rm C}^{\rm measured} = 940 {\rm K}$ $T_{\rm C}^{\rm predicted} = 938 {\rm K}$

Prepared by arc melting in an Ar atmosphere

Courtesy J.M.D. Coey's Lab (P. Tozman, M. Venkatesan)

Bottom line

Did we find one ?

<u>TCD Team:</u> Tom Archer, Anurag Tiwari, Mario Zic

Duke Team: Stefano Curtarolo, Junkai Xue, Kevin Rasch, Corey Oses

