
Topological Theories and Quantum Computing

Dmitry Melnikov
International Institute of Physics – UFRN

ICTP-SAIFR – Sao Paulo
August, 2018



Plan of the Talk

Work in collaboration with A. Mironov, S. Mironov, A. Morozov and A. Morozov

Project: Modern applications of knot theory [MMMMM’17]

• Knots and Quantum Computing

• QC basics

• Quantum computing (qubits, entanglement)
• Topological Field Theories and Topological invariants
• Quantum entanglement in TQFTs
• Entanglement of closed and open curves



Quantum computing

Quantum computer

1. Initial state – vector inH1 ⊗H2 ⊗ · · · , e.g.

|Ψ〉 =
1√
2

(| ↑〉 ⊗ | ↓〉+ | ↓〉 ⊗ | ↑〉)

2. (A sequence of ) unitary transformations (quantum gates) U

|Ψ〉 → U|Ψ〉

3. Measurement (collapse of the wavefunction on a given state)

〈Ψ0|U|Ψ〉 , e.g. |Ψ0〉 = | ↑ 〉

(probabilistic output)

a generic linear combination α| ↑〉 + β| ↓〉 is called qubit



Quantum computing

Universal quantum gates

• Why unitary? – Unitary operations are invertible; in an ideal
computer the energy is only consumed in erasing the data
(Landauer’s principle)

• a minimal set of unitary operations generating a dense subset of
all unitaries – universal gates

Example

T =
1√
2

(
1 0
0 eiπ/4

)

H =
1√
2

(
1 −1
1 1

) CNOT =
1√
2


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0





Quantum computing

Quantum states: pure vs mixed

We consider quantum systems that consist of two or more
subsystems: H = H1 ⊗H2 ⊗ . . .

• The state is called pure, if there is a wavefunction, e.g. EPR-state

|ΨAB〉 =
1√
2

(| ↑〉 ⊗ | ↓〉+ | ↓〉 ⊗ | ↑〉)

One can introduce a density matrix as ρAB = |ΨAB〉 ⊗ 〈ΨAB|
• Conversely, not every matrix ρAB satisfying Tr ρAB = 1 is

separable. Such d.m. are said to describe a mixed state



Quantum computing

Quantum state: pure vs mixed vs entangled

• A pure state is entangled, if the wavefunction (or density matrix)
is not separable.

|ΨAB〉 6= |ΨA〉 ⊗ |ΨB〉

• if the state is mixed, it is entangled unless

ρAB = ρA ⊗ ρB

Examples:

|ΨAB〉 =
1√
2

(| ↑〉 ⊗ | ↓〉+ | ↓〉 ⊗ | ↑〉) EPRs is entangled

α| ↑〉 ⊗ | ↑〉 + β| ↑〉 ⊗ | ↓〉 + γ| ↓〉 ⊗ | ↑〉 + δ| ↓〉 ⊗ | ↓〉 is entangled unless det
(

α β
γ δ

)
= 0



Quantum computing

Quantum computing and entanglement

• a unitary operator U is called entangling, if there exists a
non-entangled state |Ψ〉, such that U|Ψ〉 is entangled

• Brylinskis’ theorem. The set of quantum gates is universal if and
only if it is entangling.

Example

CNOT =
1√
2


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


is entangling



Quantum computing

Entanglement measures

• problem: quantify entanglement

(Von Neumann) entanglement entropy

S = −Tr A(ρA log ρA)

where ρA = Tr B(ρAB) is the reduced density matrix

Example

EPR: ρA =

(
1/2 0
0 1/2

)
, S = log 2



Topological Quantum Field Theories

Definition [Witten, Atiyah]

• Functor Z between the category of topological spaces and the
category of linear spaces:

1. With a d-dimensional Σ associates a vector space V = Z(Σ)
2. With a d + 1 dimensional M, Σ = ∂M associates a vector

v = Z(M) ∈ V
3. ∀ Σ1, Σ2 and M, ∂M = Σ1 ∪ Σ2, associates a linear map

Z(M) : Z(Σ1)→ Z(Σ2)

Hilbert space vector/operator



Topological Quantum Field Theories

TQFT functor [Atiyah]

• Z(Σ†) = Z†(Σ), where Σ† stands for the reversed Σ orientation
• Z(Σ1 ∪ Σ2) = Z(Σ1)⊗ Z(Σ2) for a disjoint union

• For a composition M2 ◦M1 of cobordisms M1 : Σ1 → Σ†2 and
M2 : Σ2 → Σ3, Z(M2 ◦M1) is a composition of linear maps
Z(M2) ◦ Z(M1) : Z(Σ1)→ Z(Σ3)

• Z(φ) = C, where φ is an empty manifold
• For a unit interval I, such that Σ× I is an identity cobordism,

Z(Σ× I) is an identity map Z(Σ)→ Z(Σ)



Topological Quantum Field Theories

Visualization

Hilbert space state
matrix element

• If Σ has punctures – they are extended inside states M
• Representation of the braid group
• Topological invariants



Topological Quantum Field Theories

Explicit definition [Witten’89]

SCS[M3] =
k

4π

∫
M3

Tr
(

A ∧ dA +
2
3

A ∧ A ∧ A
)

HOMFLY-PT polynomials

Z(M3,K; G,R, k) =

∫
DA Tr R P exp

(
i
∫

K
A
)

eiSCS[M3]



Topological Quantum Field Theories

Examples of Hilbert spaces

SU(N) Chern-Simons
• Σ = S2: dimH = 1, SE = 0:
• Σ = T2: dimH = k + 1, k ∈ Z
• Σ = S2\{P}: dimH depends on number of points and their

"charges".



Topological Quantum Field Theories

Topological quantum computation [Kitaev et al’02]

• Initial state of is represented by a 3D
manifold with a 2D boundary.

• Unitary representations of braid
group realize quantum gates

• Measurement corresponds to
evaluation of matrix elements of the
braids

• Topological invariants compute
quantum amplitudes



Quantum Entanglement and TQFT

Quantum states

• Given a manifold Σ = Σ1 ∪ Σ2 ∪ . . . states are cobordisms of Σ

Two classes of states:

"separable" "entangled"



Quantum Entanglement and TQFT

Quantum operators

• Linear maps are also cobordisms

Typical operators

"density matrix"
(mixed state)

"entangler"



Quantum Entanglement in TQFT

Entanglement entropy [Dong,Fradkin,Leigh,Nowling’08]

• Replica trick: compute Tr ρn
A S = − d

dn Tr ρn
A

∣∣∣∣
n=1

ρA
1 =

[ ]−1

× ρA
2 =

[ ]−1

×



Quantum Entanglement and TQFT

Entanglement entropy

In the examples above

Tr
(
ρA

1
)n

= 1 , Tr
(
ρA

2
)n

=

[ ]1−n

Consequently,

SE(ρ1) = 0 , SE(ρ2) = log

[ ]

In the trivial case the donut is TrH 1 = dimH = Z(Σ× S1)



Closed Curves

Torus Hilbert space

Basis vectors

|R 〉 =

∣∣∣∣∣
〉

Scalar product

〈Ri|Rj〉 =

〈 ∣∣∣∣∣
〉

= tr

= Z(S2 × S1; Ri,Rj) = δij



Closed Curves

Operators

SL(2,Z) diffeomorphisms (SL(2,Z) = {S,T|S2 = 1, (ST)3 = 1})

|m, n; R〉 =
∑

i

W(m,n)
R,Ri
|Ri〉 =

∣∣∣∣ 〉
W(m,n)

ij ∈ SL(2,Z)

Twisted scalar product

〈Ri|S|Rj〉 =

〈 ∣∣∣∣∣ S

∣∣∣∣∣
〉

=

= Z(S3; Hopf link)



Closed Curves

Entanglement entropy [Balasubramanian et al’16]

• Cut a tubular neighbourhood of a link in S3⇒ Σ = T2 ⊗ T2 · · ·
• Define a state associated with the link

|L〉 =
∑

R1,...,Rl

HR1,...,Rl |R1〉 ⊗ . . .⊗ |Rl〉

• Compute the full and reduced density matrices

ρ =
|L〉 〈L|
〈L|L〉

, ρ̄ =

∑
~b Ha′~bH~ba′′∑
~a H~aH~a

· |a′〉〈a′′|

• Compute the entanglement entropy associated with the link



Closed Curves

Examples (SU(2) case) [Balasubramanian et al’16]

Hopf link:

HR1,R2 =
SR1R2

S00
,

S2 = I ⇒ SE = log dimH = log(k + 1) – max entanglement

(2m, 2) family:

HR1R2 = 〈0|ST2m|R1,R2〉

=
∑

R

〈0|ST2m|R〉〈R|R1,R2〉

In general, SE(2m, 2) ≤ SE(Hopf link)



Open Curves

Invariants in S2 × S1

Master formula

SE(ρ2) = log

[ ]

Two Wilson lines

SE = log dimH = 0 SE = 0



Open Curves

Four Wilson lines

SE = log dimH SE = 0

• Again, the entropy of unlinked lines is maximal



Conclusions

In this talk we reviewed

• Basics of a topological quantum computer: code spaces,
operations, entanglement

• Entanglement entropy in TQFTs. Entropy of open and closed
curves

Observations

• Links and tangles can be endowed with a physical characteristics
such as entropy

• Counter-intuitive relation between quantum and topological
entanglement: The entropy is maximal on "simple"
configurations


