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Outline: Computational complexity theory I

• Classical computing 101 

• Complexity Classes:  
• P; 

• NP;  

• Reductions and NP-completeness; 

• BPP and BQP;



Classical computing

• Information encoded in bits (0s and 1s); 

• Bits manipulated by Turing machines:
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Read/write device



Church-Turing Thesis (physical version) 
All computational problems solvable by a realistic physical 
system can be solved by a Turing machine. 

Classical computing
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Classical computing

• Information encoded in bits (0s and 1s); 

• Bits manipulated in Boolean circuits:



• Physical system is not too important for computability. 
• Vacuum tubes 

• Colossus (1943)

Replica of Colossus, Bletchley Park

Photo: Ian Petticrew

Classical computing



• Physical system is not too important for computability. 
• Transistors 

• Intel® 4004 (1971) - 2.300 transistors.  

• Intel® Core™ (2010) - 560.000.000 transistors.

Photo: Wikipedia (Richard Wheeler)

Classical computing



• Physical system is not too important for computability. 
• Billiard balls (Newtonian mechanics) 

• Fredkin e Toffoli (1982 - proposta teórica)

Imagem: Wikipedia

Classical computing



• What do we mean by “equivalent”? 
• We are interested in asymptotic behaviour!

Church-Turing Thesis (Strong version) 
(Informal statement): all realistic physical systems are 
computationally equivalent. 

Church-Turing Thesis



Polynomial vs exponential

• Definition: Efficient computation; 

• Consider 

• Some problem P parameterized by “size” n; and 

• a model of computation M. 

• M solves P efficiently if there is an algorithm in M to solve P in 
time that grows as a polynomial (in n). 

• Otherwise, M does not solve P efficiently. 

• e.g. if best possible algorithm for P in M takes exponentially long.



• Why polynomial vs. exponential? 
• Asymptotically, exponentials grow faster than polynomials. 

• What about         and            ?   
• Asymptotically efficient not always the same as efficient in practice. 

• Extreme polynomials not very common, tend to improve with time. 

Polynomial vs exponential

n100

2n

10

1024 1267650600228229401496703205376

100

1.001n

1000 10000100n

n =



Polynomial vs exponential

Definition: big-O notation. 
A function is O(f(n)) if its leading term grows as f(n) or slower. 

e.g.: all functions below are O(n2) 

n2

n2 + n
n
n2 + log n
n2 + 10000n



Church-Turing Thesis

Church-Turing Thesis (Strong version) 
Any problem that can be solved efficiently by a realistic 
computational device can be solved efficiently by a Turing 
machine. 

Church-Turing Thesis (physical version) 
All computational problems solvable by a realistic physical 
system can be solved by a Turing machine. 
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Decision problems

• Ex (Primality testing): “Is x prime?”

Definition: Decision problem. 
(informal) A decision problem is a YES/NO question! 



Complexity classes: P

Definition: P (complexity class) 
(informal) Decision problems that can be solved efficiently by 
classical computers. 



Complexity classes: P

Definition: P (complexity class) 
(formal) A problem is in P if and only if there is a uniform family 
of efficient classical circuits* such that, for all n-bit inputs x, 

- In a YES instance the circuit outputs 1; 
- In a NO instance the circuit outputs 0; 

* Uniform family of efficient classical circuits:  
 - depend only on size n of input; 
 - have at most poly(n) gates;  
 - can be described in poly(n) time



Complexity classes: P - Examples

• Multiplying n x n matrices; 

• Computing the determinant of n x n matrices; 

• Finding the greatest common divisor of two n-digit numbers; 

• Deciding if an n-digit number is prime; 

• Many others!
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Complexity classes: P - Examples

• Claim: Computing the determinant of an n x n matrix M is in P. 

• Reasoning: 

1. Determinant is not a decision problem! ✔



Complexity classes: P - Examples

• Claim: Computing the determinant of an n x n matrix M is in P. 

• Reasoning: 

1. Determinant is not a decision problem!  

2. Compute from definition?

✔

det M = ∑
σ∈Sn

(sgn(σ)
n

∏
i=1

mi,σi)

This sum has n! terms ☹️



Complexity classes: P - Examples

• Claim: Computing the determinant of an n x n matrix M is in P. 

• Reasoning: 

1. Determinant is not a decision problem!  

2. Computing from definition is no good. 

3. Use a shortcut:

✔

✘

det AB = det A det B

M =

a1 b1 0 0
c1 d1 0 … 0
0 0 1 0
⋮ ⋱
0 0 0 1

⋅

a2 0 b2 0
0 1 0 … 0
c2 0 d2 0
⋮ ⋱
0 0 0 1

…

✔

O (n2) matrices



• Claim: Computing the determinant of an n x n matrix M is in P. 

• Reasoning: 

1. Determinant is not a decision problem!  

2. Computing from definition is no good. 

3. Use a shortcut: 

4. Running time using shortcut + Gaussian elimination: 

Complexity classes: P - Examples

✔

✘

✔

O (n3)
det AB = det A det B
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• Example: Factoring

Complexity classes: NP

Definition: NP (complexity class) 
(informal) Decision problems whose solution can be checked 
efficiently by classical computers. 

67030883744037259 = 179424673 × 373587883

Easy

Hard



Complexity classes: NP

Definition: NP (complexity class) 
(formal) A problem is in NP if and only if there is a uniform 
family of efficient classical circuits that takes as inputs an n-bit 
string x and a witness y such that 

- In the YES instance, there is y of length poly(n) such that the 
circuit outputs 1; 
- In the NO instance, for all y of length poly(n) the circuit 
outputs 0; 



Complexity classes: NP - Examples

• Travelling salesman 

• Given a list of n cities, is there a path that visits all of them and is 
shorter than some length x?



Complexity classes: NP - Examples

• 3-Coloring 

• Can a map with n regions be painted with only 3 colors such that no 
neighbors have the same color?

(the answer is always yes for 4 colors!)



• Consider the following two NP problems: 

• Examples:

Complexity classes: Reductions

Φ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3 ∨ ¬x4)

Φ = (x1 ∨ x2 ∨ x5) ∧ (x2 ∨ ¬x3 ∨ x6) ∧ ⋯

Definition: 3-SAT 
Let {x1, x2 … xn} be a set of n true/false variables. Let Φ be a 
formula of the type 

Can we set x1, x2,…, xn to true/false such that Φ is true? 



• Consider the following two NP problems: 

• Examples:

Complexity classes: Reductions

x2 = x3 = x4 = T ✔

Φ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3 ∨ ¬x4)

Definition: 3-SAT 
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formula of the type 
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Complexity classes: Reductions

• Consider the following two NP problems: 

• Examples:
Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧

(¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)
✘

Φ = (x1 ∨ x2 ∨ x5) ∧ (x2 ∨ ¬x3 ∨ x6) ∧ ⋯

Definition: 3-SAT 
Let {x1, x2 … xn} be a set of n true/false variables. Let Φ be a 
formula of the type 

Can we set x1, x2,…, xn to true/false such that Φ is true? 



Complexity classes: Reductions

• Consider the following two NP problems: 

• Example: k = 4

Definition: k-Clique 
Does a graph of n vertices have a clique (i.e. a complete 
subgraph) of size k? 



Complexity classes: Reductions

• Consider the following two NP problems: 

• Example: k = 4

Definition: k-Clique 
Does a graph of n vertices have a clique (i.e. a complete 
subgraph) of size k? 



Complexity classes: Reductions

• 3-SAT vs. k-Clique: What do they have in common? 

• Consider the following 3-SAT instance:

Φ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3 ∨ ¬x4)

x1

x2

¬x3

¬x1 ¬x2 x4

¬x4

x2

x3
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If this graph has a 3-
clique the formula can 

be satisfied!



Complexity classes: Reductions

• 3-SAT vs. k-Clique: What do they have in common? 

• Consider the following 3-SAT instance:

Φ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ x3 ∨ ¬x4)

x1

x2

¬x3

¬x1 ¬x2 x4

¬x4

x2

x3

If this graph has a 3-
clique the formula can 

be satisfied!

x2 = x3 = x4 = T



Complexity classes: Reductions

Interesting conclusion 
This 3-SAT instance can be solved via a 3-Clique instance. 

Very interesting conclusion 
Any n-clause 3-SAT instance can be solved via a n-Clique 
instance. The mapping between the questions and 
corresponding answers can be done in poly(n) time. 



Complexity classes: Reductions

Definition: Reduction 
(Informal) Problem A reduces to problem B if an algorithm for B 
can be used to find a solution fo A, and the mapping between 
them can be done efficiently.  
Intuitively, this says B is at least as hard as A. 
Example: 3-SAT reduces to k-Clique. 



Mind-blowing conclusion 
Every problem in NP reduces to 3-SAT! 

Complexity classes: Reductions



Definition: NP-complete 
(Informal)  A problem is NP-hard if any other NP problem 
reduces to it. 
It is also NP-complete if it is in NP and is NP-hard. 

Complexity classes: Reductions

Cook-Levin Theorem (1971/1973) 
3-SAT is NP-complete. 



Complexity classes: NP - more examples

• Hamiltonian cycle: In a graph of n vertices, is there a cycle that visits 
each vertex exactly once? 

• Subset sum: Given a collection of n integers, is there a subset of them 
that sums to 0? 

• Graph isomorphism: Are two n-vertex graphs identical up to 
relabelling? 

• Protein folding, vehicle routing, scheduling. 

• Sudoku, tetris and Minesweeper 

• A huge number of others! 
• Of the NP problems listed so far, only Factoring and Graph isomorphism are 

not NP-complete!



Complexity classes: P vs.NP

• One of the main open questions in mathematics today! 
• Worth 1 million dollars! (really!) 

• Really hard question! 
• It would take a single efficient algorithm for a single NP-complete 

problem to prove P = NP. No such algorithm has been found. 

• Most complexity theorists believe the answer is no.

Is every problem in NP also in P? 



Complexity classes

NP Graph isomorphism

Factoring

P

Determinant
Linear programming

TSP
3-SAT

3-coloring
Many more!

NP-complete

Primality
?

Million-dollar corner!

Simulation of  
quantum systems?



Outline: Computational complexity theory I

• Classical computing 101 

• Complexity Classes:  
• P; 

• NP  

• Reductions and NP-completeness; 

• BPP and BQP;



Complexity classes: BQP

Definition: P (complexity class) 
(formal) A problem is in P if and only if there is a uniform family 
of efficient classical circuits such that, for all n-bit input x, 

- In a YES instance the circuit outputs 1; 
- In a NO instance the circuit outputs 0; 

Recall…



Complexity classes: BQP

Definition: BPP (complexity class) 
(formal) A problem is in BPP if and only if there is a uniform 
family of efficient classical circuits such that, for all n-bit input x, 

  - The circuits have access to a source of random bits; 
- In a YES instance the circuit outputs 1 with probability > 2/3; 
- In a NO instance, the circuit outputs 0 with probability > 2/3; 

* Computer scientists believe BPP = P, although there 
are problems in BPP currently not known to be in P.



Complexity classes: BQP

BQP

P 
(or BPP if we have 

random bits)



Complexity classes: BQP

Definition: BQP (complexity class) 
(formal) A problem is in BQP if and only if is exists a uniform 
family of efficient quantum circuits such that, for all n-qubit 
input x, 

- In a YES instance the output qubit is 1 with probability > 2/3; 
- In a NO instance, the output qubit is 0 with probability > 2/3; 

* Randomness is built in!



Complexity classes: BQP

• Factoring (Shor - 1994) 

• Discrete Log (Shor - 1994) 

• Quantum simulations (Feynman, Lloyd and others) 

• Unstructured search (Grover - 1996) 

• Element distinctness (Shi - 2002, Ambainis - 2007) 

• Jones polynomials (Aharonov et al - 2006) 

• And many others to come!



Complexity classes

NP Graph isomorphism

Factoring

P

Determinant
Linear programming

TSP
3-SAT

3-coloring
Many more!

NP-complete

Primality
?

Million-dollar corner!

Quantum  
simulation*

BQP

* not a decision problem!

Jones  
Polynomial



The Complexity (Petting) Zoo
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The Complexity Zoo (includes Lions)

Imagem: Greg Kuperberg (Complexity Zoo)
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I want to know more!

Lance Fortnow,  
“The Golden Ticket: P, NP 

and the search for the 
impossible”

Scott Aaronson,  
“Quantum computing 

since Democritus”

S. Arora and B. Barak 
“Computational 

complexity: a modern 
approach”


