A FAPESP () ynesp

IFT - UNESP

Introduction to quantum computing and
simulability

Introduction to computational complexity theory li

Daniel J. Brod
Leandro Aolita

Ernesto Galvao INsTITUTO DE Fisica

Universidade Federal Fluminense

Outline: Computational complexity theory |l

Review of last lecture;
Computational complexity conjectures;
The polynomial hierarchy;

The magical power of postselection;

The postselection argument for demonstrating quantum advantage;

Counting problems (#P)

Church-Turing Thesis

Church-Turing Thesis (physical version)

<r

All computational problems solvable by a realistic physical
system can be solved by a Turing machine.

Church-Turing Thesis (Strong version)

Any problem that can be solved efficiently by a realistic
computational device can be solved efficiently by a Turing
machine.

Complexity classes: P

Definition: P (complexity class)

(formal) A problem is in P if and only if there is a uniform family
of efficient classical circuits® such that, for all n-bit inputs z,

N a YES instance |

N a NO Instance t

'he circuit outputs 1;

ne circuit outputs O;

* Uniform family of efficient classical circuits:
- depend only on size n of input;

- have at most poly(n) gates;
- can be described in poly(n) time

Complexity classes: NP

Definition: NP (complexity class)

(informal) Decision problems whose solution can be checked
efficiently by classical computers.

Example: Factoring

Hard

>

67030883744037259 = 179424673 X 373587883
<

Easy

Complexity classes: NP

Definition: NP (complexity class)

(formal) A problem is in NP if and only if there is a uniform
family of efficient classical circuits that takes as inputs an n-bit

string x and a witness y such that

- In the YES instance, there is y of length poly(n) such that the
circult outputs 1;

- In the NO instance, for all y of length poly(n) the circuit
outputs O;

Complexity classes: Reductions

Definition: Reduction

(Informal) Problem A reduces to problem B if an algorithm for B
can be used to find a solution fo A, and the mapping between
them can be done efficiently.

Intuitively, this says B is at least as hard as A.
Example: 3-SAT reduces to k-Clique.

Complexity classes: Reductions

Definition: NP-complete

(Informal) A problem is NP-hard if any other NP problem
reduces to .

It is also NP-complete if it is In NP and is NP-hard.

Cook-Levin Theorem (1971/1973)
3-SAT is NP-complete.

Complexity classes: NP - more examples

Hamiltonian cycle: In a graph of n vertices, Is there a cycle that visits
each vertex exactly once”?

Subset sum: Given a collection of n integers, is there a subset of them
that sums to exactly z7

- Graph isomorphism: Are two n-vertex graphs identical up to relabelling?

Protein folding, vehicle routing, scheduling.
Sudoku, tetris and Minesweeper

A huge number of others!

Of the NP problems listed so far, only Factoring and Graph isomorphism are
not NP-complete!

Complexity classes: BQP

Definition: BPP (complexity class)

(formal) A problem is in BPP if and only if there is a uniform
family of efficient classical circuits such that, for all n-bit input z,

- The circuits have access to a source of random bits;

- In a YES instance the circuit outputs 1 with probability > 2/3:

- In a NO instance, the circuit outputs O with probability > 2/3;

* Computer scientists believe BPP = P, although there
are problems in BPP currently not known to be in P.

Complexity classes: BQP

A_&Dj | }L}D P
B F }__} :}_L (or BPP if we have
BD; _:}{ & random bits)
Il
oy Lo lox
O .
BQP T [I ~
Saetae

Complexity classes: BQP

Definition: BQP (complexity class)

(formal) A problem is in BQP if and only if is exists a uniform
family of efficient guantum circuits such that, for all n-qubit

iInput z,

- In a YES instance the output qubit is 1 with probability > 2/3;

- In a NO instance, the output qubit is O with probability > 2/3;

* Randomness is built in!

Complexity classes

NP Graph isomorphism

NP-complete
TSP

BQP

P Primality

3-SAT
3-coloring Determinant Jones |
Many more! Linear programming Polynomial

Quantum
simulation™

Million-dollar corner! * not a decision problem!

Outline: Computational complexity theory |l

Review of last class;
Computational complexity conjectures;
The polynomial hierarchy;

The magical power of postselection;

The postselection argument for demonstrating guantum advantage;

Counting problems (#P)

The Complexity (

Petting) Z00o

P/poly

ALL

QAM

Lines indicate
proven inclusions
(from bottom to top)

Scott Aaronson (Complexity Zoo)

The Complexity (Petting) Zoo

EXP

PSPACE

p#P
| — PcNP

Exercise:
Prove the following inclusions

PP = postBQP P c BPP
PH\ | C
. postBPP BQP BPP c BQP
w' N\ -
‘ BPP While you’re at it...
P/ ?
| BPP C P
- NP ¢ P

Scott Aaronson (Complexity Zoo)

Complexity-theoretic conjectures

Proving complexity classes are different is hard!

€.9. WE know that EXP
|
L C P c NP c PSPACE c EXP PSPACE
A A A |
p#P
Logarithmic - E | T
Polynomial PP = postBQP
space | PH
space = o |
' , postBPP BQP
Exponential Pz
time NP N
| BPP
But we can only prove that: .
PSPACE ¢ L |

EXP ¢ P

Complexity-theoretic conjectures

Proving complexity classes are different is hard!

EXP

PSPACE

“| like to joke that if we were physicists, we would’ve
simply declared PNP to be a “law of nature,” and 00StBQP
given ourselves Nobel Prizes for our “discovery”!”

Scott Aaronson
NP~ N
| BPP

P/

L

Complexity-theoretic conjectures

Proving complexity classes are different is hard!

Many arguments have the following structure:

“If X was true, it would have an unexpected conseqguence for the
structure of complexity classes, therefore X is probably not true”

e.q. If 3-SAT has an efficient classical algorithm, then P = NP.

Outline: Computational complexity theory |l

Review of last class;
Computational complexity conjectures;
The polynomial hierarchy;

The magical power of postselection;

The postselection argument for demonstrating guantum advantage;

Counting problems (#P)

Complexity classes: PH

Definition: P (complexity class)
(alternative informal) Problems of type
“Given input z, is f(z)=17"

Definition: NP (complexity class)
(alternative informal) Problems of type
“Given input z, does there exist y such that f(x,y)=17"

*where x and y have length poly(n) and fis efficiently computable;

Complexity classes: PH

(Generalization:

Definition: PH (complexity class)
(informal) Problems of type

“Given input z, does there exist vy, such that for all z, there
exists w such that for all... f(z,y,z,w,...)=17"

Not an actual complexity class. It is the union of a (presumably)
Infinite tower of complexity classes!

*r,y,z,w,... have length poly(n) and fis efficiently computable.

Complexity classes: PH

“Given input z, does there exist y, such that for all z, there
exists wsuch that for all... f(z,y,z,w,...)=17"

!

n variables — n-1th level of PH

Level 0 — P (“Given input z, is f(z)=17")
Level T — NP (“Given input z, is there y s.t. f(x,y)=17") + co-NP
Level 2 — IT; and ¥

Ex.: Given circuit A that computes a function, is there circuit
B of size < k that computes the same function?

Complexity classes: PH

Strongly suspected L
to be infinite! §

)

Level 3 — { |

53

Level 2 — { |

level 1 — Np=3xF

Level 0 —

Complexity classes: PH

Another variant of a conjecture-based argument:

“If X was true, PH would collapse to its nth level,
therefore X is probably not true”

e.g. “If restricted quantum devices (e.g. IQP or linear optics)
could be simulated classically, PH would collapse to 3rd level!”

Ernesto and | will use this a lot in the next lectures!

Outline: Computational complexity theory |l

Review of last class;
Computational complexity conjectures;
The polynomial hierarchy;

The magical power of postselection;

The postselection argument for demonstrating quantum advantage;

Counting problems (#P)

Complexity classes: postBPP and postBQP

Let us now give our quantum and classical computers magic

* *

[

powers!

post-selection!

Complexity classes: postBPP and postBQP

Postselection: The ability to condition acceptance on some
(not-impossible) event, no matter how unlikely.

Qutput
register

nput | —— —

| Postselection
reqister

Quantum or (randomized) classical circuit

Complexity classes: postBPP and postBQP

Why is postselection magic”

e.qg. It lets classical computers solve NP problems efficiently!

Q: Can we color a Randomly assign colors. Post-
graph with 3 colors? select on a valid coloring!
® @
® @
® e o® ® e o ?® X
® @ @ @

Complexity classes: postBPP and postBQP

Why is postselection magic”

e.qg. It lets classical computers solve NP problems efficiently!

Q: Can we color a Randomly assign colors. Post-
graph with 3 colors? select on a valid coloring!
® @
® @
® e o® ® e o ?® X
® @ @ @

Complexity classes: postBPP and postBQP

Why is postselection magic”

e.qg. It lets classical computers solve NP problems efficiently!

Q: Can we color a Randomly assign colors. Post-
graph with 3 colors? select on a valid coloring!
® @
® @
® e o® ® e o ?® v
® @ @ @

Complexity classes: postBPP and postBQP

Definition: postBPP (complexity class)

A problem is in postBPP if and only if there is a uniform family
of randomized classical circuits such that, for all n-bit inputs «z,

- The postselection register is 1 with probability > O;
Conditioned on the postselection register outputting 1:

- In a YES instance, the output bit is 1 with probability > 2/3;

- In a NO instance, the output bit is O with probability > 2/3;

Complexity classes: postBPP and postBQP

Definition: postBQP (complexity class)

A problem is in postBQP if and only if there is a uniform family
of quantum circuits such that, for all n-bit input z,

- The postselection qubit outputs 1 with probability > O;

Conditioned on the postselection register outputting 1:

- In a YES instance, the output qubit is 1 with probabillity > 2/3;
- In a NO instance, the output qubit is O with probability > 2/3;

Complexity classes: postBPP and postBQP

EXP
| postBQP
PSPACE lives outside
| PH*
p#P
T
PP = postBQP
postBPP AN |
lives inside - postBPP BQP
PH (in the 3rd NP |

BPP

N
level) |
P /

* Fine-print: actually, ProstBQP |iyes outside PH

Recipe for demonstrating quantum advantage

1 - Take a restricted model of qguantum computing A.
e.g. circuits of commuting gates or linear optics

2 - Give it postselection, and see what comes out.
(call it postA)

3 - If A + post-selection includes quantum computing,
then postA = postBQP

4 - Suppose there is a classical algorithm to efficiently
simulate A (i.e. sample from same distribution).
Then postA C postBPP.

5 - But then postBQP ¢ postBPP and PH collapses!

Interlude: What do we mean by simulation®

AA A

I outcomes

YYYYyyyyy

I I I Strong simulation:

Compute these probabilities

Not fair! A guantum computer can’t do this either!

Interlude: What do we mean by simulation®

AA A

I outcomes

YYYYyyyyy

I I I Weak simulation:

Just produce samples from
this distribution.

This can be refined (exact vs approximate weak simulation)

Recipe for demonstrating quantum advantage

1 - Take a restricted model of qguantum computing A.
e.g. circuits of commuting gates or linear optics

2 - Give it postselection, and see what comes out.
(call it postA)

3 - If A + post-selection includes quantum computing,
then postA = postBQP

4 - Suppose there is a classical algorithm to efficiently
simulate A (i.e. sample from same distribution).
Then postA C postBPP.

5 - But then postBQP ¢ postBPP and PH collapses!

Complexity classes: postBPP and postBQP

Subtle but important point: This does not say anything about
BQP vs BPP! That is:

BPP = BQP # postBPP = postBQP

The only conclusion we can draw Is about an efficient classical
simulation of restricted model Al

4 - Suppose there is a classical algorithm to efficiently
simulate A (l.e. sample from same distribution).
Then postA C postBPP.

Complexity classes: postBPP and postBQP

Subtle but important point: This does not say anything about
BQP vs BPP! That is:

BPP = BQP # postBPP = postBQP

The only conclusion we can draw Is about an efficient classical
simulation of restricted model Al

4.1 - Suppose there is a classical algorithm to efficiently
sample from the output distribution of A.
4.2 - Take any problem solvable by some routine in postA.

4.3 - To solve the same problem in postBPP, just:

4.3.1 - Sample from the output distribution of A;
4.3.2 - Apply the same post-selection rule;

Outline: Computational complexity theory |l

Review of last class;
Computational complexity conjectures;
The polynomial hierarchy;

The magical power of postselection;

The postselection argument for demonstrating guantum advantage;

Counting problems (#P)

Complexity classes: #P

Definition: #P (complexity class)

(informal) #P is a class of counting problems. For example,
counting the number of solutions to an NP problem.

How hard is counting the number of solutions to an NP
problem?

Very! Finding one solution might already be very hard, but there could
be exponentially many of them!

Complexity classes: #P

Definition: #P (complexity class)

(informal) #P is a class of counting pro
counting the number of solutions to an

How hard is counting the number of so
problem?

Very! Finding one solution might already b
be exponentially many of them!

EXP

PSPACE

| /

pHP

| PP = postBQP

P;H N |

postBPP BQP

w' N\

| BPP
P/

|

L

Complexity classes: #P examples

Counting the number of perfect matchings of a graph.

We want to pair n students for an

assignment. We want to pair
stronger students with weaker ones;

But some of them hate each other!

FiInding one perfect pairing
ISin NP...

(in fact, it is in P!)

But counting all of them is #P-hard!

Complexity classes: #P examples

Computing the Permanent of a matrix:

Per(A) = Z lﬂ[ai,o_(i)

ces,, =1

/

Similar to determinant but without the - signs!

Permanent is #P-hard even if matrix has only O’'s and 1’s
Can be used to encode the number of perfect matchings of a graph!

Similar to determinant in form but not complexity! (determinant is in P)

Complexity classes: #P examples

Computing the Permanent of a matrix;

%-\5e <171t matrix has only 0’'s and 1’s
0 encode the number of perfect matchings of a graph!

smilar to determinant in form but not complexity! (determinant is in P)

