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Outline: Computational complexity theory II

• Review of last lecture; 

• Computational complexity conjectures; 

• The polynomial hierarchy; 

• The magical power of postselection; 
• The postselection argument for demonstrating quantum advantage; 

• Counting problems (#P)



Church-Turing Thesis

Church-Turing Thesis (Strong version) 
Any problem that can be solved efficiently by a realistic 
computational device can be solved efficiently by a Turing 
machine. 

Church-Turing Thesis (physical version) 
All computational problems solvable by a realistic physical 
system can be solved by a Turing machine. 



Complexity classes: P

Definition: P (complexity class) 
(formal) A problem is in P if and only if there is a uniform family 
of efficient classical circuits* such that, for all n-bit inputs x, 

- In a YES instance the circuit outputs 1; 
- In a NO instance the circuit outputs 0; 

* Uniform family of efficient classical circuits:  
 - depend only on size n of input; 
 - have at most poly(n) gates;  
 - can be described in poly(n) time



• Example: Factoring

Complexity classes: NP

Definition: NP (complexity class) 
(informal) Decision problems whose solution can be checked 
efficiently by classical computers. 

67030883744037259 = 179424673 × 373587883

Easy

Hard



Complexity classes: NP

Definition: NP (complexity class) 
(formal) A problem is in NP if and only if there is a uniform 
family of efficient classical circuits that takes as inputs an n-bit 
string x and a witness y such that 

- In the YES instance, there is y of length poly(n) such that the 
circuit outputs 1; 
- In the NO instance, for all y of length poly(n) the circuit 
outputs 0; 



Complexity classes: Reductions

Definition: Reduction 
(Informal) Problem A reduces to problem B if an algorithm for B 
can be used to find a solution fo A, and the mapping between 
them can be done efficiently.  
Intuitively, this says B is at least as hard as A. 
Example: 3-SAT reduces to k-Clique. 



Definition: NP-complete 
(Informal) A problem is NP-hard if any other NP problem 
reduces to it. 
It is also NP-complete if it is in NP and is NP-hard. 

Complexity classes: Reductions

Cook-Levin Theorem (1971/1973) 
3-SAT is NP-complete. 



Complexity classes: NP - more examples

• Hamiltonian cycle: In a graph of n vertices, is there a cycle that visits 
each vertex exactly once? 

• Subset sum: Given a collection of n integers, is there a subset of them 
that sums to exactly x? 

• Graph isomorphism: Are two n-vertex graphs identical up to relabelling? 

• Protein folding, vehicle routing, scheduling. 

• Sudoku, tetris and Minesweeper 

• A huge number of others! 
• Of the NP problems listed so far, only Factoring and Graph isomorphism are 

not NP-complete!



Complexity classes: BQP

Definition: BPP (complexity class) 
(formal) A problem is in BPP if and only if there is a uniform 
family of efficient classical circuits such that, for all n-bit input x, 

  - The circuits have access to a source of random bits; 
- In a YES instance the circuit outputs 1 with probability > 2/3; 
- In a NO instance, the circuit outputs 0 with probability > 2/3; 

* Computer scientists believe BPP = P, although there 
are problems in BPP currently not known to be in P.



Complexity classes: BQP

P 
(or BPP if we have 

random bits)

BQP



Complexity classes: BQP

Definition: BQP (complexity class) 
(formal) A problem is in BQP if and only if is exists a uniform 
family of efficient quantum circuits such that, for all n-qubit 
input x, 

- In a YES instance the output qubit is 1 with probability > 2/3; 
- In a NO instance, the output qubit is 0 with probability > 2/3; 

* Randomness is built in!



Complexity classes

NP Graph isomorphism

Factoring

P

Determinant
Linear programming

TSP
3-SAT

3-coloring
Many more!

NP-complete

Primality
?

Million-dollar corner!

Quantum  
simulation*

BQP

* not a decision problem!

Jones  
Polynomial
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The Complexity (Petting) Zoo
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Lines indicate  
proven inclusions 

(from bottom to top)
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The Complexity (Petting) Zoo

Scott Aaronson (Complexity Zoo)

Exercise:  
Prove the following inclusions 

P ⊆ NP
P ⊆ BPP

BPP ⊆ BQP

While you’re at it…

BPP ⊆ P
?

NP ⊆ P?



Complexity-theoretic conjectures

• Proving complexity classes are different is hard! 

• e.g. we know that 

• But we can only prove that:

L ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP
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Complexity-theoretic conjectures

• Proving complexity classes are different is hard!

“I like to joke that if we were physicists, we would’ve 
simply declared P≠NP to be a “law of nature,” and 
given ourselves Nobel Prizes for our “discovery”!” 

  Scott Aaronson



Complexity-theoretic conjectures

• Proving complexity classes are different is hard! 

• Many arguments have the following structure:

“If X was true, it would have an unexpected consequence for the 
structure of complexity classes, therefore X is probably not true” 

 

e.g. If 3-SAT has an efficient classical algorithm, then P = NP. 
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Complexity classes: PH

Definition: NP (complexity class) 
(alternative informal) Problems of type 

“Given input x, does there exist y such that f(x,y)=1?” 

Definition: P (complexity class) 
(alternative informal) Problems of type 

“Given input x, is f(x)=1?” 

* where x and y have length poly(n) and f is efficiently computable;



• Generalization: 

• Not an actual complexity class. It is the union of a (presumably) 
infinite tower of complexity classes!

Complexity classes: PH

Definition: PH (complexity class) 
(informal) Problems of type 

“Given input x, does there exist y, such that for all z, there 
exists w such that for all… f(x,y,z,w,…)=1?” 

* x,y,z,w,… have length poly(n) and f is efficiently computable.



Complexity classes: PH

“Given input x, does there exist y, such that for all z, there 
exists w such that for all…  f(x,y,z,w,…)=1?”

n variables → n-1th level of PH

Level 0 ⟶ P (“Given input x, is f(x)=1?”)

Level 1 ⟶ NP (“Given input x, is there y s.t. f(x,y)=1?”) + co-NP

Level 2 ⟶ ΠP
2 and ΣP

2

Ex.: Given circuit A that computes a function, is there circuit 
B of size ≤ k that computes the same function?



Complexity classes: PH

Level 0 ⟶

Level 1 ⟶

Level 2 ⟶

Level 3 ⟶ {

{

Strongly suspected  
to be infinite! ⟶



• Another variant of a conjecture-based argument: 

• e.g. “If restricted quantum devices (e.g. IQP or linear optics) 
could be simulated classically, PH would collapse to 3rd level!” 
• Ernesto and I will use this a lot in the next lectures!

Complexity classes: PH

“If X was true, PH would collapse to its nth level, 
therefore X is probably not true” 
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• Let us now give our quantum and classical computers magic 
powers!

post-selection! 
 

Complexity classes: postBPP and postBQP



• Postselection: The ability to condition acceptance on some  
(not-impossible) event, no matter how unlikely.

Complexity classes: postBPP and postBQP

Quantum or (randomized) classical circuit

Input ⎨
｜
｜
⎧

⎩
｜

｜
Output 
register

⎨
⎧
⎩
Postselection 

register



• Why is postselection magic?  
• e.g. it lets classical computers solve NP problems efficiently!

Complexity classes: postBPP and postBQP

Q: Can we color a 
graph with 3 colors?

Randomly assign colors. Post-
select on a valid coloring!

✘



• Why is postselection magic?  
• e.g. it lets classical computers solve NP problems efficiently!

Complexity classes: postBPP and postBQP

Q: Can we color a 
graph with 3 colors?

Randomly assign colors. Post-
select on a valid coloring!

✘



• Why is postselection magic?  
• e.g. it lets classical computers solve NP problems efficiently!

Complexity classes: postBPP and postBQP

Q: Can we color a 
graph with 3 colors?

Randomly assign colors. Post-
select on a valid coloring!

✔



Complexity classes: postBPP and postBQP

Definition: postBPP (complexity class) 
A problem is in postBPP if and only if there is a uniform family 
of randomized classical circuits such that, for all n-bit inputs x, 

  - The postselection register is 1 with probability > 0; 
Conditioned on the postselection register outputting 1: 

- In a YES instance, the output bit is 1 with probability > 2/3; 
- In a NO instance, the output bit is 0 with probability > 2/3; 



Complexity classes: postBPP and postBQP

Definition: postBQP (complexity class) 
A problem is in postBQP if and only if there is a uniform family 
of quantum circuits such that, for all n-bit input x, 

  - The postselection qubit outputs 1 with probability > 0; 
Conditioned on the postselection register outputting 1: 

- In a YES instance, the output qubit is 1 with probability > 2/3; 
- In a NO instance, the output qubit is 0 with probability > 2/3; 



Complexity classes: postBPP and postBQP
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lives inside 

PH (in the 3rd 
level)

postBQP 
lives outside 

PH!*

* Fine-print: actually, PpostBQP lives outside PH 



Recipe for demonstrating quantum advantage

1 - Take a restricted model of quantum computing A. 
e.g. circuits of commuting gates or linear optics

2 - Give it postselection, and see what comes out. 
(call it postA)

3 - If A + post-selection includes quantum computing, 
then postA = postBQP

4 - Suppose there is a classical algorithm to efficiently 
simulate A (i.e. sample from same distribution). 

Then postA ⊆ postBPP.

5 - But then postBQP ⊆ postBPP and PH collapses! 



Interlude: What do we mean by simulation?

p

outcomes

Not fair! A quantum computer can’t do this either!

Strong simulation:

Compute these probabilities



Interlude: What do we mean by simulation?

p

outcomes

This can be refined (exact vs approximate weak simulation)

Weak simulation:
Just produce samples from 

this distribution.



4 - Suppose there is a classical algorithm to efficiently 
simulate A (i.e. sample from same distribution). 

Then postA ⊆ postBPP.

4 - Suppose there is a classical algorithm to efficiently 
simulate A (i.e. sample from same distribution). 

Recipe for demonstrating quantum advantage

1 - Take a restricted model of quantum computing A. 
e.g. circuits of commuting gates or linear optics

2 - Give it postselection, and see what comes out. 
(call it postA)

3 - If A + post-selection includes quantum computing, 
then postA = postBQP

5 - But then postBQP ⊆ postBPP and PH collapses! 



• Subtle but important point: This does not say anything about 
BQP vs BPP! That is: 

• The only conclusion we can draw is about an efficient classical 
simulation of restricted model A!

Complexity classes: postBPP and postBQP

BPP = BQP ⇏ postBPP = postBQP

4 - Suppose there is a classical algorithm to efficiently 
simulate A (i.e. sample from same distribution). 

Then postA ⊆ postBPP.



• Subtle but important point: This does not say anything about 
BQP vs BPP! That is: 

• The only conclusion we can draw is about an efficient classical 
simulation of restricted model A!

Complexity classes: postBPP and postBQP

BPP = BQP ⇏ postBPP = postBQP

4.1 - Suppose there is a classical algorithm to efficiently 
sample from the output distribution of A.

4.2 - Take any problem solvable by some routine in postA.

4.3.1 - Sample from the output distribution of A; 
4.3.2 - Apply the same post-selection rule;

4.3 - To solve the same problem in postBPP, just:
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• How hard is counting the number of solutions to an NP 
problem? 
• Very! Finding one solution might already be very hard, but there could 

be exponentially many of them!

Complexity classes: #P

Definition: #P (complexity class) 
(informal) #P is a class of counting problems. For example, 
counting the number of solutions to an NP problem. 



• How hard is counting the number of solutions to an NP 
problem? 
• Very! Finding one solution might already be very hard, but there could 

be exponentially many of them!

Complexity classes: #P

Definition: #P (complexity class) 
(informal) #P is a class of counting problems. For example, 
counting the number of solutions to an NP problem. 

AC0

NC

L

BPP

coNP

MA

AM

PH

PP

P#P

PSPACE

EXP

ALL

SZK

P/poly

QAM

QMA

QCMA

=   postBQP

P

NP

BQP L

P

PH
PP

P#P

PSPACE

EXP

= postBQP

NP

BQP

BPP

 postBPP

L

P

PH
PP

P#P

PSPACE

EXP

= postBQP

NP

BQP

BPP

postBPP

L

P

PH
PP

P#P

PSPACE

EXP

= postBQP

NP

BQP

BPP

 postBPP



Complexity classes: #P examples

• Counting the number of perfect matchings of a graph.

We want to pair n students for an 
assignment. We want to pair 

stronger students with weaker ones;

But some of them hate each other!

Finding one perfect pairing  
is in NP…

(in fact, it is in P!)

But counting all of them is #P-hard!



Complexity classes: #P examples

• Computing the Permanent of a matrix: 

• Permanent is #P-hard even if matrix has only 0’s and 1’s 
• Can be used to encode the number of perfect matchings of a graph! 

• Similar to determinant in form but not complexity! (determinant is in P)

Per(A) = ∑
σ∈Sm

m

∏
i=1

ai,σ(i)

Similar to determinant but without the - signs!



Complexity classes: #P examples

• Computing the Permanent of a matrix: 

• Permanent is #P-hard even if matrix has only 0’s and 1’s 
• Can be used to encode the number of perfect matchings of a graph! 

• Similar to determinant in form but not complexity! (determinant is in P)

Per(A) = ∑
σ∈Sm

m

∏
i=1

ai,σ(i)

Similar to determinant but without the - signs!

Tomorrow 

A shocking appearance of the permanent in optics! 

Also: Find all about what all this has to do with bosons and fermions!


