Lecture IV: validating many-body quantum technologies (I)

Daniel Brod, Ernesto Galvão, and Leandro Aolita

Mini-course on Quantum Computation and Simulability

ICTP/SAIFR-UNESP, October 2018

Impressive experimental progress on many-body quantum technologies

Photonic multi-qubit entangled states

W, Dicke, GHZ, cluster states, ect.

J. W. Pan et al., G. C. Guo et al., P. Walther et al.; H. Weinfurther et al.; S. P Walborn and P. H. S. Ribeiro et al.; C. Monken and S. Padua et al.; etc.

Multi-mode squeezed Gaussian states

A. Furusawa et al.; O. Pfister et al.; R. Schnabel et al.; N Treps et al; etc.

On-chip integrated linear-optical networks

Small-sized simulations of

- •Boson-Sampling,
- •Anderson localisation,
- quantum walks, etc.

J. O'Brien et al.; I. Walmsley et al.; P. Walther et al.; F. Sciarrino et al.; A. White et al; etc.

Impressive experimental progress on many-body quantum technologies

Micro-fabricated trapped-ion architectures

(Tens of ions):

•Multi-qubit entangled states,

•Digital universal quantum computation,

•Quantum-error correction codes,

•Analogue spin-chain quantum simulations,

•Bosonic quantum information processing, etc.

D. Wineland; R. Blatt; C. Monroe; D. D. Leibfried; C. F. Roos; H. Häffner; F. Schmidtkaler; T. Schätz; K. Kim; etc.

Cold atoms in optical lattices

(From hundreds to thousands of atoms):
•Bose-Einstein condensates;
•Bose- and Fermi-Hubbard models;
•Many-body thermalisation;
•Quantum phase transitions; etc.

I. Bloch.; J. Dalibard; W. Zwerger; T. Hänsch; T. Eisslinger; M. Greiner; W. D. Phillips, R. G. Hulet; J. V. Porto; etc.

On chip super-conducting qubit circuits

(Tens of qubits):

•Quantum-error correction codes,

•Digital universal quantum computation;

•Quantum anhealing problems, etc.

and many others!!!

J. M. Martinis; F. Nori; R. J Schoelkopf; A. Houk; H. E. Türeci; A. Blais; A. Wallraf; J. Q. You; Y. Nakamura; M. Weides; R. W. Simmons; J. Koch; etc. ... but how do we trust the quantum devices we build?

With a **universal** quantum computer there would be some strategies for benchmarking...

• E.g.: solve an NP problem efficiently with a quantum computer.

Peter Shor's 1994 algorithm

Suspected relation between BQP and other classes of decision problems

- P solvable by a classical computer in polynomial time.
- NP: verifiable by a classical computer in polynomial time.
- BQP: solvable by a quantum computer in polynomial time.
- PSPACE: solvable by a classical computer using a polynomial amount of space.

But how to validate the performance of a **non-universal** quantum simulator?

- Quantum simulators can solve problems that, despite classically hard, do not even fall into the decision problem classification (sampling problems).
- In addition, we need to certify non-universal simulators before universal QCs appear.

• Certifying many-body quantum technologies is ultimately about **testing quantum mechanics in unexplored (high computational-complexity) regimes**.

Is Quantum Mechanics falsifiable? Quantum computation teaches us that quantum mechanics exhibits exponential complexity... the standard scientific paradigm of "predict and verify" cannot be applied to testing quantum

D. Aharonov and U. Vazirani,"Is Quantum Mechanics falsifiable? A computational perspective on the foundations of Quantum Mechanics", arXiv: 1206.3686 (2012).

• Further experimental progress on many-body quantum technologies requires practical benchmarking tools.

Outline of the two lectures:

- Lecture IV: Certification of non-universal quantum simulators.
- Lecture V: Certification of universal quantum computers.

Outline of Lecture IV:

• The target of quantum certification: What to certify? Sampling problems (weak simulations).

•Quantum state tomography

•Direct fidelity estimation

•Fidelity witnesses

•Partial conclusions.

What to certify?

A "simple" quantum simulation: estimate the expectation value $\operatorname{Tr}[\hat{A} \varrho(t)]$ of a local observable \hat{A} on an evolved state $\varrho(t)$ at time t.

Large-deviation (Chernoff) bounds:

For
$$A^* \doteq \frac{1}{C} \sum_{i=1}^{C} a_i$$
, it holds that $\mathbb{P}\left[|A^* - \operatorname{Tr}[\hat{A} \varrho(t)]| \le \varepsilon \right] \ge 1 - \delta$,
if $C = \Omega\left(\frac{1}{\operatorname{Poly}(\varepsilon, \delta)}\right)$, or, in the best hypothesis, $C = \Omega\left(\frac{1}{\operatorname{Poly}(\varepsilon, \log(\delta))}\right)$

Not even an ideal quantum simulator (or universal quantum computer!) can succeed in the estimation if higher than polynomial precision is required!!!

Sampling problems are the natural problems that quantum simulators (and also quantum computers!) solve!!!

What to certify: sampling problems

(Classical or quantum) state certification from a finite-sized sample

Two reasons for inefficiency of such certifications:

- 1. **Computational Complexity**: Required classical-computing resources scale exponentially with *N*.
- 2. Sample Complexity: The required sample size C scales exponentially with N.

Quantum-state certification from finite-size samples

Different certification paradigms

Where is $\varrho_{\rm p}$?

How far away is ϱ_p ?

Is ϱ_p far away or close?

Quantum-state tomography

U. Leonhardt, Phys. Rev. Lett. 74, 4101 (1995);
A. G. White et al., Phys. Rev. Lett. 83, 3103 (1999);
C. F. Roos et al., Phys. Rev. Lett. 92, 220402 (2004);
H. Häffner et al., Nature 438, 646 (2005).

A long history of quantum state characterisation

• Quantum state tomography: reconstructs the full experimental quantum state, but requires the measurement of $O(D^2)$ observables and is thus exponentially expensive.

U. Leonhardt, Phys. Rev. Lett. 74, 4101 (1995); A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, Phys. Rev. Lett. 83, 3103 (1999); C. F. Roos, G. P. T. Lancaster, M. Riebe, H. Häffner, W. Hänsel, S. Gulde, C. Becher, J. Eschner, F. Schmidt-Kaler, and R. Blatt, Phys. Rev. Lett. 92, 220402 (2004).

• Compressed sensing: reconstructs states well approximated by low-rank density matrices with significantly less resources, but is still exponentially expensive. It requires the measurement of $O(r D \log D)$ observables.

D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert, Phys. Rev. Lett. **105**, 150401 (2010); D. Gross, IEEE Trans. Info. Theory **57**, 1548 (2011); S. T. Flammia, D. Gross, Y.-K. Liu, and J. Eisert, New J. Phys. **14**, 095022 (2012).

• **Permutationally invariant tomography:** efficiently reconstructs the part of the experimental state that is symmetric with respect to all particle permutations (W states, Dicke states, GHZ states, etc).

G. Toth, W. Wieczorek, D. Gross, R. Krischek, C. Schwemmer, and H. Weinfurter, Phys. Rev. Lett. **105**, 250403 (2010); T. Moroder, P. Hyllus, G. Toth, C. Schwemmer, A. Niggebaum, S. Gaile, O. Gühne, and H. Weinfurter, New J. Phys. **14**, 105001 (2012).

•Matrix-Product-State (MPS) tomography: efficiently reconstructs states well approximated by an MPS.

M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross, S. D. Bartlett, O. Landon-Cardinal, D. Poulin, and Y.-K. Liu, Nat. Commun. **1**, 149 (2010); T. Baumgratz, D. Gross, M. Cramer, and M. B. Plenio, Phys. Rev. Lett. **111**, 020401 (2013); B. Lanyon, C. Maier, M. Holzäpfel, T. Baumgratz, C. Hempel, P. Jurcevic, I. Dhand, A. Buyskikh, A. Daley, M. Cramer, M. Plenio, R. Blatt, and C. F. Roos, Nat. Phys. **13**, 1158 (2017).

•Neural network state tomography: efficiently reconstructs states neural network quantum states using unsupervised learning.

G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko, and G. Carleo, Nat. Phys. 14, 447 (2018); G. Torlai and R. Melko, Phys. Rev. Lett. 120, 240503 (2018); J. Carrasquilla, G. Torlai, R. Melko, and L. Aolita, in preparation (2018).

Full quantum state tomography

Experimental state to reconstruct: ϱ

N-qudit Hilbert space: $\mathbb{H} = \mathbb{H}_1 \otimes \mathbb{H}_2 \otimes \ldots \mathbb{H}_N$ $\operatorname{Dim}(\mathbb{H}) = d^N =: D$

(characteristic function of ϱ) Decompose states as $\varrho = \sum_{\alpha} \chi_{\varrho}(\alpha) \hat{\boldsymbol{P}}^{(\alpha)}$, with $\chi_{\varrho}(\alpha) := \left\langle \hat{\boldsymbol{P}}^{(\alpha)} \right\rangle_{\varrho}$ (orthonormal operator basis of the *i*-th qudit) and $\hat{\boldsymbol{P}}^{(\alpha)} := \hat{P}_{1}^{(\alpha_{1})} \otimes \ldots \otimes \hat{P}_{N}^{(\alpha_{N})}$, where $\left\{ \hat{P}_{i}^{(\alpha_{i})} \right\}_{\alpha_{i} \in [d^{2}]}$. E.g., for *d*=2, Pauli operators: $\hat{\boldsymbol{P}}^{(\alpha)} = \frac{\hat{\sigma}^{(\alpha)}}{\sqrt{D}}$

Experimental procedure: measure all $O(D^2)$ *observables!!!!*

Full quantum state tomography: not a scalable option

- Requires the measurement of $O(D^2)$ observables, with $D^2 = (d^N)^2$.
- Plus computationally expensive classical post-processing of the experimental data.

Example. Reconstructed experimental W state of N=8 trapped-ion qubits: **storage of and optimisation** over $6^8 = 1679616$ measurementoutcome probabilities.

Not a scalable option :-(

In search for the cheapest certification paradigm...

Direct certification schemes (i.e. without state reconstruction)

- Similar mindset to interactive proofs but with a single quantum interaction.
- No restriction on type of quantum noise, preparation totally unknown.
- Only assumption: i.i.d. preparations $\Rightarrow \varrho_{p}^{\otimes C}$.

Figure of merit to "get convinced": $F := F(\rho_t, \rho_p)$ (fidelity between target and experimental preparation)

• Pure targets:
$$\varrho_{t} = |\Psi_{t}\rangle\langle\Psi_{t}| \Rightarrow F = \operatorname{Tr}\left[|\Psi_{t}\rangle\langle\Psi_{t}| \varrho_{p}\right] = 1 - \mathbb{P}_{\operatorname{incorrect}},$$

where $\mathbb{P}_{\operatorname{incorrect}} := \operatorname{Tr}\left[(1 - |\Psi_{t}\rangle\langle\Psi_{t}|) \varrho_{p}\right].$
(probability of an incorrect
output)
(projector onto the subspace
orthogonal to the ideal output)

• The fidelity yields also an estimate of the state distance $D := D(\varrho_t, \varrho_p)$:

For
$$D(\rho_t, \rho_p) := \underbrace{\frac{\text{Tr} [|\rho_t - \rho_p|]}{2}}_{\text{(1-norm distance in state space: trace distance)}} \text{ and } \rho_t \text{ pure: } 1 - F \leq D \leq \sqrt{1 - F}.$$

Direct fidelity estimation

S. S. T. Flammia and Y.-K. Liu, Phys. Rev. Lett., **106**, 230501 (2011);

M. P. da Silva, O. Landon-Cardinal, and D. Poulin, Phys. Rev. Lett., 107, 210404 (2011).

Importance sampling in Hilbert space

The fidelity to estimate:

$$F := F(\varrho_{t}, \varrho_{p}) := \operatorname{Tr}\left[\left(\sqrt{\varrho_{t}}\varrho_{p}^{\dagger}\sqrt{\varrho_{t}}\right)^{1/2}\right]^{2} = \operatorname{Tr}\left[\varrho_{t}\varrho_{p}\right]$$

$$(characteristic function of \varrho)$$

$$(characteristic function of \varrho)$$

$$(characteristic function of \varrho)$$

$$(characteristic function of \varrho)$$

$$(and \hat{\boldsymbol{P}}^{(\alpha)}, \text{ with } \chi_{\varrho}(\alpha) := \left\langle \hat{\boldsymbol{P}}^{(\alpha)} \right\rangle_{\varrho}$$

$$(orthonormal operator basis of the i-th qudit)$$

$$(and \hat{\boldsymbol{P}}^{(\alpha)} := \hat{P}_{1}^{(\alpha_{1})} \otimes \ldots \otimes \hat{P}_{N}^{(\alpha_{N})}, \text{ where } \left\{ \hat{P}_{i}^{(\alpha_{i})} \right\}_{\alpha_{i} \in [d^{2}]}.$$

$$\operatorname{Tr}\left[\hat{\boldsymbol{P}}^{(\alpha)} \hat{\boldsymbol{P}}^{(\alpha')}\right] = \delta_{\alpha,\alpha'}$$

$$\operatorname{Then, } \operatorname{Tr}[\varrho_{t}\varrho_{p}] = \sum_{\alpha} \chi_{\varrho_{t}}(\alpha)\chi_{\varrho_{p}}(\alpha) = \sum_{\alpha} \mathbb{P}_{t}(\alpha)X_{p}(\alpha), \text{ where } \mathbb{P}_{t}(\alpha) := \chi_{\varrho_{t}}(\alpha)^{2} \text{ and } X_{p}(\alpha) := \frac{\chi_{\varrho_{p}}(\alpha)}{\chi_{\varrho_{t}}(\alpha)}$$

$$(relevance distribution) (random variable)$$

 $\Rightarrow F = \mathbb{E}\left[X_{\mathbf{p}}\right]_{\mathbb{P}_{\mathbf{t}}}$

Randomly measure observables according to their relevance for $\varrho_t !!!$

How many observables are required?

Estimate
$$F = \mathbb{E} [X_p]_{\mathbb{P}_t}$$
 with $X_p^* := \frac{1}{l} \sum_{i=1}^l X_p(\boldsymbol{\alpha}_i)$, where $\boldsymbol{\alpha}_i \sim \mathbb{P}_t$.
(finite-sample estimate)

(sample size, number of observables)

Sampling from \mathbb{P}_t can be highly non-trivial :-(

Chebyshev's inequality: (squared variance)

$$\mathbb{P}\Big[|F - X_{p}^{*}| \ge \varepsilon\Big] \le \frac{\sigma^{2}}{\varepsilon^{2}}$$
(constant additive error) (follows directly from normalization)
(constant failure probability)
Then, $\mathbb{P}\Big[|F - X_{p}^{*}| \ge \varepsilon\Big] \le \delta$, if $l \ge \left[\frac{1}{\varepsilon^{2}\delta}\right]$
F is estimated with a constant (N-independent) number of observables!!!! :-)

Sample complexity of direct fidelity estimation

But, how about the total number of preparations required?

Since
$$X_{p}(\boldsymbol{\alpha}) := \frac{\chi_{\varrho_{p}}(\boldsymbol{\alpha})}{\chi_{\varrho_{t}}(\boldsymbol{\alpha})}, \ \chi_{\varrho_{p}}(\boldsymbol{\alpha})$$
 must be estimated up to error $\varepsilon = O\left(\chi_{\varrho_{t}}(\boldsymbol{\alpha})\right)$.
Decreases in general exponentially in N

Exponential sample complexity :-(

•Only "well-conditioned" target states (with step-like characteristic functions) can be efficiently handled: in practice only W, GHZ, and stabiliser states :-(

•Particularly critical for CV systems, where there exist no well conditioned states.

Even for pure N-mode coherent states, $\chi_{\varrho_t}(\alpha) = O(Exp(-N))$:-(

Fidelity witnesses

M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross, S. D. Bartlett, O. Landon-Cardinal, D. Poulin, and Y.-K. Liu, Nat. Comms. 1, 149 (2010);

L. Aolita, C. Gogolin, M. Kliesch, and J. Eisert, Nat. Comms. 6, 8498 (2015);

M. Gluza, M. Kliesch, J. Eisert, and L. Aolita, Phys. Rev. Lett. 120, 190501 (2018).

Fidelity witnesses (certification as weak-membership problem)

Definition 1 (Fidelity witnesses). An observable \mathcal{W} is a fidelity witness for ϱ_t if, for $F_{\mathcal{W}}(\varrho_p) \coloneqq \operatorname{tr}[\mathcal{W} \varrho_p]$, it holds that i) $F_{\mathcal{W}}(\varrho_p) = 1$ if, and only if, $\varrho_p = \varrho_t$, and ii) $F_{\mathcal{W}}(\varrho_p) \leq F$ for all states ϱ_p .

A significant subset of valid states is sacrificed, but the experimental estimation is considerably more efficient

Fidelity-witness-based certification tests

The desired test as a black box:

The experimental estimation must be s. t.

$$\mathbb{P}\Big[\big|F_W - F_W^*\big| > \varepsilon\Big] < \delta$$
(constant additive error)

Then, the accept/reject criterion:

Proposition 3 (General witness construction). Let ϱ_t be any pure target state, $0 < \Delta = \lambda_1 \leq \ldots \leq \lambda_N$, and P_1 , P_2 , ..., and P_N positive-semidefinite operators such that $\varrho_t + \sum_{l=1}^{N} P_l = 1$ and $\operatorname{tr}(\varrho_t P_l) = 0$ for all $l = 1, \ldots, N$. Then,

$$\mathcal{W} \coloneqq \mathbb{1} - \Delta^{-1} \sum_{l=1}^{N} \lambda_l P_l$$

is a fidelity witness for ϱ_t .

Proof.

$$i) \operatorname{Tr}\left[\sum_{l=1}^{N} \lambda_{l} P_{l} \varrho_{p}\right] = 0 \Leftrightarrow \varrho_{p} = \varrho_{t}.$$

$$ii) \operatorname{Tr}\left[\left(1 - \Delta^{-1} \sum_{l=1}^{N} \lambda_{l} P_{l}\right) \varrho_{p}\right] \leq 1 - \operatorname{Tr}\left[\sum_{l=1}^{N} P_{l} \varrho_{p}\right]$$

$$= 1 - \left(1 - \operatorname{Tr}\left[\varrho_{t} \varrho_{p}\right]\right)$$

$$= F.$$

M. Gluza, M. Kliesch, J. Eisert, and L. Aolita, Phys. Rev. Lett. 120, 190501 (2018).

Ground-state witnesses

M. Cramer et al., Nat. Commun. 1, 149 (2010); G. Toth et al., Phys. Rev. Lett. 105, 250403 (2010); D. Hangleiter, M. Kliesch, M. Schwarz, and J. Eisert, Quantum Sci. Technol. 2, 015004 (2017).

Local, gapped Hamiltonians

Defs.

A Hamiltonian $\hat{H} := \sum_{i=1}^{N} \hat{H}_i$, with a ground state $|\phi_0\rangle$ s.t. $\hat{H}|\phi_0\rangle = 0$, is:

i) k-local if, $\forall i \in [N]$, \hat{H}_i acts non-trivially on at most k sites;

ii) short-ranged if these k sites are contiguous;

iii) gapped if $|\phi_0\rangle$ has spectral gap $\Delta E > 0$ to the first excited state(s); and gapless, or critical, otherwise;

iv) frustration-free if,
$$\forall i \in [N], \hat{H}_i | \phi_0 \rangle = 0;$$

We call the ground state unique if $\hat{H}|\phi\rangle = 0 \Rightarrow |\phi\rangle = |\phi_0\rangle$, and degenerate otherwise.

Finally, we refer to \hat{H} as the parent Hamiltonian of $|\phi_0\rangle$.

- Every gapped, local, short-ranged Hamiltonian is approximated by a gapped, local, short-ranged, frustration-free one.
 - M. B. Hastings, Phys. Rev. B 73, 085115 (2006).

Local, gapped Hamiltonians as efficient ground-state witnesses

On the other hand, in its eigenbasis,
$$\hat{H} = \sum_{n=0}^{d^N-1} E_n |\phi_n\rangle \langle \phi_n|.$$

(eigen-energies) (eigen-states)

Then, for
$$\rho_{\rm t} = |\phi_0\rangle\langle\phi_0|, \ F = {\rm Tr}\left[|\phi_0\rangle\langle\phi_0|\,\rho_{\rm p}\right] \ge 1 - \frac{1}{\Delta E} {\rm Tr}\left[\hat{H}\,\rho_{\rm p}\right].$$

The Hamiltonian acts as a witness for its ground state!!!

Now,
$$\operatorname{Tr}\left[\hat{H} \,\varrho_{\mathrm{p}}\right] = \operatorname{Tr}\left[\sum_{i=1}^{N} \hat{H}_{i} \,\varrho_{\mathrm{p}}\right] = \sum_{i=1}^{N} \operatorname{Tr}\left[\hat{H}_{i} \,\varrho_{\mathrm{p}}\right] = \sum_{i=1}^{N} \operatorname{Tr}\left[\hat{H}_{i} \,\varrho_{\mathrm{p}i}\right]$$

Only the reductions of Q_p are required!!!

The fidelity lower bound:

$$F \ge F_W := 1 - \frac{1}{\Delta E} \sum_{i=1}^N \operatorname{Tr} \left[\hat{H}_i \, \varrho_{\mathbf{p}_i} \right]$$

reduced state of $\rho_{\rm p}$ on the sites where \hat{H}_i acts non-trivially

Upsides:

- Requires only the expectation values of the local interaction terms \hat{H}_i (linear overhead scaling!).
- Only locality + gap required (no frustration-freeness).
- Covers all MPSs (all local, gapped Hamiltonians satisfy an entanglement area law).

Downsides:

- Must know spectral gap (not trivial in general) :-(
- In practice limited to MPSs (no long-range entanglement, only short-time evolutions) :-(

M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross, S. D. Bartlett, O. Landon-Cardinal, D. Poulin, and Y.-K. Liu, Nat. Commun. 1, 149 (2010).

Fidelity witnesses for bosonic quantum simulations

L. Aolita, C. Gogolin, M. Kliesch, and J. Eisert, Nat. Comms. 6, 8498 (2015).

Classes of target states covered

Gaussian states

Linear-optical network output states (of constant n!) Number post-selected linear-optical network output states (of constant n!)

Covers most current photonic setups:

- Gaussian, squeezed, and non-Gaussian.
- on-chip photonic quantum simulations (Boson-Sampling, quantum walks, Anderson-localisation, etc.).
- photonic qubit encodings (polarization qubits, KLM scheme, etc.).

Classes of experimental platforms covered

Photonic multi-qubit entangled states

W, Dicke, GHZ, cluster states, ect.

J. W. Pan et al., G. C. Guo et al., P. Walther et al.; H. Weinfurther et al.; S. P Walborn and P. H. S. Ribeiro et al.; C. Monken and S. Padua et al.; etc.

Multi-mode squeezed Gaussian states

A. Furusawa et al.; O. Pfister et al.; R. Schnabel et al.; N Treps et al; etc.

On-chip integrated linear-optical networks

Small-sized simulations of

- •Boson-Sampling,
- •Anderson localisation,
- quantum walks, etc.

J. O'Brien et al.; I. Walmsley et al.; P. Walther et al.; F. Sciarrino et al.; A. White et al; etc.

Gaussian states

Fidelity witness for multi-mode Gaussian states

$$\mathcal{C}_{\mathrm{G}} \coloneqq \{ \varrho_{\mathrm{t}} = \hat{U} | \mathbf{0} \rangle \langle \mathbf{0} | \hat{U}^{\dagger} : \hat{U} \text{ Gaussian unitary} \}$$

$$\Rightarrow F = F(\varrho_{\rm t}, \varrho_{\rm p}) = \operatorname{Tr}\left[\hat{U}|\mathbf{0}\rangle\langle\mathbf{0}|\hat{U}^{\dagger}|\varrho_{\rm p}\right] = \operatorname{Tr}\left[|\mathbf{0}\rangle\langle\mathbf{0}||\tilde{\varrho}_{\rm p}|\right]$$

$$\tilde{\varrho}_{\mathbf{p}} := \hat{U}^{\dagger} \varrho_{\mathbf{p}} \hat{U}$$

(Heisenberg representation with respect to \hat{U}^{\dagger})

(total photon-number operator)

Now, $|\mathbf{0}\rangle\langle\mathbf{0}| \ge \mathbf{1} - \hat{n}$ and $\tilde{\varrho}_{p} \ge 0$ imply $F \ge \operatorname{Tr}\left[(\mathbf{1} - \hat{n})\tilde{\varrho}_{p}\right] \qquad O$ $= \operatorname{Tr}\left[\hat{U}(\mathbf{1} - \hat{n})\hat{U}^{\dagger}\varrho_{p}\right] \qquad \hat{\mathcal{W}}$

Our Gaussian fidelity witness

But how can we measure $\hat{W} = \hat{U}(1-\hat{n})\hat{U}^{\dagger}$?

Fidelity witness:
$$\hat{\mathcal{W}} = \hat{U}(1-\hat{n})\hat{U}^{\dagger} = 1-\hat{\tilde{n}} \longrightarrow$$
 (Heisenberg representation with respect to \hat{U}^{\dagger})

Phase-space quadrature operators:

 \hat{q}_j and $\hat{p}_{j'}$, with $[\hat{q}_j, \hat{p}_{j'}] = i \ \delta_{j,j'}$.

Phase-space quadrature operator vector: $\hat{\mathbf{r}}: \hat{r}_{2j-1} := \hat{q}_j \text{ and } \hat{r}_{2j} := \hat{p}_j$

Identities:

$$\hat{n}_j = \hat{q}_j^2 + \hat{p}_j^2 - 1/2$$
$$\hat{n} = \sum_{j=1}^m \hat{n}_j = \sum_{j=1}^m (\hat{q}_j^2 + \hat{p}_j^2 - \frac{1}{2}) = \hat{r}^2 - \frac{m}{2}$$

$$\Rightarrow \hat{\mathcal{W}} = 1 - \hat{\tilde{r}}^2 + \frac{m}{2}$$

$$\downarrow$$

$$\hat{\tilde{r}} := \hat{U} \, \hat{r} \, \hat{U}^{\dagger}$$
(Heisenberg representation)

(Heisenberg representation with respect to \hat{U}^{\dagger})

Symplectic matrix $\mathbf{S} \in \mathrm{Sp}(2m, \mathbb{R})$

For a **Gaussian transformation**, phase-quadratures transform under an affine **linear map**:

$$\hat{\mathbf{r}} \mapsto \hat{U}^{\dagger} \hat{\mathbf{r}} \hat{U} = \mathbf{S} \hat{\mathbf{r}} + \mathbf{x}$$

 $\hat{\tilde{\mathbf{r}}} := \hat{U} \hat{\tilde{\mathbf{r}}} \hat{U}^{\dagger} = \mathbf{S}^{-1} (\hat{\mathbf{r}} - \mathbf{x})$
Displacement vector $\mathbf{x} \in \mathbb{R}^{2m}$
 $\hat{\tilde{\mathbf{r}}} := \hat{U} \hat{\tilde{\mathbf{r}}} \hat{U}^{\dagger} = \mathbf{S}^{-1} (\hat{\mathbf{r}} - \mathbf{x})$

 $\Rightarrow \hat{\tilde{r}}^2$ is a quadratic function of the single-mode observables \hat{q}_j and $\hat{p}_j!!!$

(so that at most $O(m^2)$ observables must be measured only, equivalent to measuring the covariance matrix)

- Affine linear maps computationally highly efficient to handle.
- Only homodyne detection required (no number measurements!).
- Bound highly optimisable for each circuit, polynomial scaling with the squeezing too!

Sample complexity of the estimation

Denote by $\mathcal{N}_{\epsilon,\delta}(\mathcal{W})$ the number of experimental runs needed to obtain F_W^* such that:

(statistical error)

$$\mathbb{P}\left(|F_{\mathcal{W}}(\varrho_{\mathbf{p}}) - F_{\mathcal{W}}^{*}(\varrho_{\mathbf{p}})| \leq \epsilon\right) \geq 1 - \delta$$

(failure probability)

Efficient in the number of modes and in the squeezing!

L. Aolita, C. Gogolin, M. Kliesch, and J. Eisert, Nat. Comms. 6, 8498 (2015).

Multi-mode non-Gaussian states

Fidelity witness for multi-mode non-Gaussian states

$$\mathcal{C}_{\mathrm{LO}} \coloneqq \{ \varrho_{\mathrm{t}} = \hat{U} | \mathbf{1}_{n} \rangle \langle \mathbf{1}_{n} | \hat{U}^{\dagger} : \hat{U} \text{ passive unitary} \}$$

$$\Rightarrow F = F(\varrho_{\mathrm{t}}, \varrho_{\mathrm{p}}) = \mathrm{Tr}[\hat{U} | \mathbf{1}_{n} \rangle \langle \mathbf{1}_{n} | \hat{U}^{\dagger} | \varrho_{\mathrm{p}}] = \mathrm{Tr}[|\mathbf{1}_{n} \rangle \langle \mathbf{1}_{n} | \tilde{\varrho}_{\mathrm{p}}]$$

$$\tilde{\varrho}_{\mathrm{p}} := \hat{U}^{\dagger} \varrho_{\mathrm{p}} \hat{U}$$

$$\tilde{\varrho}_{\mathrm{p}} := \hat{U}^{\dagger} \varrho_{\mathrm{p}} \hat{U}$$

$$(\text{Heisenberg representation} \\ \text{with respect to } \hat{U}^{\dagger})$$

$$\mathrm{And, since } |\mathbf{1}_{n} \rangle := \prod_{j=1}^{n} \hat{a}_{j}^{\dagger} | \mathbf{0} \rangle, \ F = F(|\mathbf{0}\rangle \langle \mathbf{0} |, \tilde{\varrho}_{\mathrm{p},n}).$$

$$\tilde{\varrho}_{\mathrm{p},n} := \prod_{j'=1}^{n} \hat{a}_{j'} \tilde{\varrho}_{\mathrm{p}} \prod_{j=1}^{n} \hat{a}_{j}^{\dagger}$$

(positive semi-definite but not normalised)

Now, $|\mathbf{0}\rangle\langle\mathbf{0}| \geq \mathbf{1} - \hat{n}$ and $\tilde{\varrho}_{\mathbf{p},n} \geq 0$ imply

$$F \ge \operatorname{Tr}\left[(\mathbf{1} - \hat{n})\tilde{\varrho}_{\mathbf{p},n}\right]$$
$$= \operatorname{Tr}\left[(n + \mathbf{1} - \hat{n})\prod_{j=1}^{n}\hat{n}_{j}\tilde{\varrho}_{\mathbf{p}}\right]$$

Hence, the fidelity lower bound:

$$F \geq F_{\mathcal{W}} := \operatorname{Tr} \left[(n+1-\hat{n}) \prod_{j=1}^{n} \hat{n}_{j} \tilde{\varrho}_{p} \right] \qquad \begin{array}{l} \tilde{\varrho}_{p} := \hat{U}^{\dagger} \varrho_{p} \hat{U} \\ \\ = \operatorname{Tr} \left[(n+1-\hat{n}) \prod_{j=1}^{n} \hat{n}_{j} \rho_{p} \right] \qquad \hat{\mathcal{W}} \qquad \begin{array}{l} Our \ non-Gaussian \\ fidelity \ witness \end{array} \right] \\ \hat{\hat{n}} := \hat{U} \ \hat{n} \ \hat{U}^{\dagger} \qquad \\ \hat{\hat{n}}_{j} := \hat{U} \ \hat{n}_{j} \ \hat{U}^{\dagger} \\ \begin{array}{l} (\text{Heisenberg representation} \\ \text{with respect to } \ \hat{U}^{\dagger} \end{array} \right]$$

- Also available for input Fock-basis states with more than one photon per mode.
- Fidelity lower bound potentially interesting in its own right in other scenarios.

But how can we measure

$$\hat{\mathcal{W}} = \left(n+1-\hat{\tilde{n}}\right) \prod_{j=1}^{n} \hat{\tilde{n}}_{j} ?$$

Fidelity witness:

$$\hat{\mathcal{W}} := (n+1-\hat{\tilde{n}}) \prod_{j=1}^{n} \hat{\tilde{n}}_{j} = \left(n+1+\frac{m}{2}-\hat{\tilde{r}}^{2}\right) \prod_{j=1}^{n} \left(\hat{\tilde{q}}_{j}^{2}+\hat{\tilde{p}}_{j}^{2}-\frac{1}{2}\right)$$
$$\hat{\tilde{\mathbf{r}}} := \hat{U}\,\hat{\mathbf{r}}\,\hat{U}^{\dagger} \qquad \hat{\tilde{q}}_{j} := \hat{U}\,\hat{q}_{j}\,\hat{U}^{\dagger} \qquad \hat{\tilde{p}}_{j} := \hat{U}\,\hat{p}_{j}\,\hat{U}^{\dagger}$$

:-(

(Heisenberg representation with respect to \hat{U}^{\dagger})

Since each $\hat{\tilde{r}}_j$ is a linear combination of at most $2m \ \hat{r}_j$'s

$$\Rightarrow \hat{\mathcal{W}} = \left(n+1+\frac{m}{2}-\hat{\tilde{r}}^2\right) \prod_{j=1}^n \left(\hat{\tilde{q}}_j^2+\hat{\tilde{p}}_j^2-\frac{1}{2}\right) \text{ is a linear combination of}$$

at most O $\left(m^{2(n+1)}\right) 2(n+1)$ -body quadrature correlators!

Upsides:

• Only homodyne or heterodyne detection required (no number measurements!).

Downside:

- High-order correlations required.
- Exponential scaling with the number of input photons

... avoidable?

Sample complexity of the estimation

Denote by $\mathcal{N}_{\epsilon,\delta}(\mathcal{W})$ the number of experimental runs needed to obtain F_W^* such that:

(statistical error)

$$\mathbb{P}\left(|F_{\mathcal{W}}(\varrho_{\mathbf{p}}) - F_{\mathcal{W}}^{*}(\varrho_{\mathbf{p}})| \leq \epsilon\right) \geq 1 - \delta$$

(failure probability)

Efficient in the number of modes for every constant n

L. Aolita, C. Gogolin, M. Kliesch, and J. Eisert, Nat. Comms. 6, 8498 (2015).

Certification of Boson-Sampling

Pre-measurement state certification of BS devices

If the local measurements are trusted, we can certify BS efficiently for every constant n :-)

Downside:

• Homodyning and heterodyning not compatible with photon number measurement :-(

<u>Conclusions of Lecture IV:</u>

- Quantum state tomography
- In search for the cheapest certification paradigms: direct certification (without tomographic reconstructions)
- Direct (Monte-Carlo) fidelity estimation
- Fidelity witnesses (sacrifice valid experimental preparations for the sake of efficiency).
- Ground-state witnesses: require only local tomography of reductions and cover all MPSs, but are inefficient for states with long-range correlations (no long-time quenches!).
- Bosonic fidelity witness
- Boson-Sampling verification (for constant n!)

Thank you for your attention!