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Introduction to quantum computation and simulability

•  Introduction: computational models

•  Circuit model
• Bloch sphere and one-qubit gates
• Two qubit gates
• Computational basis preparation and measurement
• Universal gate sets – approximating unitaries

•  Clifford circuits
• Groups of unitaries: Pauli and Clifford groups
• Simulability of Clifford circuits
• Upgrading Clifford circuits to universal QC

•  Introduction to restricted models of QC
• Weak and strong simulation

•  For slides and links to related material, see https://sites.google.com/view/intro-
qc-simulability/home

Lecture 2 : Introduction to the circuit model

Outline:



Models for quantum computation

•  A computational model is a mathematical model allowing for computation
      Examples: Turing machines, gate arrays (circuits), lambda calculus, billiard-ball computing, cellular 
automata

•  There are many models for quantum computation
-  Presumed to be equivalent (Church-Turing-Deutsch Principle)
-  Differences result in

•  conceptual insights on QM
•  important practical differences in implementations

•  Main models for universal quantum computation:

-  Circuit model
-  Measurement-based models
-  Adiabatic quantum computation
-  Topological quantum computation



Basics of the circuit model
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Basics of the circuit model

•  The most well-known model for quantum computation is the circuit model, obtained in 
analogy with classical circuits

3-qubit QFT

•  wires = qubits (i.e. 2-level systems)
•  little boxes = single-qubit gates

ψ = cos(θ / 2) 0 + eiφ sin(θ / 2) 1

1-bit Z teleportation
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•  The most well-known model for quantum computation is the circuit model, obtained in 
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•  Any single-qubit unitary is a rotation of the Bloch 
sphere

U = exp(iα)Rn̂ (θ )

Rn̂ (θ ) ≡ exp
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Basics of the circuit model

•  The most well-known model for quantum computation is the circuit model, obtained in 
analogy with classical circuits

3-qubit QFT
1-bit Z teleportation

•  Two-qubit gates:
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•  What if we change the output measurement?

•  What about the final measurements?
       Convention: Z, or computational, basis

0 , 1{ }
•  Sometimes we allow for unitaries being applied conditionally on the result of a 

measurement

Measurement bases
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•  What if we change the output measurement? Single-qubit measurements are OK…

U

U
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•  What about the final measurements?
       Convention: Z, or computational, basis

0 , 1{ }
•  Sometimes we allow for unitaries being applied conditionally on the result of a 

measurement

Measurement bases
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•  What if we change the output measurement? Single-qubit measurements are OK…
      …but arbitrary global measurements are not OK.

•  What about the final measurements?
       Convention: Z, or computational, basis

0 , 1{ }
•  Sometimes we allow for unitaries being applied conditionally on the result of a 

measurement

Measurement bases
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•  What if we change the output measurement? Single-qubit measurements are OK…
      …but arbitrary global measurements are not OK.

•  What about the final measurements?
       Convention: Z, or computational, basis

0 , 1{ }
•  Sometimes we allow for unitaries being applied conditionally on the result of a 

measurement

Measurement bases
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•  What if we change the output measurement? Single-qubit measurements are OK…
      …but arbitrary global measurements are not OK.

•  So let’s stick to computational basis measurements

•  What about the final measurements?
       Convention: Z, or computational, basis

0 , 1{ }
•  Sometimes we allow for unitaries being applied conditionally on the result of a 

measurement

Measurement bases



Approximating unitaries

•  How can we approximate unitaries with a 
limited set of gates?

•  Intuition: approximating a 2D rotation using multiple applications of a single rotation

•  Many ways to approximate any U on n qubits. The standard set is:

H,T,S,CNOT{ }
•  Proof steps:

1.  Any unitary on n qubits can be decomposed exactly with single-qubit 
unitaries +CNOTs

2.  Any single-qubit unitary can be arbitrarily well-approximated using H, T gates 
only.



Approximating unitaries – Solovay-Kitaev theorem

Assume universal gate set G, in which each gate is accompanied by its inverse. I want 
an approximation (n fixed) with accuracy   . This can be done with gate sequence of 
length

Additionally: classical compilation time is

ε
O logc (1 /ε)( ),c ≈ 3.97

O log2.71(1 /ε)( )
•  This is exponentially faster than naïve approximation

•  Moreover, error of concatenation of m approximations increases linearly 
with m (benign scaling)

•  It’s possible to approximate n-qubit unitaries with any universal set of gates, such as 
the standard set

•  How efficient can the approximation be?

  Solovay-Kitaev theorem:

H,T,S,CNOT{ }



Other universal gate-sets

1. H,T,S,CNOT{ }

•  Here are a few different sets of universal gates:

4. Toffoli,H{ } =Toffoli =

3. matchgates,SWAP{ }

2. almost any two-qubit gate{ }
[Deutsch et al., Proc. R. Soc. London A 449 (1937), 669 (1995)]
[Lloyd, PRL 75(2), 346 (1995)]

[Jozsa, Miyake Proc. R. Soc. London A 464, 3089 (2008)]

[Shi, quant-ph/0205115]

•  Encoded universality: all unitaries on logical qubits can be approximated
      (even if not on physical qubits). Example:

0L =
1
2
( 010 − 100 )

1L = 2
3 001 −

1
6 010 − 1

6 100

H = Jij (Xi ⊗ Xj +Yi ⊗Yj + Zi ⊗ Z j )
i≠ j
∑

5.{Exchange interaction}: Logical qubits:

[DiVincenzo et al., Nature 408, 339 (2000)]

What’s curious 
about this gate set?



BQP

•  It can be shown that generic unitaries require an exponential number of two-
qubit gates to approximate

•  counting argument using epsilon-net of n-qubit states

•  Problems solvable with high probability by a polynomial-sized circuit 
(in n=input size) define complexity class BQP

(bounded error, quantum polynomial time)
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BQP



YES!

Quantum teleportation as a circuit



Quantum algorithms

Algorithms achieving superpolinomial speed-up:

•  Factoring (Shor 1994)
-  Factor n-bit integer in O(n3) steps, against                         on classical computer
-  used to break RSA cryptosystem
-  Mathematically: solving hidden Abelian subgroup problem

•  Solution of linear system of equations (Harrow 2008)
-  Find approximate solution of Ax=b, with A being a n x n matrix. It takes O(log(n)) steps, 

against O(n) classically.

•  Simulating quantum systems (Feynman 1982, Abrams/Lloyd 1997, etc.)
-  Simulation of physically reasonable Hamiltonians using n qubits in poly(n) steps. 

•  Calculating partition functions of classical systems (Lidar/Biham 1997, Aharonov et al. 2007)

•  Various problems involving groups and rings.

€ 

O(en
1/3 log(n )2/3 )



Algorithms with polynomial speed-up:

•  Unstructured database search (Grover 1996)
•  Finds marked item in            queries, agains O(n) classically.
•  Conceptually important for other algorithms.

•  Various graph properties

•  Gradient search for minimum (Bulger 2005, Jordan 2008)
€ 

O( n )

Quantum algorithms


