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Introduction to quantum computation and simulability

Outline:

•  Applications of MBQC:
• models for quantum spacetime
• blind quantum computation

•  Time-ordering in MBQC

•  MBQC without adaptativity:
• Clifford circuits 
•   IQP circuits

•  Introduction to quantum contextuality

•  Contextuality as a computational resource
•  in magic state distillation
•  in MBQC

•  For slides and links to related material, see

Lecture 8 : Measurement-based QC (MBQC) II



Application: blind quantum computation

•  Classical/quantum separation in MBQC allow for implementation of novel protocols – such as 
blind quantum computation

•  Here, client has limited quantum capabilities, and uses a server to do computation for her.
•  Blind = server doesn’t know what’s being computed.

Broadbent, Fitzsimons, Kashefi,  axiv:0807.4154 [quant-ph]



Application: model for quantum spacetime

•  MBQC can serve as a discrete toy model for quantum spacetime:

quantum space-time MBQC
quantum substrate graph states

events measurements

principle establishing global 
space-time structure

determinism requirement 
for computations

•  Even closed timelike curves (= time travel) have analogues in MBQC!

[Raussendorf et al., arxiv:1108.5774]

[Dias da Silva, Kashefi, Galvão PRA 83, 012316 (2011)]



Time-ordering in MBQC

from: Proc. Int. School of Physics "Enrico Fermi" on "Quantum Computers, Algorithms and Chaos", Varenna, Italy (2005)

•  Note that some measurements are not adaptive, but in fixed bases. These can be 
performed at once at beginning of computation

•  Parts of protocol corresponding to Clifford gates are non-adaptive

•  MBQC neatly separates Clifford (non-adaptive) from non-Clifford (adaptive) parts of the 
computation

•  Back-and-forth translations between models reveal possible circuit optimizations



Circuit optimization: example

•  We’ve seen that MBQC allows for implementation of Clifford operations in constant time. 
Back-translating to the circuit model we obtain circuits which implement all the Clifford part 
in constant time:
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Circuit translation of 
MBQC protocol

•  No adaptativity in Clifford MBQC -> no adaptativity in circuit. 
•  Depth is 4 (3 CZs and 1 single-qubit unitary for measurement)

•  Trade-off: depth becomes constant, at cost of increasing number of qubits

•  For non-Clifford circuits, depth increases by the number of layers of non-Clifford gates



IQP: circuits with commuting gates

•  The complexity class IQP was initially studied by Shepherd, Bremner, and Jozsa

•  Initialization and measurement in computational basis, but only commuting gates (in X 
basis)

• Temporal order of gates irrelevant; strong restriction on computational power
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[Shepherd, Bremner, Proc. R. Soc. London A 465, 1413 (2009)]
[Bremner, Jozsa, Shepherd, Proc. R. Soc. London A 467, 459 (2011) ]



IQP circuits in MBQC

•  IQP circuits can be implemented in the MBQC model – the translation is curious

Commuting gates in X basis

Hardness of simulating
non-adaptive MBQC

[Browne, Briegel, quant-ph/0603226]

translation

•  [Hoban et al. PRL 112, 140505 (2014)] define a suitable subclass IQP* of IQP circuits, and prove that:

IQP* hardness of simulation translation

•  Now: prior to measurement, decohere each qubit in its measurement eigenbasis. This doesn’t 
change statistics, but results in states which are separable and discord-free.

this “Classical” MBQC is hard to simulate exactly 

non-adaptive MBQC



•  Clearly, the correlations in the resource state.

•  Analysis of MBQC protocols in terms of Bell inequalities:
•  Anders/Browne PRL 102, 050502 (2009)
•  Hoban et al., New J. Phys. 13, 023014 (2011)

•  …but measurements are usually not space-like separated:
       quantum contextuality

•  Raussendorf, PRA 88, 022322 (2013)

Which resource gives MBQC its power?



•  Context of an observable A = set of commuting observables measured together with A
•  Non-contextuality hypothesis: outcomes of observables are context-independent
•  Violated by quantum mechanics!

Quantum contextuality

•  Famously proved by Kochen and Specker (1967). Let’s see a proof by Mermin (1990).

•  Operators in each row and column commute;
Moreover, they are the product of the other two in same row/column
•  EXCEPTION: third column:

σ y ⊗σ y = −σ z ⊗σ z ⋅σ x ⊗σ x

•  So it’s impossible to assign +1 or -1 values to each observable in a context-independent way.   
QM is contextual.



•  Consider 57 states in 3-dimensional Hilbert space, real amplitudes.
• Orthogonal triads must be colored black, white, white. 
• Some of the triads above have vectors in common.
• One can show that there’s no possible coloring satisfying the orthogonality relations.

Proof by Peres (1991) – Kochen and Specker flavour



Contextuality is necessary for magic state distillation

Howard et al., Nature 310, 351 (2014) 
•  The Mermin square proof of quantum contextuality is state-independent – any state violates the 

non-contextuality hypothesis.
•  For Hilbert space dimension d>2, all contextuality proofs are state-dependent.
•  So what’s special about states revealing contextuality?

•  Howard et al. (2014) looked at that problem in the QC model of Clifford computer + magic 
states:
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from Howard et al., Nature 310, 351 (2014) 

PSIM = simulable under stabilizer 
measurements
PSTAB = stabilizer states
Q = general quantum states

•  Result: any state out of PSIM violates a state-dependent 
non-contextuality inequality, using stabilizer measurements. 
States in PSIM are non-contextual.

contextuality is necessary 
for magic-state computation



Contextuality in MBQC: ���
evaluating non-linear Boolean functions



•  Measurement-based quantum computation (MBQC) computes with correlations
•  what properties of the correlations enable computation in MBQC?

•  Anders and Browne modelled MBQC with:
•  N boxes, 1-bit inputs, 1-bit outputs
•  auxiliary pre- and post-computation restricted 
    to sums modulo-2

Inputs:

Outputs:

i1

o1

i2

o2
•  Popescu-Rohrlich correlations:
   deterministic evaluation of i1 AND i2

e = sin2(π / 8) ≅ 0.15•  Quantum correlations result in input-independent error
•  Non-contextual correlations necessarily result in larger error

(Tsirelson bound) 

p(o1,o2 | i1, i2 ) =
1
2
δo1⊕o2 ,i1ANDi2

Anders,  Browne, PRL 102, 050502 (2009)  

eNC ≥1/ 4

Computation using correlations



•  Stabilizers of 3-qubit GHZ state enable deterministic evaluation of AND gate:

•  GHZ stabilizers:

Anders,  Browne, PRL 102, 050502 (2009)  

i1

o1 o2

o3

i3 = i1⊕ i2

i2

GHZ =
1
2
000 + 111( )ij = 0 ⇒ Measure X

ij =1⇒ Measure Y

"
#
$

%$

outcome = +1⇒Oj = 0
outcome = -1⇒Oj =1

"
#
$

%$

X1X2X3,−X1Y2Y3,−Y1X2Y3,−Y1Y2X3{ }

⇒O1 ⊕O2 ⊕O3 = i1  OR i2
•   NOT is free and NOR is universal, so this is sufficient for universal classical computation

•  Motivation: is GHZ non-contextuality required for classical computation? Is the quantum AND 
gate with e=0.15 useless?

Deterministic OR from 3-qubit GHZ correlations



•  Thm. 1: Non-linear Boolean functions require strong contextuality for deterministic MBQC 
evaluation.

•  Thm. 2: MBQC evaluation of arbitrary, k-bit Boolean function f using non-contextual 
resources results in average error

Raussendorf, PRA 88, 022322 (2013) 

ef
NC ≥

ν f

2k

ν f =  non-linearity of f =minlinear g  [no. outputs s.t. g(i) ≠ f (i)]

i1 i2 i1ANDi2 0
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 0

•  Example: of i1 AND i2 = i1i2 is nonlinear. Its closest linear approximation is e.g. the constant 
function 0:

ν f =1

i0i1 0 i1 i2 i1⊕ i2 ⊕1
00 0 0 0 1
01 0 0 1 0
10 0 1 0 0
11 0 1 1 1

Average error of closest linear approximation is ¼.

2 Theorems by Raussendorf



•  Thm. 1: Non-linear Boolean functions require strong contextuality for deterministic MBQC 
evaluation.

•  Thm. 2: MBQC evaluation of arbitrary, k-bit Boolean function f using non-contextual 
resources results in average error

Raussendorf, PRA 88, 022322 (2013) 

ef
NC ≥

ν f

2k

How much contextuality is sufficient for bounded bias evaluation of any Boolean function? 
[Oestereich, E.F.G., PRA 96, 062305 (2017)]

•  Arbitrarily small violation of non-contextuality inequality
      is sufficient.

ef
NC ≥

ν f

2k

2 Theorems by Raussendorf



Restricted models���
of quantum computation
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Restricted models of quantum computation

•  Restrictions allow us to:

•  Identify regimes in which quantum computers are simulable
         Clifford circuits
         matchgates
         MBQC on a 1D chain

• Find new intermediate models which may be useful, even if not universal
         DQC1 or “one-clean-qubit” model by Knill/Laflamme
         Permutational quantum computation (Jordan)

• Eliminate or minimize resource use, with a view to feasible experiments
         Boson Sampling – Aaronson and Arkhipov
         Non-adaptive MBQC

•  Translations between models is particularly interesting, as resource trade-offs are possible


