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Introduction to quantum computation and simulability

Lecture 8 : Measurement-based QC (MBQCQC) I

Outline:

* Applications of MBQC:
* models for quantum spacetime
* blind quantum computation

* Time-ordering in MBQC

* MBQC without adaptativity:
* Clifford circuits
* |QP circuits

* Introduction to quantum contextuality

* Contextuality as a computational resource
®* in magic state distillation

* in MBQC

®* For slides and links to related material, see



Application: blind quantum computation

* Classical/quantum separation in MBQC allow for implementation of novel protocols — such as
blind quantum computation

* Here,client has limited quantum capabilities, and uses a server to do computation for her.

* Blind = server doesn’t know what’s being computed.
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Application: model for quantum spacetime

* MBQC can serve as a discrete toy model for quantum spacetime:

quantum space-time MBQC

quantum substrate graph states

events measurements

principle establishing global determinism requirement
space-time structure for computations

[Raussendorf et al., arxiv:1 108.5774]

* Even closed timelike curves (= time travel) have analogues in MBQC!

[Dias da Silva, Kashefi, Galvao PRA 83,012316 (2011)]



Time-ordering in MBQC

M. HEIN, W. DUR, J. EISERT, R. RAUSSENDORF, M. VAN DEN NEST and H.-J. BRIEGEL
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from: Proc. Int. School of Physics "Enrico Fermi" on "Quantum Computers,Algorithms and Chaos",Varenna, Italy (2005)

* Note that some measurements are hot adaptive, but in fixed bases.These can be
performed at once at beginning of computation

* Parts of protocol corresponding to Clifford gates are non-adaptive

* MBQC neatly separates Clifford (non-adaptive) from non-Clifford (adaptive) parts of the

computation

* Back-and-forth translations between models reveal possible circuit optimizations




Circuit optimization: example

* We've seen that MBQC allows for implementation of Clifford operations in constant time.
Back-translating to the circuit model we obtain circuits which implement all the Clifford part
in constant time:
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* No adaptativity in Clifford MBQC -> no adaptativity in circuit.
* Depthis 4 (3 CZs and | single-qubit unitary for measurement)

* Trade-off: depth becomes constant, at cost of increasing number of qubits

* For non-Clifford circuits, depth increases by the number of layers of non-Clifford gates



|IQP: circuits with commuting gates

* The complexity class IQP was initially studied by Shepherd, Bremner, and Jozsa

* Initialization and measurement in computational basis, but only commuting gates (in X
basis)
* Temporal order of gates irrelevant; strong restriction on computational power
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[Shepherd, Bremner, Proc. R. Soc. London A 465, 1413 (2009)]
[Bremner, Jozsa, Shepherd, Proc. R. Soc. London A 467,459 (2011) ]




|QP circuits in MBQC

* |QP circuits can be implemented in the MBQC model — the translation is curious

translation
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Commuting gates in X basis

|QP* hardness of simulation

translation

[Browne, Briegel, quant-ph/0603226]

non-adaptive MBQC

[Hoban et al. PRL 112, 140505 (2014)] define a suitable subclass IQP* of IQP circuits, and prove that:

Hardness of simulating
non-adaptive MBQC

Now: prior to measurement, decohere each qubit in its measurement eigenbasis. This doesn’t

change statistics, but results in states which are separable and discord-free.

:l> this “Classical” MBQC is hard to simulate exactly

Where’s the quantum ingredient there?




Which resource gives MBQC its power?

® Clearly, the correlations in the resource state.

* Analysis of MBQC protocols in terms of Bell inequalities:
* Anders/Browne PRL 102, 050502 (2009)
* Hoban et al.,, New |. Phys. 13, 023014 (201 1)

* ...but measurements are usually not space-like separated:

> quantum contextuality

* Raussendorf, PRA 88, 022322 (2013)




Quantum contextuality

* Context of an observable A = set of commuting observables measured together with A
* Non-contextuality hypothesis: outcomes of observables are context-independent
* Violated by quantum mechanics!

* Famously proved by Kochen and Specker (1967). Let’s see a proof by Mermin (1990).

* Operators in each row and column commute;
Moreover, they are the product of the other two in same row/column

* EXCEPTION: third column:
0,®00,=-0.00.0,®0,

* Soit’s impossible to assign +1 or -1 values to each observable in a context-independent way.

‘QM is contextual.



Proof by Peres (1991) — Kochen and Specker flavour

* Consider 57 states in 3-dimensional Hilbert space, real amplitudes.
* Orthogonal triads must be colored black, white, white.
* Some of the triads above have vectors in common.
* One can show that there’s no possible coloring satisfying the orthogonality relations.




Contextuality is necessary for magic state distillation

. o . Howard et al., Nature 310, 351 i2014)
The Mermin square proof of quantum contextuality is state-independent — any state violates the

non-contextuality hypothesis.

* For Hilbert space dimension d>2, all contextuality proofs are state-dependent.
* So what’s special about states revealing contextuality?

* Howard et al. (2014) looked at that problem in the QC model of Clifford computer + magic

states: |
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PSTAB = stabilizer states
Q = general quantum states



Contextuality in MBQC:
evaluating non-linear Boolean functions



Computation using correlations

Anders, Browne, PRL 102, 050502 (2009)
®* Measurement-based quantum computation (MBQC) computes with correlations

* what properties of the correlations enable computation in MBQC!?

®* Anders and Browne modelled MBQC with:
* N boxes, |-bit inputs, |-bit outputs
* auxiliary pre- and post-computation restricted
to sums modulo-2

Correlated Resource

Inputs: il .

N o b

Outputs: () | 02

* Popescu-Rohrlich correlations: o 1
deterministic evaluation of i; AND i, p(01,02 | ll,lz) = 5501@02 i ANDi,
.2
* Quantum correlations result in input-independent error € =S1n" (77 /8) = 0.15

: . : NC
* Non-contextual correlations necessarily result in larger error ¢~ =1/4
(Tsirelson bound)



Deterministic OR from 3-qubit GHZ correlations

Anders, Browne, PRL 102, 050502 (2009)
* Stabilizers of 3-qubit GHZ state enable deterministic evaluation of AND gate:

. . .. 1
Qb = D, i; = 0= Measure X |GHZ> -
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outcome = +1 = 0]. =()
0, 0,

outcome =-1=0, =1
* GHZ swbilizers: ¥ X X, —X,V,Y,,~Y,X,Y,,~Y,Y,X, )

=0 ®0,®0,=i OR i,
* NOT is free and NOR is universal, so this is sufficient for universal classical computation

* Motivation: is GHZ non-contextuality required for classical computation? Is the quantum AND
gate with e=0.15 useless?



2 Theorems by Raussendorf

Raussendorf, PRA 88, 022322 (2013)

Thm. |: Non-linear Boolean functions require strong contextuality for deterministic MBQC
evaluation.

Thm. 2: MBQC evaluation of arbitrary, k-bit Boolean function f using non-contextual
resources results in average error

ne _ Vs
ef - 2k

Vv, = non-linearity of f =min,_ . [no. outputs s.t. g(i) = f(i)]

* Example:of ij AND i, = i,i, is nonlinear. Its closest linear approximation is e.g. the constant
function O:
i |i, | i ANDI, | 0 ii |0 |i,|i®i®1
01]0 0 0 000|100 1
0] 1 01 0|0 |1 0
110 1010 (.1]0 0
1|1 v, =1 11{0|1]1 1

Average error of closest linear approximation is .



2 Theorems by Raussendorf

Raussendorf, PRA 88, 022322 (2013)

evaluation.

Thm. 2: MBQC evaluation of arbitrary, k-bit Boolean function f using non-contextual
resources results in average error
ne _ Vs

> _J

ef 2k

How much contextuality is sufficient for bounded bias evaluation of any Boolean function?
[Oestereich, E.EG., PRA 96, 062305 (2017)]

14
*  Arbitrarily small violation of non-contextuality inequality ¢ > —/

is sufficient. ! 2k

Thm. |: Non-linear Boolean functions require strong contextuality for deterministic MBQC



Restricted models
of quantum computation
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Restricted models of quantum computation

® Restrictions allow us to:

* |ldentify regimes in which quantum computers are simulable
Clifford circuits

matchgates
MBQC on a ID chain

* Find new intermediate models which may be useful, even if not universal
DQCI or “one-clean-qubit” model by Knill/Laflamme
Permutational quantum computation (Jordan)

* Eliminate or minimize resource use, with a view to feasible experiments

Boson Sampling — Aaronson and Arkhipov
Non-adaptive MBQC

* Translations between models is particularly interesting, as resource trade-offs are possible



