II South American Dark Matter Workshop

22nd November 2018

Status and Results from the

Dark Matter Experiment

Adam Brown

University of Zurich^{UZH}

on behalf of

the XENON Collaboration

Evolution of the XENON TPCs

The XENON collaboration

XENON1T at LNGS

Dual-phase time projection chamber

Particle interacts in liquid xenon

- S1: prompt scintillation signal
- S2: electrons drifted to gas produce proportional scintillation signal

► Heat

Position reconstruction

- (x, y) from S2 pattern on top PMTs
- ► *z* (depth) from S1 S2 delay

Particle type identification

• S2:S1 ratio different for electronic recoils (β , γ) and nuclear recoils (WIMP, n)

TPC in XENON1T

TPC

holding 2 t liquid xenon

~ 1 m diameter

~ 1 m length

Highly reflective PTFE walls

74 copper field shaping rings

Five high-transparency electrodes

Hamamatsu R11410-21 PMTS

248 3-inch PMTs in XENON1T low radioactivity & VUV-sensitive QE ~ 35% at 175 nm EPJ C 11:546 (2015)

Detector response

83mKr as calibration source

- Injected into LXe
- Double emission allows very pure identification
- Used to correct spatially varying detector response:
 - S1: light collection efficiency (x, y, z)
 - S2: electron lifetime (z), charge amplification (x, y)
 - Position: due to non-uniform field (x, y, z)

Calibration of ER / NR bands

External sources mounted on belt system D-D fusion generator

High neutron flux (2000 n/s) Reduce calibration weeks \rightarrow days compared to AmBe source

Nuclear recoils

Nucl. Inst. Meth. A 879:31 (2018)

Calibration of ER / NR bands

Models for detector response physically motivated from LXe microphysics Fit with the calibration data

ĿΗ

ER backgrounds

4.1% **Materials** 1.4% ¹³⁶Xe 85.4%²²²Rn ► ~ 10 µBq/kg HPGe y screening Control surface Material selection emanation Suppressed by Further reduction fiducialisation by online **4.9% Solar v** distillation (more **Expectations** later) in 1 t FV in [1, 12] keV 4.3% 85Kr **ER** Rate Cryogenic $(82 \pm 5) ev/(keV t y)$ distillation in 1.3 t natKr (0.66 ± 0.11) ppt below 25 keV_{ee} EPJ C 77:275 (2017)

Lowest ER background ever achieved in DM detector

JCAP 04:027 (2016)

NR backgrounds

< 0.01 ev Cosmogenic n

- ► µ-induced neutrons
- Rock overburden
- Muon veto

JINST 9:P11006 (2014)

0.02 ev CEVNS

- Coherent elastic neutrino-nucleus scattering
- ► From ⁸B solar *v*
- Irreducible, very low energy (< 1 keV)

Expectations in 1 t FV in [4-50] keVnr Single scatters only

0.6 ev Radiogenic n

- From (a, n) and spontaneous fission
- Material selection
- Mostly multiple scatter
- Fiducialisation

EPJ C 77:890 (2017)

NR backgrounds

< 0.01 ev Cosmogenic n

- ► µ-induced neutrons
- Rock overburden
- Muon veto

JINST 9:P11006 (2014)

0.02 ev CEVNS

- Coherent elastic neutrino-nucleus scattering
- ► From ⁸B solar *v*
- Irreducible, very le energy (< 1 keV)

Other backgrounds

Accidental coincidence

 Random pairing of S1-like and S2-like lone signals

Surface events

- Events at outer edge of TPC
- Position reconstruction trickiest here
- Charge loss on walls

Dark matter search results

- Results interpreted with profile likelihood analysis
- ► 4 dimensions:
 - 3 unbinned: cS1, cS2_{bottom}, R
 - 1 binned (binary): core 0.65 t volume with low radiogenic n rate

Dark matter search results

- Results interpreted with profile likelihood analysis
- ► 4 dimensions:
 - 3 unbinned: cS1, cS2_{bottom}, R
 - 1 binned (binary): core 0.65 t volume with low radiogenic n rate

 $1\sigma \& 2\sigma$ of radiogenic neutron pdf

Sensitivity

7-times improvement of previous-generation experiments

- Strongest exclusion limits for WIMPs above 6 GeV
- Under fluctuation < 8GeV
 Over-fluctuation for higher mass

 $\sigma_{\rm SI} < 4.1 \times 10^{-47} \mbox{ cm}^2$ at 30 GeV

Phys. Rev. Lett. 121, 111302 (2018)

Outlook: XENONnT

neutron veto

- Inner region
- optically separate
- extra PMTs
- Gd in the water tank
- ► 0.5% Gd₂(SO₄)₃

larger TPC

- Total 8.4 t LXe
- ► 5.9 t in TPC
- ~ 4 t fiducial

222Rn distillation

 Reduce radon from pipes, cables, cryogenic system

LXC purification

- Faster xenon cleaning
- 5L/min LXe
 (2500 slpm)
- Now: 120 slpm

Summary

XENON1T

- First multi-ton scale LXe TPC
- Stable operation > 1 year
- More results on the way: annual modulation, low-mass WIMP, $0\nu\beta\beta$, solar axions, dark photons

XENONnT

- 4–5× bigger fiducial mass
- 10× better sensitivity
- Preparations and tests underway
- Construction starting early next year
- **Commissioning 2019**

Stay tuned for more exciting results

contact@xenon1t.org

www.xenon1t.org

@xenon1t

Backup slides

Why xenon as a target?

- High atomic mass
- Self-shielding
- ~ 50% odd-nucleon isotopes
- 178 nm scintillation light detectable directly — no wavelength shifters
- Radioactively pure: all isotopes either stable, short lifetime (≤36 d), or long lifetime (¹³⁶Xe: 2.2×10²¹ y)
- High charge & light yield
- ► High boiling point (~ -100 °C)

Field non-uniformity correction

-80

-100

0

500

1000 1500 2000

R^{rec2} [cm²]

2500

10⁰

21

Detection and selection efficiency

- Dominant detection efficiency loss:
 3 PMTs must contribute to S1 (so S1 > 3 pe)
- Selection efficiencies estimated from calibration or MC data
- Search region defined as 3–70 pe in cS1

Energy spectrum matching

In 1 t volume

XENON1T Cryogenic systems

24