

European Research Council Established by the European Commission

DARWIN: The ultimate Dark Matter Detector

Yanina Biondi University of Zürich On behalf of the DARWIN collaboration

II South American Dark Matter Workshop November 21-23, 2018 ICTP-SAIFR, São Paulo, Brazil

www.darwin-observatory.org

WIMP searches: Active field in the recent years

WIMP searches: Active field in the recent years

XENON EVOLUTION

2012 100 kg

2017

2019 5.9 t

XENON10

2008

10 kg

XENON100

4 XENON1T

XENONnT

DARWIN Baseline Design

Dual-phase Time Projection Chamber (TPC) 50t total (40 t active) of liquid xenon (LXe) Dimensions: 2.6 m diameter and 2.6 m height Two arrays of photosensors (top and bottom) PMTs and SiPM are being considered Drift field ~0.5 kV/cm Low-background double-wall cryostat PTFE reflector panels & copper shaping rings Outer shield filled with water (14 m diameter) Neutron veto scintillator or Gd doped water tank

Possible realisation of DARWIN with its water tank

Baseline design in simulation framework:

- Copper rings for electric field shaping
- Cryostat studies

PTFE pillars for structural support

Geant4 visualization of the DARWIN cryostat using geantinos

Dual phase Xe TPC

Dual phase Xe TPC

Interactions in LXe

DARWIN

In LXe the background is reduced by S1 (Scintillation) /S2 (Ionisation) discrimination

Electronic and Nuclear recoils

DARWIN

XENON Collaboration (E. Aprile (Columbia U.) et al.) CAP 1604 (2016)

Given its projected low background and sensitivity, DARWIN will be sensitive to other rare physics processes such as:

Given its projected low background and sensitivity, DARWIN will be sensitive to other rare physics processes such as:

Solar Axions and ALPs

Given its projected low background and sensitivity, DARWIN will be sensitive to other rare physics processes such as:

Solar Axions and ALPs

Low energy Solar Neutrinos: pp, ⁷Be

Given its projected low background and sensitivity, DARWIN will be sensitive to other rare physics processes such as:

Solar Axions and ALPs

Low energy Solar Neutrinos: pp, ⁷Be

Neutrinoless Double Beta Decay

Given its projected low background and sensitivity, DARWIN will be sensitive to other rare physics processes such as:

Solar Axions and ALPs

Low energy Solar Neutrinos: pp, ⁷Be

Neutrinoless Double Beta Decay

Coherent Neutrino Nucleus Scattering

Given its projected low background and sensitivity, DARWIN will be sensitive to other rare physics processes such as:

Solar Axions and ALPs

Low energy Solar Neutrinos: pp, ⁷Be

Neutrinoless Double Beta Decay

Coherent Neutrino Nucleus Scattering

Supernova Neutrinos

DARWIN: Not only an observatory for WIMPs

Solar Axions, Galactic Axions and ALPs

Axions couple with electrons and lead to atomic ionisation \Rightarrow ER Galactic Axions and ALPs are well-motivated DM candidates

Sensitivity of DARWIN to solar axions

Solar axions can be produced via Bremsstrahlung, Compton scattering, axiorecombination and axiodeexcitation

DARWIN

DARWIN: towards the ultimate dark matter detector. Journal of Cosmology and Astroparticle Physics, 2016

Low energy Solar Neutrinos: pp, ⁷Be

Irreducible background for DARWIN's WIMP channel program : Opportunity for neutrino physics!

DARWIN

pp and ⁷Be-neutrinos more than 98% of the total neutrino flux predicted by the SSM

Neutrino physics with multi-ton scale liquid xenon detectors, Journal of Cosmology and Astroparticle Physics 2014

Low energy Solar Neutrinos: pp, ⁷Be

Irreducible background for DARWIN's WIMP channel program : Opportunity for neutrino physics!

DARWIN

More than 2 10³ pp-neutrino events will be observed per year Precision below 1% would be reached after 5 years of data taking

Neutrino physics with multi-ton scale liquid xenon detectors, Journal of Cosmology and Astroparticle Physics 2014

Neutrinoless Double Beta Decay

¹³⁶Xe 0vββ-decay candidate with natural abundance of 8.9%

JARWIN

 $Q_{\beta\beta}$ -value at 2.458 MeV, well above the energy-range expected from a WIMP signal

JAKWIN

Neutrinoless Double Beta Decay

Without isotopic enrichment, DARWIN's target contains *more than 3.5 t of ^{136}Xe* Can perform a search for its $0\nu\beta\beta$ -decay in an ultra-low background environment.

Neutrinoless Double Beta Decay

A new study with the current geometry is being conducted.

Expected sensitivity for DARWIN: 6 tonnes fiducial volume \Rightarrow two orders of magnitude improvement in sensitivity compared to XENON1T

Chiara Capelli, Neutrinoless double beta decay searches with the XENON dark matter experiment, Neutrino 2018

Coherent Neutrino Nucleus Scattering

Observation of coherent elastic neutrino-nucleus scattering 10.1126/science.aao0990

L. E. Strigari, Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors, New J. Phys.

JARWIN

The rate of low-energy signals in all multi-ton WIMP detectors will eventually be dominated by interactions of cosmic neutrinos via CNNS

The largest CNNS rate comes from the relatively high-energy ⁸B solar neutrinos which produce nuclear recoils $\leq 3 \text{ keV}_{nr}$.

DARWIN will be able to detect and study this process

Supernova Neutrinos

Dark matter astrophysical uncertainties and the neutrino floor Ciaran A.J. O'Hare DOI: 10.1103/PhysRevD.94.063527

DARWIN would be sensitive to all six neutrino species via neutral current interactions

Including neutrinos and anti-neutrinos that are emitted by core-collapse supernovae in a burst lasting a few tens of seconds

DARWIN

Supernova neutrino physics with xenon dark matter detectors: A timely perspective, Lang, Rafael F. et al, Phys. Rev. D, 2016

Which signals do we expect to see in each region?

Dark Matter Search Results from a One Ton-Year Exposure of XENON1T PHYSICAL REVIEW LETTERS 121, 111302 (2018)

Current Status of DARWIN

28 groups from 11 countries

DARWIN is on the APPEC roadmap

Working towards a CDR and TDR

Synergy with XENONnT R&D

www.darwin-observatory.org

Design challenges and R&D

Scale related :

- Longer drift length ⇒ Deliver the necessary HV
- Increased mass ⇒ Cryogenics, LXe purification...
- Detector response ⇒ Calibration, Corrections, Readout
- Optimization of Cryostat Design

Design challenges and R&D

Backgrounds:

- Active background suppression ⇒ distillation
- Techniques to select clean materials ⇒ gamma and Rn screening
- Techniques to monitor LXe purity at required level
- Cosmogenic background \Rightarrow go deep enough, add μ -veto and n-veto

TPCs R&D

European Research Council Established by the European Commission

Long Size LXe TPC for DARWIN electron drift, gas purity and more

- Height 2.6m
- Field 100-200 V/cm (or higher)
- Applied Voltage : planned test up to 100kV
- Electron lifetime > 2ms
- Modular design
- Focus: cathode and HV feed-trough test

University of Zurich

Large Size LXe Cryostat for DARWIN size electrical and mechanical tests

University of Freiburg

- DARWIN will be the ultimate liquid xenon dark matter detector
- DARWIN will also provide a unique opportunity for other rare event searches such as:

Low Energy solar neutrinos Neutrinoless double-beta decay CNNS Axions and axion-like particles

DARWIN : growing collaboration, currently 28 groups from 11 countries.

Thanks Gracias Obrigado

Backup slides

Our group counts with one LXe TPC, Xurich II

SiPM arrays of Xurich-II with custom-made pre-amplified base

Signal Calibration in LXe

In LXe the background is reduced by S1 (Scintillation) /S2 (Ionisation) discrimination

Heidelberg, May 2013

Dual phase Xe TPC

Dual phase Xe TPC

Result of a Direct Detection DM Experiment

Positive Signal:

Region in the cross section vs mass parameter space

DARWIN

Zero Signal:

Exclusion of a parameter region

- Low WIMP Masses: Detector Threshold matters
- Minimum of the curve:
 Depends on target nuclei

High WIMP masses:

Exposure matters e = m x t

WIMP physics

Not only studies with spin-independent WIMP-nucleon interactions; DARWIN's would have an excellent sensitivity to spin-dependent interactions, especially for ¹²⁹Xe, that can be extended to axial vector couplings as well.

Reconstruction for three different WIMP masses of 20 GeV/c2, 100 GeV/c² and 500 GeV/c² and a cross section of 2×10^{47} cm², close to the sensitivity limit of XENON1T.

Reconstruction for cross sections of 2×10^{46} cm², 2×10^{47} cm² and 2×10^{48} cm² for a WIMP mass of 100GeV/c². The black curve indicates where the WIMP sensitivity will start to be limited by neutrinonucleus coherent scattering.

Purification system to reduce the intrinsic background in LXe

purification system: - clean Xe from electronegative impurities below 1 ppb with continuous gas circulation through heated getters

Reflected in the Electron Lifetime in LXe (Drift electrons)

Unstable ⁸⁵Kr in air impurity in Xenon gas - active removal by distillation - control by precise measurements

M. Lindner MPIK TAUP, July 24-28, 2017

DARWIN

M. Lindner MPIK TAUP, July 24-28, 2017

Towards DARWIN: R&D in UZH

Original configuration with two 2-inch PMTs, top and bottom

 This detector was built to study particle interactions in Liquid xenon (LXe) at very low energies (50 keV)