

Sudden Transition to Large Amplitude Oscillation Routes to Extreme Events

Syamal Kumar Dana

Department of Mathematics, Jadavpur University Kolkata 700032, India

Jadavpur University, Kolkata

Hokkalorab (make some noise)

Sudden Transition to Large Amplitude Oscillation Routes to Extreme Event

PHYSICAL REVIEW E 96, 052204 (2017)

Extreme events in the forced Lién

PHYSICAL REVIEW E 97, 062311 (Dragon-king-like extreme events in coupled b

Collaborators

Faculties

Ulrike Feudel University of Oldenburg, Germany

Tomasz Kapitaniak Politechnika Lódzka, Poland

Pinaki Pal National Institute of Technology-Durgapur, India

K. Thamilmaran, Bharathidasan University, Trichy, India

Collaborators

Graduate Students

Arindam Mishra Jadavpur University, Kolkata, India

Suman Saha Jadavpur University, Kolkata

Leo Kingston Bharathidasan University Trichy, India

M. Vigneshwaran Central Instrumentation, CSIR-Indian Institute of Chemical Biology, Kolkata

Motivation

Feigenbuam number= L_i/L_{i+1} =4.669201.....

Motivation: Sudden large change in amplitude of oscillation in dynamical systems

Questions

- (1) Dynamical processes of Sudden Transition to large amplitude oscillation in response to parameter change
- (2) Classification of the processes (Dynamics and Statistics)
- (3) If they indicate Extreme Events

Extreme Events

- Floods (Kerala flood, India, 2018)
- Rogue Waves
- Tsunami
- Algal Bloom
- Drought
- Earthquakes
- Epilepsy
- Power black-out
- Share market crashes

Rogue Waves

Extreme Events

Tsunami, 2004

Kerala Flood, India 2018

Algal Bloom

Drought

Extreme Events: Dynamical Systems

- Extraordinary large events
- Rare

Prediction? Timing and Intensity Dynamic Origin!!

- Simple systems: Laser, electronic circuits
- Forced or unforced systems
- Coupled systems
- Networks of systems

Extreme Events in Dynamical System Probability Distribution

Observable q(t)=T(u(t))

T P Sapsis, *Phil. Trans. R. Soc.* A 376: 20170133 (2018); M.Farazmand, T. Sapsis, *Sci Adv.* 3, e1701533 (2017)

Visualization of Extreme events Instability regions

Examples : (1) regular (2) complex dynamics with occasional instabilities leading to EE

Photon correlation study of stellar scintillation

 $\log_e P(n)$

--8

-9

-10

E. JAKEMAN

J. Phys. A: Math. Gen., Vol. 10, No. 12, 1977

M V Berry Focusing and twinkling: critical exponents from catastrophes in non-Gaussian random short waves

Extreme Events in Laser system

PRL 116, 013901 (2016)

PHYSICAL REVIEW LETTEL

Snatiotemporal Chaos Induces Extreme Events in an F F. Selmi,¹ S. Coulibaly,² Z. Loghmari,¹ I. Sagnes,¹ G. Beaudoin,¹ M. G. Clerc,³ and S. Barbay^{1,*}

Extreme events in Laser system

Group on Dynamics. Nonlinear Optics and Lasers. UPC.

Distribution of Extreme Events

Significant Height= H_s=Mean + 8σ

Extreme events in excitable systems

PHYSICAL REVIEW E 88, 052911

SJ

Extreme events in excitable systems and mecha

Outline

Dynamical Models: Exreme Events

- Forced Liénard System, PRE 96, 052204 (2017)
- Coupled Hindmarsh-Rose Neuron Model, PRE 97, 062311 (2018)

Sudden transition to large amplitude oscillation

- **1**. Period-doubling route to Chaos followed by Crisis
- 2. Pomeau-Manneville Intermittency followed by Crisis
- 3. Quasiperiodicity route to Chaos Crisis??

G. Nicolis, V.Balakrishnan, Nicolis, PRL 97, 210602 (2006)

Chaotic Dynamics: Brief Introduction

Rössler System

a=0.2, b=0.2, c=5.7

Period-Doubling route to Chaos

Rössler System Period-doubling sequence

b=2, c=4

P1---P2---P4---P8---P16---P32---P64.....Chaos

Bifurcation Diagram: Rössler Oscillator

Period-doubling route to Chaos

Rössler Oscillator

 $\dot{x} = -y - z$ $\dot{y} = x + a y$ $\dot{z} = b + (x - c)z$

Route to Chaos: Pomeau-Manneville (PM) Intermittency

Y. Pomeau and P. Manneville, Commun. Math. Phys. **74**, 189 (1980); Physica **1D**, 219 (1980).

PM Intermittency

Pomeau, Manneville, Commun. Math. Phys. 74, 189 (1980)

Quasiperiodic route to chaos

Quasiperiodic Breakdown to Chaos

Crisis-Induced-Intermittency

Crisis-induced Intermittency

Saddle

 $(chaos)_1 \rightarrow (chaos)_2 \rightarrow (chaos)_1 \rightarrow (chaos)_2 \rightarrow \cdots$.

Grebogi, Ott, Yorke, PRL **48**, 1507 (1982); Physica **7D**, 181 (1983) Grebogi, Ott, Romeiras, Yorke, PRA **36**, 5365 (1987)

Y. Pomeau and P. Manneville, Commun. Math. Phys. **74**, 189 (1980); Physica **1D**, 219 (1980).

Crisis induced Intermittency Interior Crisis

Grebogi, Ott, Yorke, Physica 7D, 181 (1983)

Extreme Events: Crisis Induced Intermittency

Ikeda Map $z_{n+1} = A + Bz_n \exp[i\kappa - ip/(1 + |z_n|^2)]$

Grebogi, Ott, Romeiras, Yorke, PRE 36, 5365 (1987)

Expansion of Attractors

Our First Example Forced Liénard System

PHYSICAL REVIEW E 96, (Extreme events in the forced Lién

Liénard System

 $\dot{x} = y,$

$$\alpha = 0.45, \ \beta = 0.50, \ \text{and} \ \gamma = -0.50.$$

- (1) Stable Focus becomes unstable and LC is born
- (2) Saddle becomes saddle orbit
- (3) Saddle focus remains unchanged
- (4) Neutrally stable orbits become quasi-periodic

Forced Liénard System: Bistable Bifurcation diagrams

Forced Liénard System

Extreme Events

PM Intermittency followed by Interior Crisis

Region L

R

1

2

ĥ

Experimental Verification

Period-doubling to Chaos followed by Crisis

Extreme events in the forced Lién

Summary

- 1. Period-doubling to Chaos followed by Crisis
- 2. PM Intermittency followed by Crisis

Large Expansion of Attractors Coupled oscillators

Collective Dynamics of Coupled Oscillators

- Synchronization
- Clustering
- Oscillation quenching
- Chimera states

Collective Dynamics of Coupled Oscillators Brief Story: Synchronization

Periodic or Chaotic systems

 $\dot{x} = f(x) + \varepsilon(y - x)$ $\dot{y} = f(y) + \varepsilon(x - y)$

n-dimensional system

 $e_{II} = x + y = 0$

Variety of Synchronization

Phase Synchronization

Amplitude almost identical but phase difference almost zero

In-phase Synchronization: Chua Oscillator

Antiphase Synchronization: HR Model

Amplitude almost identical but out-of-phase

Selected for a Viewpoint in *Physics*

P. Ashwin, J. Buescu and I.N. Stewart, Phys. Lett. A 193 (1994) 126.

E. Ott and J.C. Sommerer, Phys. Lett. A 188 (1994) 39.

Selected for a Viewpoint in *Physics*

Hugo L. D. de S. Cavalcante* and Marcos C

Grupo de Física Atômica e Lasers-DF, Universidade Federal da Paraíba, Caixa Postal 50

Didier Sornette

ETH Zurich, Department of Management, Technology and Economics, Scheuchzers

Edward Ott

Dragon-King

"when a log-log graph of the populations of French cities versus the population rankings of those cities is plotted, all the points fall on a straight line with the exception of Paris. The French capital has a much greater population than is predicted by the log-log "Zipf plot" and it is therefore a Dragon-king"------Didier Sornette

FIG. 1. Power law distribution of burst (a) Normal cultures correspond to $\sigma = 1$ i line gives slope = -3/2. (b) Cultures m

[7] J. M. Beggs and D. Plenz, J. Neurosci. 23, 11167 (2003).
PRL 94, 058101 (2005)

L.De Arcangelis, Journal of Physics: Conference Series 297, 012001 (2011)

"Dragon-kings appear in the cultures that realize a high level of burst synchronization...., bicuculline increases burst synchronization leading to a large population of dragon-king avalanches. Dragon-king events may therefore affect the ability of the brain to give good performances in different tasks"

Dragon-king-like extreme events in coupl

Arindam Mishra,^{1,*} Suman Saha,² M. Vigneshwaran,³ Pinaki Pal,⁴ Tomasz Kapitaniak,⁵ and Syamal K. Dana²

Our Second Example Coupled Neurons

Inhibiting GABA receptor

Inhibitory coupling in addition to excitatory coupling

Coupling: Chemical Synapses

Hindmarsh-Rose Model

$$\dot{x}_i = y_i - ax_i^3 + bx_i^2 - z_i + l$$

$$\dot{y}_i = c - dx_i^2$$

$$\dot{z}_i = r[s(x_i - x_R) - z_i]$$

$$a = 1, b = 3, c = 1, d = 5$$

 $r = 0.01, S = 5, I = 4, x_R = -1.6$

Synaptic Coupling

Inhibitory and Excitatory synapses

Excitatory synapses

$$\dot{x}_{i} = y_{i} + bx_{i}^{2} - ax_{i}^{3} - z_{i} + I - k_{1,2}(x_{i} - V_{s})g(x_{j})$$

$$\dot{y}_{i} = c - dx_{i}^{2} - y_{i}$$

$$z_{i} = r[s(x_{i} + 1.6) - z_{i}]$$

$$a = 1, b = 3, c = 1, d = 5$$

r = 0.01, S = 5, I = 4,
 $\lambda = 10, \theta = -0.25, V_s = 2$
 $i = 1, 2$

$$g(x) = \frac{1}{1 + e^{-\lambda(x-\theta)}} \qquad \qquad x_1 + x_2 = x_{||} \\ x_1 - x_2 = x_{||}$$

Two coupled Hindmarsh-Rose Neurons

Time series

Inhibitory coupling Antiphase Burst Synchronization 180° out-of-phase

Two coupled HR Systems

Inhibitory coupling

EE>Mean height +6σ

$$x_{||} = x_1 + x_2$$

 $k_{1,2}$ =-0.07

Instability in Antiphase Sync

Extreme Events: Quasiperiodic Routes Third Route

1.5 اللاصالات التحرائي الإن الإن التي التي التي التي التي التي التي 1.0 0.5 1.0 0.5 0.0 0.5 0.0 -0.5 0.0 8 <u>₩</u> -0.5 8 -0.5 -1.0 a -1.0 -1.0 -1.5 -1.5 -1.5 -2.0 -2.0 -2.0 -2,5 20650 20700 20750 20800 20850 20900 -2.5 15000 20000 Time 25000 -2.5 Time 30000 15000 20000 25000 30000 10000 15000 20000 Time 25000 30000 Time 1.1 3.5 0.75 1.6 . 1.0 0.70 3.0 1.4 0.9 0.65 2.5 0.8 1.2 0.60 X 0.55 X^{1-u} $X_{n-1}^{1.0}$ 2.0 X_{n-1} 0.6 and the second 0.8 1.5 0.50 0.5 0.45 0.4 0.6 1.0 0.3 0.4 0.5 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.9 1.0 1.1 0.6 0.7 8.0 0.4 0.5 X_n X_n 0.2 0.8.0 0.4 0.6 1.2 1.4 0.8 1.0 0.5 2.5 3.0 1. 1.0 1.5 2.0 3.5

 X_n

 X_n

Antiphase Synchronization Instability

Experimental Results

Diffusive and Repulsive coupling

Quasiperiodicity route to chaos

Dragon-king Behavior

Numerical Result

Experimental Result

Summary

Extreme events

- 1. Period-doubling to chaos followed by Interior Crisis (Liénard System, Laser systems)
- 2. PM Intermittency followed by Interior Crisis (Liénard System, coupled Neurons)
- 3. Quasiperiodic breakdown to chaos Crisis!! (Coupled Neurons)

Future direction

How statistical distribution varies with different routes?