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Nonlinear map

Motivation

Nonlinear Ordinary Differential 
Equations: RÖssler oscillator
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e.g., f(X)=2X(1-X)

Chaos

Bifurcation diagram:
Period-doubling route to chaos
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Equations: RÖssler oscillator
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Laser ModelForced Liénard system

Motivation:
Sudden large change in amplitude 
of oscillation in dynamical systems

Typical Bifurcation diagram

Reinoso, Zamora-Munt, Masoller, 
PRE 87, 062913 (2013)

Kingston, Thamilmaran, Pal, Feudel, S.K.Dana
PRE 96, 052204 (2017)



Questions

(1)   Dynamical processes of Sudden Transition to large amplitude 
oscillation in response to parameter change 

(2) Classification of the processes (Dynamics and Statistics)(2) Classification of the processes (Dynamics and Statistics)
(3) If they indicate Extreme Events



Extreme Events

• Floods (Kerala flood, India, 2018)
• Rogue Waves
• Tsunami
• Algal Bloom
• Drought
• Earthquakes
• Epilepsy
• Power black-out
• Share market crashes



Rogue Waves



Tsunami, 2004 Kerala Flood, India 2018

Extreme Events

Tsunami, 2004 Kerala Flood, India 2018

Algal Bloom Drought



Extreme Events: Dynamical Systems

Prediction?      Timing and Intensity

• Extraordinary large events
• Rare

Prediction?      Timing and Intensity
Dynamic Origin!!

• Simple systems: Laser, electronic circuits
• Forced or unforced systems
• Coupled systems
• Networks of systems



Extreme Events in Dynamical System 
Probability Distribution

q(t)=T(u(t))

T P Sapsis, Phil. Trans. R. Soc. A 376: 20170133 (2018);
M.Farazmand, T. Sapsis, Sci Adv. 3, e1701533 (2017)

Observable



Visualization of Extreme events
Instability regions

q(t)=T(u(t))Observable

Examples : (1) regular  
(2) complex dynamics
with occasional instabilities leading to EE



Nature 263, September 16, 1976

Photon correlation study 
of stellar scintillation

Extreme events??

Randomly fluctuating 
Refractive index of the atmosphere

Extreme events??



Extreme Events in Laser system

Gaussian

Non-Gaussian:
long-tail

Gaussian



Complex 
Dynamics

Extreme events in Laser system



Significant Height= HS=Mean + 8s

Distribution of Extreme Events

Rare

Gaussian Distribution non-Gaussian long-tail Distribution



Extreme events in excitable systems



Dynamical Models: Exreme Events
• Forced Liénard System, PRE 96, 052204 (2017)
• Coupled Hindmarsh-Rose Neuron Model, PRE 97, 062311 (2018)

Sudden transition to large amplitude oscillation

Outline

Sudden transition to large amplitude oscillation
1. Period-doubling route to Chaos followed by Crisis
2. Pomeau-Manneville Intermittency  followed by Crisis
3. Quasiperiodicity route to Chaos  Crisis??

G. Nicolis, V.Balakrishnan, Nicolis, PRL 97, 210602 (2006)
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Rössler System 

Chaotic Dynamics: Brief Introduction

a=0.2, b=0.2, c=5.7



Period-Doubling route to Chaos

a=0.3

a=0.375

b=2, c=4

P1

P2

Period-doubling sequence
P1---P2---P4---P8---P16---P32---P64…..Chaos

Rössler System

a=0.38

a=0.385

P4

P8

a=0.42

Poincaré surface of section



Bifurcation Diagram: RÖssler Oscillator 
Period-doubling route to Chaos 

zcxbz

yaxy

zyx

)(

 









Rössler Oscillator 



Route to Chaos:
Pomeau-Manneville (PM) Intermittency

Y. Pomeau and P. Manneville, Commun. Math. Phys. 74,  
189 (1980); Physica 1D, 219 (1980).



PM Intermittency
Lorenz System

r=166

r=166.2

xybz
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Pomeau, Manneville, Commun. Math. Phys. 74, 189 (1980)

r>166.2 Channel

Chaos, r>>166.2



Quasiperiodic route to chaos

Torus- w1/w2=n
Commensurate

Quasipeirodicity- w1/w2≠n
Incommensurate Poincare surface of section

Breakdown to QP to Chaos…



Quasiperiodic Breakdown to Chaos 



Crisis-Induced-Intermittency

Grebogi, Ott, Yorke, PRL 48, 1507 (1982); Physica 7D, 181 (1983)
Grebogi, Ott, Romeiras, Yorke, PRA 36, 5365 (1987)

Crisis-induced  Intermittency
Saddle

Pomeau-Manneville (PM) Intermittency

Y. Pomeau and P. Manneville, Commun. Math. Phys. 74,  
189 (1980); Physica 1D, 219 (1980).

Channel



Crisis induced Intermittency
Interior Crisis

Saddle orbit

Grebogi, Ott, Yorke, Physica 7D, 181 (1983) 

SN



Extreme Events: Crisis Induced Intermittency
Ikeda Map

Grebogi, Ott, Romeiras, Yorke, PRE 36, 5365 (1987)

p=7.26<pc

Hs=significant height=mean -5s

p=7.2788>pc



Our First Example
Forced Liénard System

Expansion of Attractors



A=0

Liénard System

(1) Stable Focus becomes unstable and LC is born
(2) Saddle becomes saddle orbit
(3) Saddle focus remains unchanged
(4) Neutrally stable orbits become quasi-periodic

A=0.2



Forced Liénard System: Bistable
Bifurcation diagrams



Forced Liénard System
Region R

Hs=Significant height=mean+6s

Long-tail distribution



Extreme Events
Crisis Induced Intermittency 



Extreme Events
PM Intermittency  followed by Interior Crisis

Region L



Experimental Verification
Period-doubling to Chaos followed by Crisis

PM Intermittency followed by CrisisPM Intermittency followed by Crisis



1. Period-doubling to Chaos followed by Crisis 

2. PM Intermittency followed by Crisis

Summary

2. PM Intermittency followed by Crisis



Large Expansion of Attractors
Coupled oscillators



Collective Dynamics of Coupled Oscillators

• Synchronization

• Clustering• Clustering

• Oscillation quenching

• Chimera states
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Collective Dynamics of Coupled Oscillators
Brief Story: Synchronization

x y

n-dimensional system

Periodic or Chaotic systems

)()( yxyfy  

eT=x-y

eII=x+y Complete Synchronization

eT=x-y=0

Anti-Synchronization

eII= x+y=0

Synchronization hyperplaneTransvere Direction



Variety of Synchronization

eT=x-y=0

Complete Synchronization: Lorenz System

Identical amplitude 
and phase

x,
y

time

eII=x+y=0

Anti-synchronization: Lorenz System

Identical amplitude, 
but Opposite phase

x,
y

time



Amplitude almost identical 
but  phase difference almost zero

In-phase Synchronization: Chua Oscillator

Ф1-Ф2=0

eT=x-y≠0
x,
y

Phase Synchronization

eII=x+y≠0

Antiphase Synchronization: HR Model
Amplitude almost identical 
but out-of-phase

Ф1-Ф2p

time

time

x,
y



Model: M-master, S-slave 

On-off  Intermittency
Bubbling transition

Instability in 
Complete SynchComplete Synch



Possibility of prediction
is higher??



“when a log–log graph of the populations of French cities versus the population 
rankings of those cities is plotted, all the points fall on a straight line with the 
exception of Paris. The French capital has a much greater population than is predicted 
by the log–log "Zipf plot" and it is therefore a Dragon-king”----------Didier Sornette

Dragon-King



Neuronal Avalanche

Inhibiting
GABA receptor

“Dragon-kings …. appear in the cultures that realize a high level of burst 
synchronization.…, bicuculline increases burst synchronization leading to a large 
population of dragon-king avalanches. Dragon-king events may therefore affect the ability 
of the brain to give good performances in different tasks”

L.De Arcangelis, Journal of Physics: Conference Series 297, 012001 (2011) 



Our Second Example
Coupled Neurons

Inhibitory coupling in addition to excitatory coupling

Inhibiting GABA receptor



Coupling: Chemical Synapses



Hindmarsh-Rose Model

6145010

5131
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Synaptic Coupling

Inhibitory synapses
Inhibitory  and 
Excitatory synapses

Excitatory synapses
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Two coupled Hindmarsh-Rose Neurons

k1,2=-0.04

x1
x2

Time series

Antiphase Burst Synchronization
1800 out-of-phase

Inhibitory coupling



Two coupled HR Systems

||
x

EE>Mean height +6s

Inhibitory coupling

k1,2=-0.07

||
x

21 xxx||  Instability in Antiphase Sync



Phase Diagram

Spike sync

Intermittency

Spike/Burst sync

Spike/

Antiphase Spike Sync

Burst sync

Antiphase
Burst Sync
Quasiperiodic

Spike/
Burst sync



Extreme Events: Routes to Complexity
QuasiperiodicityPM Intermittency

xn

xn+1

xn

xn+1



Extreme Events: Quasiperiodic Routes 
Third Route



Antiphase Synchronization
Instability

Antiphase burst Synchronization Antiphase spike Synchronization

Quasiperiodicity route
Inhibitory coupling 

Intermittency route
Excitatory coupling 



Experimental Results
Diffusive and Repulsive coupling 

Event

Quasiperiodicity route to chaos

Event



Dragon-king Behavior

Numerical Result Experimental Result

Kolmogorov-Smirnov (KS) 
statistics

Slope -3.0



Summary

Extreme events 
1. Period-doubling to chaos followed by Interior Crisis 

(Liénard System, Laser systems)
2. PM Intermittency followed by Interior Crisis

(Liénard System, coupled Neurons)
3. Quasiperiodic breakdown to chaos  Crisis!!

(Coupled Neurons)(Coupled Neurons)

Future direction
How statistical distribution varies with different routes?


