
• Write a code than can solve systems of ODEs, using the 
forward Euler, RK2 and RK4 methods.  
Use it on simple ODEs first, check convergence and quantify 
the numerical error:

• How large can you make the time step? What happens when 
the time step is too large?

• Does the solution converge to the exact solution?

• Is roundoff error a problem?

Hands-on Exercise: Code 
a simple ODE solver

y0(t) = sin(t)y0(t) = tn y0 = �y



post-Newtonian black holes
• Start with energy, e.g. as function of separation R or orbital frequency ω: 

E(R), E(ω). Kepler: ω2 R3 = G M.

• PN expansion:  
 
 

• Compute energy loss P=-dE/dt to some order in v/c, e.g. at leading order 
quadrupole formula (see GR text books like Wald)

• To compute the rate of change of any quantity X (e.g. X=ω, R) we write  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• To lowest (Newtonian/quadrupole)order:  
 
 
 
 
 
 
 
 
 

• Here v is the velocity parameter, η the symmetric mass ratio:

• For GW science, we also need the phase
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exact solution
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• Generalize your ODE code to handle systems 
of ODEs, solve the 2-body problem in GR for 
point particles in the “Newtonian orbits + 
quadrupole formula energy loss” approximation.

• Carry out a convergence test and evaluate the 
numerical error.

• How much energy is radiated in the inspiral?  


