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Numerical Relativity

including alternative gravity



• Mathematical problems and exact solutions have 
dominated GR until recently. 
 
Deep insights gained: positive mass theorem, 
nonlinear stability of Minkowski spacetime . . .


• Astrophysics, cosmology, general understanding of 
the solution space of the EE require approximate 
solutions – analytical and numerical!


• Numerical solutions allow to study the equations (in 
principle) without simplifying physical assumptions, 
and allow mathematical control over the 
convergence of the approximation!



What we will talk about, and what not.

• Only talk about classical gravity, no computational quantum gravity!


• Solve Einstein Equations as PDEs, alternatively discretize geometry 
directly (e.g. Regge calculus, discrete differential forms, . . . ).

10 lectures + some practical problems



Practical Problems
• Choose 1 of 3 Tracks:


• ODEs: post-Newton black holes to leading order.


• Wave equation in 1+1 dimensions.


• Scalar field in AdS


• Choose a programming language you are familiar with. I can 
help with Fortran, C, Python, Mathematica.


• Some worked out codes can be provided, but try yourself 
first.



1. Initial value problems for GR



• Classical physics is formulated in terms of PDEs for tensor fields.


• To understand a physical theory (GR, Maxwell, QCD, ...) requires to understand the 
space of solutions of the PDEs that describe it.


• What predictions to these solutions make for observations? 


• Need a systematic=algorithmic way to find approximate solutions of PDEs: 
perturbation approaches, numerical analysis. 


• EEs are intrinsically 4-dimensional  
How/where should we specify boundary conditions = select the physical solution?


• First sort out what can be chosen and what is then determined by equations !


• Time evolution problems: given initial data, does a unique time evolution exist? 
Does it depend continuously on the initial data?  Predictability! Important 
source of physical intuition! 


Q: Does the theory have an initial value formulation? Yes! Many!                                                            

Motivation



Initial value problems

Choose coordinates for spacetime =>  
~ 10 coupled nonlinear wave eqs., complex  
 source terms. 

The known fundamental theories of nature 
(GR, elektro-weak theory, QCD (Yang-Mills)) are gauge theories, the 
presence of gauge freedom leads to constraints - restrictions on the space 
of possible initial data for a time evolution problems, which typically take 
the form of elliptic boundary value problems. 
 
Preserving constraints numerically well understood  
for E&M, not GR.

-— starting 1950’s -—>   



• Can classify by the type of “problem” that can naturally be associated 
with a PDE: initial/initial boundary // boundary value problems.


• Standard types: 


• hyperbolic, generalize wave equation: information propagates with 
finite speed                                             


• parabolic: generalize heat equation, well posed only forward in 
time, information propagates instantaneously 

• Schrödinger equation: information propagates instantaneously


• elliptic, e.g. Laplace equation:

Types of PDEs (linear for now)

�u(�x) = 0

u(�x, t),t = i�u(�x, t)

u(�x, t),t = �u(�x, t)

u(�x, t),tt = �u(�x, t)



Well-posedness and stability for evolution equations

• WP: A unique solution exists (when gauge is chosen), depends 
continuously on initial data. Can formulate continuity as


• Exponential growth (instability) ok, arbitrarily fast growth not.


• “mode stability”: can’t have modes which grow arbitrarily fast


• typical ill-posed problems: Higher frequencies correspond to 
larger a, K -> better resolution, worse solution.

WP (stable) in numerical context for iterative problem (eλt ok, eλn not) 

Lax equivalence theorem: “a consistent (formally convergent) finite 
difference scheme for a linear PDE for which the initial value problem 
is well posed is convergent iff it is stable.''

vn+1 = Q(tn, v
n, vn+1)vn : ||vn|| � Ke�tn ||v0|| ⇥v0

⌅K, a ⇥ R : ||u(t)|| � Kea t||u(0)|| ⇤u(0)

Continuum problem:

Discrete problem:



Key to understand numerics: Conditioning
• Consider model problem F(x,y) = 0 


• How sensitive is the dependence y(x)?


• condition number K: worst possible effect on y when x is 
perturbed.


• consider perturbed eq.  F(x + δx, y + δy) = 0,


• define               
 
 
                                                         


• K small: well conditioned, K large: ill conditioned,


• K=∞: ill-posed, unstable; K finite: well-posed


• NR: find well-posed PDE problem and for a given problem a 
gauge that makes K small!

K = sup
�x

||�y||/||y||
||�x||/||x||



4-dimensional formulation:


3+1 decomposition: Introduce a space-time split, define hypersurfaces of 
constant time by time-like unit normal na,  electric + magnetic fields Ea, Ba.

Initial Value formulation of a simple gauge theory: Maxwell

• Get 2 evolution equations (contain time derivs.), in flat space:


• Get 2 constraint equations (contain no time derivs.):


• Maxwell equations need to be solved consistently with equations 

for ja, ρ 

Ea = Fabn
b, Bc =

1

2
Fab

3�abc

⇤tE
a = �abc⇤

bBc � 4⇥ja, ⇤tB
a = ��abc⇤

bEc

⇤aE
a = 4�⇥, ⇤aB

a = 0

na na =-1

M

t=const.

r[aFbc] = 0, rbF
ab = ja



 Maxwell II

• Exercise: show that constraints propagate (always satisfied 
by virtue of the evolution equations, if satisfied at t=0)


• Initial value problem makes sense: constraints are 
preserved, fpr given initial data a unique time evolution 
exists, which depends continuously on initial data = well-
posed initial value problem 

• Information propagates at the speed of light. We will soon 
understand connection between propagation speeds and 
the property of an IVP to be well-posed!



 Maxwell III

• Using vector potential A additional gauge issues appear! 
Lorentz gauge -> Wave equation:


• Numerical ED is difficult (preserve constraints!), but well understood: 
analytical formulation, numerical algorithms, comparison with experiment!


• curved background:   


• In collapsing case (K < 0) ) instability of constraints! 


• Well-posedness is necessary but not sufficient to accurately 
approximate the continuum problem with finite precision!


• Solution for Maxwell: use                                .  GR ?

LnDiE
i = �KDiE

i, LnDiB
i = �KDiB

i

p
gEa,

p
gBa

Fab = raAb �rbAa ) ra (raAb �rbAa) = jb

raAa = 0 ) raraAb = jb



 Fast track 3+1 decomposition for GR
Simplest way to get PDEs from the Einstein Equations:

Chose coordinates {xi , t} 

(i = 1, 2, 3),

then “read off” metric in the form:

hab is a positive definite matrix (Riemannian metric on the 3-spaces of 
constant time), and  𝞪= 0.

4 functions  𝞪, βi  are freely specifiable, steer coordinate system 
through spacetime as time evolution proceeds – physical result is 
independent of this choice (diffeomorphism invariance).


PDEs resulting from ansatz are of 2nd order for h, split into 2 parts: 4 
constraints (no second time derivatives) & 6 evolution equations.









WRITE OUT hdot equation!!!!!!



• Let S be a 3-D “hypersurface of constant time” [an achronal (non-
timelike) embedded submanifold of a manifold M (points of S can 
not communicate causally].


• Future domain of dependence D+(S) [analogous for D-(S)]:


• If nothing can travel faster than light, any signal sent to p ∈ D+(S) 
must have registered on S. Thus, given initial conditions on S, we 
should be able to predict what happens at p.

Domain of dependence

D+(S) =

⇢
p 2 M

�� every past inextendible causal curve;
through p intersects S.



• D(S) = D+(S)  ∪ D-(S) 


• A set such that D(Σ) = M is called a Cauchy hypersurface,  is a snapshot of 
the universe a spacetime which possesses a Cauchy hypersurface is called 
globally hyperbolic.


• Theorem (see e.g. Wald, chapter 8):  
 
Let (M, gab) be a globally hyperbolic spacetime. Then (M, gab) allows a global 
time function t, such that each surface of constant t is a Cauchy surface, 
and the topology of M is R × Σ, where Σ denotes any Cauchy surface.


• Globally hyperbolic spacetimes are those which can be constructed as an 
initial value problem.


• Globally hyperbolic spacetimes do not allow closed timelike curves (time 
machines).


• Spacetimes with time machines are not “predictable”.

Global hyperbolicity



Beyond the Cauchy Problem

• Explain alternatives to Cauchy problem on blackboard:


• characteristic initial value problem


• Hyperboloidal initial value problem



2. ODEs



ODEs in a nutshell
• Don’t try to understand PDEs without understanding systems of ODEs.


• Can write ODE systems in first order differential form as a “normal 
form”: yi’(t) = Fi(t,yj)


• For higher differential order systems, introduce new variables, 
e.g. y’’(t) = F: v:=y’ ->  {y’ = v, v’= F}


• Standard result of ODE theory: 
The ODE initial value problem is “well-posed”: Given initial data 
yi(t=t0), a unique solution yi(t) exists at least for some finite time t > t0.


• A global solution, i.e. for t->∞ may or may not exist.



Nonlinear ODEs
• For nonlinear ODEs, solutions may blow up in finite 

time: 
 
 

• Einstein equations: strong fields -> singularity 
formation in finite time!


• ODEs may be chaotic in nature, e.g. Lorenz equations 
(model atmospheric convection, simplified models for 
lasers, electric circuits, chemical reactions, ...)


• Lorenz equations are deterministic, but small changes 
to initial data have a large effect - system is ill 
conditioned but not ill posed.

y0 = �y2, y(0) = y0 ! y(t) =
y0

t y0� 1

http://en.wikipedia.org/wiki/Laser


Linear systems of ODEs
• Consider constant coefficient linear ODE systems: for nonlinear equations, we 

can consider perturbations (can be stable or unstable), coefficients can be 
considered constant for a short time.


• constant coefficient linear ODE systems can be solved explicitly: 
 

• Compute matrix exponential by transforming A to Jordan form: 
 
 
 

• We can understand the behaviour of the solutions in terms of the eigenvalues 
and eigenvectors of the matrix A.


• Real part of eigenvalues negative: solutions relax to stable steady state. 

PAP�1 = D +N, Nn = 0 ) eiAkt = eiDkteiNkt = eiDkt
l=n�1X

l=0

N l k
ltl

l!

y0i = Ai
jyj ! yi(t) = eAi

jtyj(0)



Numerical Integration of ODEs
• Various techniques are available to obtain exact solutions for certain 

families/types of ODEs, but general problems, in particular nonlinear 
ones, have to be solved numerically.


• Consider a simple single ODE: y’(t) = F(t,y)


• Replace derivative by a difference expression, e.g. 
 

• Rearrange to obtain the “forward” (explicit) Euler method: 
 

• Alternative: backward Euler method - implicit (use e.g. Newton-
Raphson to solve equations)

y
0(t) =

y(t+ h)� y(t)

h
� 1

2
y
00(t)h+O(h2)

yn+1 = yn + hF (tn+1, yn+1)

first order error

yn+1 = yn + h


F (tn, yn) +

h

2
y
00(t) +O(h2)

�



Local truncation order
• Error term in the Euler method is first order - we must be able to 

do better! Use higher order approximations (Taylor)!


• But does Euler actually work? Does the numerical approximation 
converge? We are only interested in the continuum solution!


• Local truncation order: difference between exact and numerical 
solution in 1 step: 
 
 

• The method is consistent if 
 

• Method is convergent of order p if 

• Euler methods are consistent and of order 1.

yn+1 = R(tn; yn+1, yn, {yn�k};h)

lim
h!0

�hn+1

h
= 0

�hn+1 = O(hp+1)

�hn+1 = R(tn; yn+1, y(tn), y({tn�k});h)� y(tn+1)



Global truncation order

• Local error is relatively easy to control, but we need to know 
the global error - the error accumulated in all the steps one 
needs to reach a fixed time t.


• In the limit h-> 0 we need infinitely many steps, we can 
suspect that a “bad method” will not let us carry out this limit.


• In an unstable scheme, making a tiny error in each step will 
diverge in the limit.  


• The global error of a p-th order scheme will be O(hp).



Roundoff error
• Truncation error of a finite difference scheme is not the only source of 

error on a digital computer!


• We are using numbers with a finite precision, usually we are using double 
precision numbers as implemented in the machine hardware: 
 
 
 
 

• Undefined values: INF or NAN (not a number) - exception handling tends 
to slow down computations.


• Don’t use single prec. unless you really know what you are doing.


• Sometimes quadruple precision comes in handy, expect an order of 
magnitude slowdown.



Numerical stability & stiffness
• Solve a simple linear model equation with Euler’s method:


• λ > 0: analytical and numerical solutions grow exponentially.


• λ < 0: analytical solution decreases exponentially, numerical 
solution only does this for hλ > -2  (h>0). 


• For larger time steps the numerical solution exhibits 
exponential growth, algorithm is unstable!


• Problem is more serious for ODE systems which exhibit very 
different decay rates: “stiff”-> very small time steps required.


• [see example codes in Python and Mathematica -> lab session]

yn+1 = yn + hy0n = yn + h�yn � |yn+1|/|yn| = |1 + h�|

y0 = �y, y(0) = y0 ) y(t) = y0 e
�t



Higher order integration schemes
• Basic idea is simple: approximate y’ more accurately, e.g. through a 

higher order polynomial, compute coefficients with Taylor expansion. 


• Standard class of methods: explicit Runge Kutta schemes,  
s stages: 
 
 
 
 
 
 
 

• Method is consistent if:



RK2
• Runge Kutta 2 - “midpoint method” 

 

• Stability: consider y’ = λ y 
 

• Q(z) is polynomial for RK-methods,  
for order p: 
 

• solution decays (stable) if


• “Standard” p-th order RK:

yn+1 = Q(h�)yn

|Q(h�)| < 1

r(z) = e
z +O(zp+1)

Q =
pX

i=0

xi

i!



“Classical Runge-Kutta” - RK4

• Computational cost/time step = 1,2,4 RHS evaluations.


• For given number of time steps RK4 is the most expensive, 
for given small global error RK4 is the cheapest. 


• In the next lecture we will find out that we can use RK4 for 
PDEs, but not RK2 or explicit Euler.

• Compute max time steps 
for y’=-y for Euler, RK2, 
RK4 = 2, 2, 2.785... 



Other integration schemes
• Higher order Runge Kutta methods can be constructed, 

tuned toward efficieny, large time steps, ...


• Runge-Kutta methods are one-step methods. Multistep: 
reuse information from previous steps (e.g. Adams-
Bashforth).


• Efficient solution of many problems requires a variable 
step size.


• Hamiltonian systems (classical mechanics): can exploit 
properties of such systems and construct integrators to 
e.g. preserve energy. Geometric integrators (e.g. 
symplectic integrators) correspond to canonical 
transformations.



Convergence

• We are ultimately only interested in the continuum solution! Is a 
discretized problem converging to the correct continuum solution? 
What is the numerical error?

X(�x) = X0 + e�x
n +O(�x

n+1)

convergence:


3 resolutions determine 
X0, e, n


consistency: check n


then compute X0



Convergence example

X(�x) = X0 + e�x
n +O(�x

n+1)

e.g. choose Δx = h, h/2, h/4.


derive:


check that ratio of differences approximates 2n


The better the resolution, the better the theoretical ratio should be 
approximated.


2 reasons for why that may not work:


algorithm is not what you think it is - converges at different order


h not yet small enough

X(h)�X(h/2)

X(h/2)�X(h/4)
=

hn �
�
h
2

�n
�
h
2

�n �
�
h
4

�n = 2n


