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Overview of EMRI modelling and self-force theory

e L. Barack and A. Pound, “Self-force and radiation reaction in general rela-
tivity”, Reports on Progress in Physics, in press (2018), arXiv:1805.10385

(The Barack-Pound review covers all of the topics below at varying levels of
detail and describes the current state of the field. It also lists multiple other
more advanced reviews.)

Perturbation theory in GR

e Chapter 7.5 and Appendix C2 of Wald’s textbook General Relativity

Gauge transformations

e M. Bruni, S. Matarrese, S. Mollerach, and S. Sonego, “Perturbations of
spacetime: gauge transformations and gauge invariance at second order
and beyond”, Class. Quant. Grav. 14, 2585 (1997), arXiv:gr-qc/9609040

e A. Pound, “Gauge and motion in perturbation theory”, Phys. Rev. D 92,
044021 (2015), arXiv:1506.02894

Geodesics in Schwarzschild and Kerr spacetimes

e Secs. 19-20 and 59-64 of Chandrasekhar’s textbook Mathematical Theory
of Black Holes

e W. Schmidt, “Celestial mechanics in Kerr spacetime”, Class. Quant.
Grav. 19, 2743 (2002), arXiv:gr-qc/0202090



Orbital evolution schemes
e Gralla-Wald, self-consistent, and osculating-geodesic approximations

— Secs. 1.4, 1.5, and 5 of A. Pound, “Motion of small objects in curved
spacetimes: An introduction to gravitational self-force”, in Fquations
of Motion in Relativistic Gravity, edited by D. Puetzfeld et al., Fun-
damental Theories of Physics 179, Springer, 2015, arXiv:1506.06245

e two-timescale approximation

— T. Hinderer and E. E. Flanagan, “T'wo timescale analysis of extreme
mass ratio inspirals in Kerr. I. Orbital Motion”, Phys. Rev. D 78,
064028 (2008), arXiv:0805.3337

Adiabatic approximation

e S. Drasco, E. E. Flanagan, and S. A. Hughes, “Computing inspirals in
Kerr in the adiabatic regime. I. The scalar case”, Class. Quant. Grav.
22, S801-846 (2005), arXiv:gr-qc/0505075

e K. Ganz, W. Hikida, H. Nakano, N. Sago, T. Tanaka, “Adiabatic Evo-
lution of three ‘Constants’ of Motion for Greatly Inclined Orbits in Kerr
spacetime”, Prog. Theor. Phys. 117, 1041-1066 (2007)

Resonances

e E. E. Flanagan and T. Hinderer, “Transient resonances in the inspirals of
point particles into black holes”, Phys. Rev. Lett. 109, 071102 (2010),
arXiv:1009.4923

Matched asymptotic expansions

e A. Pound, “Motion of small objects in curved spacetimes: An introduction
to gravitational self-force”, in Equations of Motion in Relativistic Grav-
ity, edited by D. Puetzfeld et al., Fundamental Theories of Physics 179,
Springer, 2015, arXiv:1506.06245

e A. Pound, “Nonlinear gravitational self-force: second-order equation of
motion”, Phys. Rev. D 95, 104056 (2017), arXiv:1703.02836

Puncture schemes, mode-sum “regularization”, and other practical
calculation methods

e Sec. 4 of A. Pound, “Motion of small objects in curved spacetimes: an
introduction to gravitational self-force”, in FEquations of Motion in Rel-
ativistic Gravity, edited by D. Puetzfeld et al., Fundamental Theories of
Physics 179, Springer, 2015, arXiv:1506.06245



e Secs. 3 and 4 of L. Barack, “Gravitational self force in extreme mass-ratio
inspirals”, Class. Quant. Grav. 26, 213001 (2009), arXiv:0908.1664

e B. Wardell, “Self-force: computational strategies”, in Fquations of Mo-
tion in Relativistic Gravity, edited by D. Puetzfeld et al., Fundamental
Theories of Physics 179, Springer, 2015, arXiv:1501.07322.



