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Outline of the lectures

@ Gravitational wave events and gravitational astronomy

© Methods to compute gravitational wave templates

@ Perturbative methods in general relativity

0 Einstein quadrupole moment formalism

© Generation of gravitational waves by isolated systems

@ Multipolar post-Minkowskian and matching approach

@ Flux-balance equations for energy, momenta and center of mass
6 Fokker approach to the PN equations of motion

e Post-Newtonian versus perturbation theory

@ Post-Newtonian versus post-Minkowskian

@ Spin effects in compact binary systems
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Gravitational wave events and gravitational astronomy

GRAVITATIONAL WAVE EVENTS
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Gravitational wave events and gravitational astronomy

Binary black-hole event GW150914 (1:co,virgo coliaboration 2016]
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Gravitational wave events and gravitational astronomy

The Sound of Space-Time
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Gravitational wave events and gravitational astronomy

The Sound of Space-Time
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Gravitational wave events and gravitational astronomy

Gravitational wave events [Lico/virgo 2016, 2017]

GW170104

GW170814

1 sec

time observable by LIGO-Virgo

@ For BH binaries the detectors are mostly sensitive to the merger phase and
few cycles are observed before coalescence

@ For NS binaries the detectors will be sensitive to the inspiral phase prior the
merger and thousands of cycles are observable
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Gravitational wave events and gravitational astronomy

Binary neutron star event GW170817 (1icovirgo 2017

-20 -15 -10
Time (5)

@ The signal is observed during ~ 100s and ~ 3000 cycles and is the loudest
gravitational-wave signal yet observed with a combined SNR of 32.4
@ The chirp mass is accurately measured to M = p3/°M?/5 = 1.98 M,

@ The distance is measured from the gravitational signal as R = 40 Mpc

Luc Blanchet (GReCO) PN expansion of GR Sao Paulo

Normalized energy

[E]

7/99



Gravitational wave events and gravitational astronomy

The advent of multi-messenger astronomy
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Methods to compute gravitational wave templates

METHODS TO COMPUTE GW TEMPLATES
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Methods to compute gravitational wave templates

Methods to compute GW templates
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Methods to compute gravitational wave templates

Methods to compute GW templates
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Methods to compute gravitational wave templates

The gravitational chirp of compact binaries

merger phase
numerical relativity
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Methods to compute gravitational wave templates

The GW templates of compact binaries

@ In principle, the templates are obtained by matching together:
o A high-order 3.5PN waveform for the inspiral [Blanchet et al. 1998, 2002, 2004]
e A highly accurate numerical waveform for the merger and ringdown
[Pretorius 2005; Baker et al. 2006; Campanelli et al. 2006]
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Methods to compute gravitational wave templates

The GW templates of compact binaries

@ In principle, the templates are obtained by matching together:

o A high-order 3.5PN waveform for the inspiral [Blanchet et al. 1998, 2002, 2004]
e A highly accurate numerical waveform for the merger and ringdown
[Pretorius 2005; Baker et al. 2006; Campanelli et al. 2006]

@ In the practical data analysis, for black hole binaries (such as GW150914),
effective methods that interpolate between the PN and NR play a key role:
o Hybrid inspiral-merger-ringdown (IMR) waveforms [Ajith et a/. 2011] are
constructed by matching the PN and NR waveforms in a time interval
through an intermediate phenomenological phase
o Effective-one-body (EOB) waveforms [Buonanno & Damour 1998] are based on
resummation techniques extending the domain of validity of the PN
approximation beyond the inspiral phase
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Methods to compute gravitational wave templates

The GW templates of compact binaries

@ In principle, the templates are obtained by matching together:
o A high-order 3.5PN waveform for the inspiral [Blanchet et al. 1998, 2002, 2004]
e A highly accurate numerical waveform for the merger and ringdown
[Pretorius 2005; Baker et al. 2006; Campanelli et al. 2006]

@ In the practical data analysis, for black hole binaries (such as GW150914),
effective methods that interpolate between the PN and NR play a key role:
o Hybrid inspiral-merger-ringdown (IMR) waveforms [Ajith et a/. 2011] are
constructed by matching the PN and NR waveforms in a time interval
through an intermediate phenomenological phase
o Effective-one-body (EOB) waveforms [Buonanno & Damour 1998] are based on
resummation techniques extending the domain of validity of the PN
approximation beyond the inspiral phase

@ In the case of neutron star binaries (such as GW170817), the masses are
smaller and the templates are entirely based on the 3.5PN waveform
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Methods to compute gravitational wave templates

Methods to compute PN equations of motion

o
o
o
(%]
o

ADM Hamiltonian canonical formalism [Ohta et al. 1973; Schifer 1985]

EOM in harmonic coordinates [Damour & Deruelle 1985; Blanchet & Faye 1998, 2000]
Extended fluid balls [Grishchuk & Kopeikin 1986]

Surface-integral approach [itoh, Futamase & Asada 2000]

Effective-field theory (EFT) [Goldberger & Rothstein 2006; Foffa & Sturani 2011]

EOM derived in a general frame for arbitrary orbits
Dimensional regularization is applied for UV divergences!
Radiation-reaction dissipative effects added separately by matching

Spin effects can be computed within a pole-dipole approximation

Tidal effects incorporated at leading 5PN and sub-leading 6PN orders

LExcept in the surface-integral approach
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Methods to compute gravitational wave templates

Methods to compute PN radiation field

@ Multipolar-post-Minkowskian (MPM) & PN [Blanchet-Damour-lyer 1986, . . ., 1998]
@ Direct iteration of the relaxed field equations (DIRE) [will-Wiseman-Pati 1996, . . .]
@ Effective-field theory (EFT) [Hari Dass & Soni 1982; Goldberger & Ross 2010]

@ Involves a machinery of tails and related non-linear effects

@ Uses dimensional regularization to treat point-particle singularities

@ Phase evolution relies on balance equations valid in adiabatic approximation
@ Spin effects are incorporated within a pole-dipole approximation

@ Provides polarization waveforms for DA & spin-weighted spherical harmonics
decomposition for NR
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Perturbative methods in general relativity

PERTURBATIVE METHODS IN GENERAL RELATIVITY
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Perturbative methods in general relativity

General problem of linear perturbations

@ Suppose we know a solution g(z) of the second-order PDE

E[ﬁ(m)] =0
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Perturbative methods in general relativity

General problem of linear perturbations

@ Suppose we know a solution g(z) of the second-order PDE
E[g(z)] =0
@ Assume a one-parameter family of solutions g(x, A) with g(z,0) = g(z)

E[g(x,/\)] =0
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Perturbative methods in general relativity

General problem of linear perturbations

@ Suppose we know a solution g(z) of the second-order PDE
Efg(x)] =0
@ Assume a one-parameter family of solutions g(x, A\) with g(z,0) = g(z)
E[g(a:, /\)] =0

@ Defining h(z) = (0g/0X)(x,0) we obtain the linear second-order PDE

OF OF
h—[g] + Oh——[g] + 0%
5y 7 M5ag) 7

oFE _
o) 7 =
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Perturbative methods in general relativity

General problem of linear perturbations

@ Suppose we know a solution g(z) of the second-order PDE
Efg(x)] =0
@ Assume a one-parameter family of solutions g(x, A\) with g(z,0) = g(z)
E[g(a:, /\)] =0

@ Defining h(z) = (0g/0X)(x,0) we obtain the linear second-order PDE

OF OF
h—[g] + Oh——[g] + 0%
5y 7 M5ag) 7

oFE _
o) 7 =

@ A good approximation to the exact solution g(x, \) for non-zero but small X is

gin(z) =g(z) + Ah(z)

Luc Blanchet (GReCO) PN expansion of GR Sao Paulo 17 /99



Perturbative methods in general relativity

Reliability of the perturbative equations

@ To any one-parameter family of solutions g(x, \) corresponds a solution h(z)
of the linear perturbative equations

@ But the converse is not necessarily true, i.e. given a solution h(z) there does
not necessarily exist an exact solution such that h(z) = (9g/0)\)(x,0)

@ More generally, an infinite set of solutions h,(z) (with n € N) of the
perturbation equations to all non-linear orders n does not necessarily come
from the Taylor expansion of some exact solution g(x,\) when A — 0

Knowing if it does is the problem of the reliability of the perturbation equations
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Perturbative methods in general relativity

Einstein field equations as a “Probleme bien posé”

o Start with the GR action for the metric g, with the matter term

SGR d4='17 vV —g R + Sm [g/Lu) \I/]
—_———

matter fields

o«
167G

Einstein-Hilbert action
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Perturbative methods in general relativity

Einstein field equations as a “Probleme bien posé”

o Start with the GR action for the metric g, with the matter term

SGR d4='17 vV —g R + Sm [g/Lu) \I/]
—_———

matter fields

o«
167G

Einstein-Hilbert action

@ Add the harmonic coordinates gauge-fixing term (where g*” = \/—gg")

c? 4 1
= T 5 — — T a.al Q- Buv
SR = 162G /d x(ﬂR 58050,8"0,8 ) + S

gauge-fixing term
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Perturbative methods in general relativity

Einstein field equations as a “Probleme bien posé”

o Start with the GR action for the metric g, with the matter term

SGR d4='17 vV —g R + Sm [g/Lu) \I/]
—_———

matter fields

o«
167G

Einstein-Hilbert action

@ Add the harmonic coordinates gauge-fixing term (where g*” = \/—gg")

c? 4 1
= T 5 — — T a.al Q- Buv
SR = 162G /d x(ﬂR 58050,8"0,8 ) + S

gauge-fixing term

@ Get a well-posed system of equations [Hadamard 1932; Choquet-Bruhat 1952

non-linear source term
y o 167G o -, >
0" 0h,0°" = ——lgIT*" + £*"[g, 0]
Oug™ =0
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Perturbative methods in general relativity

Perturbation around Minkowski space-time

Assume space-time slightly differs from Minkowski space-time 7,3

g =n® 4+ h?  with |hl <1

non-linear source term
167G i’ > 167G
af _ af af 2 — af
One? = == 19T + AF[h,0h, 0] = —= ¢
stress-energy pseudo-tensor

9, h" =0

N———r

harmonic-gauge condition

where 00 = 7"¥0,,0, is the flat d'Alembertian operator
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Perturbative methods in general relativity

The post-Minkowskian approximation

[Bertotti 1956; Bertotti & Plebanski 1960; Westpfahl et al. 1980, 1985; Bel et al. 1981; etc,]

Appropriate for weakly self-gravitating isolated matter sources

M mass of source

_GM <1
EPM = 2a a size of source

gﬂé,@ — naﬂ + Z aQr haﬁ

%,_/
G labels the PM expansion

know from previous iterations

167G

B B B
Ohy = = 19116y + Ay thay, - )]
0 h(n) =
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Perturbative methods in general relativity

Post-Newtonian expansion

[Lorentz & Droste 1917; Einstein, Infeld & Hoffmann 1932; Fock 1959; Chandrasekhar 1965; etc.]

Valid for isolated matter sources that are at once slowly moving, weakly stressed
and weakly gravitating (so-called post-Newtonian source) in the sense that

700

Tii
00

U
o) <1

)

EpN = max ’ ,

@ cpn plays the role of a slow motion estimate epy ~ v/c < 1

@ For self-gravitating sources the internal motion is due to gravitational forces
(e.g. a Newtonian binary system) hence v> ~ GM/a

o Gravitational wavelength A\ ~ ¢P where P ~ a/v is the period of motion

s}

v
5~ T EPN
c

>
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Perturbative methods in general relativity

Post-Newtonian expansion

[ rentz & Droste 1917; Einstein, Infeld & Hoffmann 1932; Fock 1959; Chandrasekhar 1965; etc.]

near zone

@ Near zone defined by r < A\ covers entirely the post-Newtonian source

@ General PN expansion inside the source’s near zone

1
Sﬁ(x,t, c) = Z (‘—phg‘ﬁ(x, t,Inc)
p>2

Sao Paulo 23/

PN expansion of GR
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Perturbative methods in general relativity

Multipolar expansion

[e.g. Pirani 1964; Geroch 1970; Hansen 1974; Thorne 1980; Simon & Beig 1983; Blanchet 1998]

Valid in the exterior of any possibly strong field isolated source

a size of source

a .
-<1 r distance to source
T .
A ~ cP wavelength of radiation
I, ~ Ma* Jr ~ Ma‘v (L =iy---ip)
—_—— —_——
mass-type multipole moment current-type multipole moment

Split space-time into near zone r < A and wave zone > A

JL G S
iz ~ 2 Z [r“‘l cr“l] fowz ~ r ; o T

r<<A >\

Sao Paulo

24 /99
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Perturbative methods in general relativity

Multipolar expansion

[e.g. Pirani 1964; Geroch 1970; Hansen 1974; Thorne 1980; Simon & Beig 1983; Blanchet 1998]

@ The radiative multipolar field in the wave zone

e Y gy
hwz ~ E; 7—’_76“'1

is actually a PN expansion in the case of a PN source

Luc Blanchet PN expansion of GR
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Perturbative methods in general relativity

Multipolar expansion

[e.g. Pirani 1964; Geroch 1970; Hansen 1974; Thorne 1980; Simon & Beig 1983; Blanchet 1998]

@ The radiative multipolar field in the wave zone

e > Y gy

ct ct+1

@ The quadrupole moment formalism gives the lowest order PN contribution to
the radiation field due to the mass type quadrupole moment (¢ = 2)

i = Qu+O(k)
1
Qi(t) = / d*x pn(x,t) (l‘ixj - 5ijr2>
PN source S—— 3

Newtonian
mass density

25 /99

Luc Blanchet (G PN expansion of GR Sao Paulo



EINSTEIN QUADRUPOLE MOMENT FORMALISM
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Einstein quadrupole moment formalism

Quadrupole moment formalism [Einstein 1918; Landau & Lifchitz 1947]

y g 2 2 4 X R ¥ ' Z f - Ay Z’/
7 r . — - — A / w——— . 4 '

@ Einstein quadrupole formula

GW 30)..430).. 2
dENT _ G dQldeZJ+O(g)
dt 5¢ | de3  de3 c
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Einstein quadrupole moment formalism

Quadrupole moment formalism [Einstein 1918; Landau & Lifchitz 1947]

r "'__"? ?' s X R g . < ( —7 .-,- Z'/
o ~ S i — / / - A 4 p

@ Einstein quadrupole formula

GW 30)..430).. 2
dENT _ G dQldeZJ+O(g)
dt 5¢ | de3  de3 c

@ Amplitude quadrupole formula

T_ 26 [dQ; (, R oL
hij T AR\ de2? t c +O(c) +0 R2
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Einstein quadrupole moment formalism

Quadrupole moment formalism [Einstein 1918; Landau & Lifchitz 1947]

r "'__"? ?' s X R g . < ( —7 .-,- Z'/
o ~ S i — / / - A 4 p

@ Einstein quadrupole formula

GW 30)..430).. 2
dENT _ G dQldeZJ+O(g)
dt 5¢ | de3  de3 c

@ Amplitude quadrupole formula

T_ 26 [dQ; (, R oL
hij T AR\ de2? t c +O(c) +0 R2

© Radiation reaction formula [Chandrasekhar & Esposito 1970; Burke & Thorne 1970]

2G . d5Q; v\ 7
reac _ _ T J 1) e
£ 2 g 0 (5)

which is a 2.5PN ~ (v/c)® effect in the source’s equations of motion
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Einstein quadrupole moment formalism

Application to COmpaCt binaries [Peters & Mathews 1963; Peters 1964]

a semi-major axis of relative orbit
e eccentricity of relative orbit
w = 2% orbital frequency

M=m;+m o 1
u:L}\}l"z Plv=gp 0<vsg

Averaged energy and angular momentum balance equations

0y =~ (T = g8

are applied to a Keplerian orbit (using Kepler's law GM = w?a?)

dP,  192r <27TGM>5/3 1+ 13e? 4 2Tet

w57\ 7P (1—e2)7/2
de 6087 e [2nGM\/® 1+ 12Le2

<7> — _ v— 304
de 15¢5 P P (1 —e2)5/2

Sao Paulo
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Einstein quadrupole moment formalism

Orbital phase evolution of compact binaries

[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

@ Compact binaries are circularized when they enter the detector's bandwidth

Mc? 32¢5
- vw FOW = T2 25

E =
2 5 G

2/3 . .
where z = (€8w) /% denotes a small PN parameter defined with w
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Einstein quadrupole moment formalism

Orbital phase evolution of compact binaries

[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

@ Compact binaries are circularized when they enter the detector's bandwidth

Mc? 32¢°
E = — fGW e~ 2.5
5V ek
where z = (—G“34“’)2/3 denotes a small PN parameter defined with w

@ Equating € = —7°W gives a differential equation for z

- = — —
a5 GM° 25

dr 64 Sv w  96v (GMw>5/3
== ("=

Luc Blanchet (GR @ PN expansion of GR Sao Paulo
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Einstein quadrupole moment formalism

Orbital phase evolution of compact binaries

[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

@ Compact binaries are circularized when they enter the detector's bandwidth

325 4 &

M2 oW
—2V2E F =+C

E =

2/3 . .
where z = (€8w) /% denotes a small PN parameter defined with w

@ Equating € = —7°W gives a differential equation for z
dr _64chv o @ _ 96w (GMuw o/
dt 5 GM w2 5 c?

© This permits to solve for the orbital phase

qbz/wdt:/gdw
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Einstein quadrupole moment formalism

Orbital phase evolution of compact binaries

[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

@ The amplitude and phase evolution follow an adiabatic chirp in time

256 G3 M3w 1/4
ol = (25 - 0)
1 /256 ¢3 5/8
o) = b~ g3, (%5 artte )

W h‘{\‘(1‘\‘\JV\U'\“"\.\"j‘l(u'w‘!“ﬂj\"’!}"

Gravitational Wave Signal

i L i L i i
[} oo 002 0.03 0.04 0.0s o.0s 0.07 0.08 0.09 o1
Time

Luc Blanchet (GReCO PN expansion of GR Sao Paulo 30 /99



Einstein quadrupole moment formalism

Orbital phase evolution of compact binaries

[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

@ The amplitude and phase evolution follow an adiabatic chirp in time

v - (B .- 1) "

5 cb

1 (256 v 5/8
o) = 6o o (B2 £ 1 -0)

@ The amplitude and orbital frequency diverge at the instant of coalescence ¢,
since the approximation breaks down

1

0.5

AR U‘ ‘H\M \‘H\‘H‘UH“H‘ ‘M'

Gravitational Wave Signal

i L i L i i
[} oo 002 0.03 0.04 0.0s o.0s 0.07 0.08 0.09 o1
Time
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Einstein quadrupole moment formalism

Waveform of inspiralling compact binaries

observer

~ orbital plane

ascending node

2Gu ( GMw 2/3 .
= Sp ( = ) (1 + cos? i) cos (2¢)
2Gu [ GMw\?? o
hy = 5 ( = > (2 cosi) sin (2¢)

The distance of the source R is measurable from the GW signal [Schutz 1986]
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Generation of gravitational waves by isolated systems

GENERATION OF GRAVITATIONAL WAVES
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Generation of gravitational waves by isolated systems

Isolated matter system in general relativity

: : ¢ La
” : : ” exterior zone
o i v -
" ¢ e I
* inner zone * 5
* : : * *

isolated matter
system
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Generation of gravitational waves by isolated systems

Isolated matter system in general relativity

( radiation field observed
\ ; ; ’05 at large distances
i : i
”0 i ? O 0{ hl
* : N exterior zone |
. i [P L A
‘ * / > ;
‘,‘ inner zone
. ; ;
*
*e *

radiation reaction :
inside the source

— i i
Freac ,

isolated matter
system
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Generation of gravitational waves by isolated systems

Isolated matter system in general relativity

@ Generation problem

o What is the gravitational radiation field generated in a detector at large
distances from the source?
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Generation of gravitational waves by isolated systems

Isolated matter system in general relativity

@ Generation problem

o What is the gravitational radiation field generated in a detector at large
distances from the source?

@ Propagation problem

o Solve the propagation effects of gravitational waves from the source to the
detector, including non-linear effects
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Generation of gravitational waves by isolated systems

Isolated matter system in general relativity

@ Generation problem

o What is the gravitational radiation field generated in a detector at large
distances from the source?

@ Propagation problem

o Solve the propagation effects of gravitational waves from the source to the
detector, including non-linear effects

© Motion problem

o Obtain the equations of motion of the matter source including all conservative
non-linear effects
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Generation of gravitational waves by isolated systems

Isolated matter system in general relativity

@ Generation problem

o What is the gravitational radiation field generated in a detector at large
distances from the source?

@ Propagation problem

o Solve the propagation effects of gravitational waves from the source to the
detector, including non-linear effects

© Motion problem

o Obtain the equations of motion of the matter source including all conservative
non-linear effects

© Reaction problem

o Obtain the dissipative radiation reaction forces inside the source in reaction to
the emission of gravitational waves
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Generation of gravitational waves by isolated systems

Asymptotic structure of radiating space-time

[Bondi-Sachs formalism 1960s]

1t
future infinity |

future null infinity

past null infinity
\

past infinity | B
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Generation of gravitational waves by isolated systems

Notion of asymptotic flatness penose 1963 1065]

Definition: [e.g. Geroch & Horowitz 1978]

A space-time (M, g ) is said to be asymptotically simple at null
infinity if there exists a C'* manifold M with boundary J
together with a C° Lorentz metric gog and a C'™° scalar field {2
on M such that:
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Generation of gravitational waves by isolated systems

Notion of asymptotic flatness penose 1963 1065]

Definition: [e.g. Geroch & Horowitz 1978]

A space-time (M, g ) is said to be asymptotically simple at null
infinity if there exists a C'* manifold M with boundary J
together with a C° Lorentz metric gog and a C'™° scalar field {2
on M such that:

Q in the interior M\ J we have Jus = Q%gas;
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Generation of gravitational waves by isolated systems

Notion of asymptotic flatness penose 1963 1065]

Definition: [e.g. Geroch & Horowitz 1978]

A space-time (M, g ) is said to be asymptotically simple at null
infinity if there exists a C'* manifold M with boundary J
together with a C° Lorentz metric gog and a C'™° scalar field {2
on M such that:

Q in the interior M \ 7 we have jo5 = 02gus;
@ at the boundary 7 we have Q = 0 and §*°V,QV3Q = 0;
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Generation of gravitational waves by isolated systems

Notion of asymptotic flatness penose 1963 1065]

Definition: [e.g. Geroch & Horowitz 1978]

A space-time (M, g ) is said to be asymptotically simple at null
infinity if there exists a C'* manifold M with boundary J
together with a C° Lorentz metric gog and a C'™° scalar field {2
on M such that:

Q in the interior M \ 7 we have jo5 = 02gus;
@ at the boundary 7 we have Q = 0 and §*°V,QV3Q = 0;

@ J consists of two parts, 7 and J~, each with topology
S? x R, with the R’s being complete null generators.
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Generation of gravitational waves by isolated systems

Bondi mass versus ADM mass

radiation
P4 loss
R4

*
*
*
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Generation of gravitational waves by isolated systems

Kirchhoff’s formula

For an homogeneous solution of the wave equation Oh =0

dey 0 , |x — x/|
h(x t |XI|11—I>I~1H>0 // ( Cat) (Th) <X ot &

(X, t)

(X, t) = field point
(X', t') = source point

matter
source
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Generation of gravitational waves by isolated systems

No-incoming radiation condition

matter |
source
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Generation of gravitational waves by isolated systems

No-incoming radiation condition

. 0
matter [ '.r .’4 I
source ..o.\;fé.—const

Cd

no-incoming
radiation condition
imposed at
past null infinity

Luc Blanchet PN expansion of GR Sao Paulo 39 /99



Generation of gravitational waves by isolated systems

Two-body system formed from freely falling particles

Gravitational motion of initially free
v particles when ¢t — —00 [Eder 1989]

z(t) = Vit+Win(—t) + X + o(t?)

where V' and X are constant vectors,
and W =GMV V3

PN expansion of GR Sao Paulo 40 / 99



Generation of gravitational waves by isolated systems

Hypothesis of stationarity in the remote past

Q . .
“‘ ¢ . ‘.’ In practice all GW sources observed in
w % o .‘ astronomy (e.g. a compact binary
* “ * * .
. . . . system) will have been formed and
. R4 . . -
‘.‘ o started to emit GWs only from a finite
., ‘o’ instant in the past —7
* *
0‘ ’0
* *
iy stationary field
when
t-L <.
c
GW source

Sao Paulo 41 /99
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Multipolar post-Minkowskian and matching approach

MULTIPOLAR POST-MINKOWSKIAN APPROACH
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Multipolar post-Minkowskian and matching approach

Linearized multipolar vacuum solution [piani 1964; Thorne 1980]

Solution of linearized vacuum field equations in harmonic coordinates

Dh“ﬁ 0uhlly =0

1 =
4 = 1 . . .

=5 G (bn)

4 () 1 o ¢ 1

o _ A5 Loy Yy Lo oo (1

ha 3 Z; 7 {3L 1<r i1 +£+15mbaaL 1 o

B — 43X (=) )¢ P 11(2> 20 P 1 S0

O L2\ Sliji2 ) Ty Qa2 | SEabid L

@ multipole moments I, (u) and Jg(u) are arbitrary functions of u =t —1r/c

@ mass M = I = const, center-of-mass position G; = I; = const
linear momentum P; = Ii(l) = 0, angular momentum J; = const
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Multipolar post-Minkowskian and matching approach

Multipolar-post-Minkowskian expansion

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

@ The linearized solution is the starting point of an explicit MPM algorithm
af n Otﬁ
hatpm = ZG hy

where h?l’ﬁ)’ is defined from the multipole moments Iy, and Jp,

Luc Blanchet ( PN expansion of GR Sao Paulo
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Multipolar post-Minkowskian and matching approach

Multipolar-post-Minkowskian expansion

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

@ The linearized solution is the starting point of an explicit MPM algorithm

i = 3 1)

where hal’ﬁ)’ is defined from the multipole moments Iy, and Jp,

@ Hierarchy of perturbation equations is solved by induction over n

af _ pap
Dh(n) = A(n) [h(1)7 h(g), ceey h(n—l)]

ap
Buhll =0
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Multipolar post-Minkowskian and matching approach

Multipolar-post-Minkowskian expansion

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

@ The linearized solution is the starting point of an explicit MPM algorithm

i = 3 1)

hes

where 1 is defined from the multipole moments Iy, and Jp,

@ Hierarchy of perturbation equations is solved by induction over n

Dha (n) = A(n) [Py h2)s - Pn—1)]

ap _
0 h(n) 0

© A regularization is required in order to cope with the divergency of the
multipolar expansion when r — 0

Luc Blanchet (GR @ PN expansion of GR Sao Paulo

44 /99



Multipolar post-Minkowskian and matching approach

Multipolar-post-Minkowskian expansion

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

@ Multiply source term by 7 where B € C and integrate

ret

u?nﬁ)(B) =0} {TBA‘()‘T’LB)}

Luc Blanchet ( PN expansion of GR
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Multipolar post-Minkowskian and matching approach

Multipolar-post-Minkowskian expansion

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

@ Multiply source term by 7 where B € C and integrate

uih (B = Ot [rA¢]
@ Consider Laurent expansion when B — 0
<-1 = u*? =0
o B J< i(n) =
U(n) j; ’LL B then { ] 2 0 N Dua(i) (lnT)J A?f)

Luc Blanchet (GR @ PN expansion of GR Sao Paulo
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Multipolar post-Minkowskian and matching approach

Multipolar-post-Minkowskian expansion

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

@ Multiply source term by 7 where B € C and integrate

uih (B = Ot [rA¢]
@ Consider Laurent expansion when B — 0
i<-1 = Ou’ =0
o B IS 9 =
U(n) j; Uje,y B’ then { >0 — Du® (n) (1m«)1 A(O‘f)

@ Define the finite part (FP) when B — 0 to be the zeroth coefficient ug&)

aB _ BpafB ozB aﬂ
()fFPDm[ A(n)] then D = Af
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Multipolar post-Minkowskian and matching approach

Multipolar-post-Minkowskian expansion

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

@ Harmonic gauge condition is not yet satisfied

a -1 B— L
wf‘n) = 8uu(7’j) =FPO.! |BrP~tn; %)]
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Multipolar post-Minkowskian and matching approach

Multipolar-post-Minkowskian expansion

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

@ Harmonic gauge condition is not yet satisfied

ret

Wiy = 8uu(0‘7’j) =FPOLt [BrP~1n, %)]

Q But Dw?n) = 0 hence we can compute v?f) such that at once

Du‘()‘f) =0 and 8Nu?$ = —w(o‘n)
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Multipolar post-Minkowskian and matching approach

Multipolar-post-Minkowskian expansion

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

@ Harmonic gauge condition is not yet satisfied

= J,ug, )—FPD

ret BTB_lni ?’rz)]
Q But Dw?n) = 0 hence we can compute v?f) such that at once

Oug,y =0 and  duup) = —wiy

© Thus we define

af __
By = Uy + V)
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Multipolar post-Minkowskian and matching approach

Multipolar-post-Minkowskian expansion

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

Theorem 1:
The MPM solution is the most general solution of Einstein's vacuum equations
outside an isolated matter system

Theorem 2:
The general structure of the PN expansion is

p,q

e t.) = 3 U e

p>2
q20

Theorem 3:
The MPM solution is asymptotically flat at future null infinity in the sense of
Penrose and agrees with the Bondi-Sachs formalism

Luc Blanchet ( 2 PN expansion of GR Sao Paulo
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Multipolar post-Minkowskian and matching approach

Multipolar-post-Minkowskian expansion

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

B .
radiation
AN\ loss
K4

matter
source

mass-energy emitted in GW

u

G
Mg(u) = Mapm — 5T dt Mi(j?’)(t)M§3) (t)

higher-order multipole moments and
+ higher-order PM approximations

computable to any order by the MPM algorithm

Luc Blanchet PN expansion of GR
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Multipolar post-Minkowskian and matching approach

The MPM-PN formalism

[Blanchet 1995, 1998; Poujade & Blanchet 2002; Blanchet, Faye & Nissanke 2005]

A multipolar post-Minkowskian (MPM) expansion in the exterior zone is matched
to a general post-Newtonian (PN) expansion in the near zone

near zone
~—
- 0:(
P o
/| . o {

L
* !,.’
* exterior zone

PN source
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Multipolar post-Minkowskian and matching approach

The MPM-PN formalism

[Blanchet 1995, 1998; Poujade & Blanchet 2002; Blanchet, Faye & Nissanke 2005]

A multipolar post-Minkowskian (MPM) expansion in the exterior zone is matched
to a general post-Newtonian (PN) expansion in the near zone

near zone
~—
H 0:(
| o
AN &AL

* i

] * La
- =’ exterior zone

MR = MR

matching equation

70

PN source
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Multipolar post-Minkowskian and matching approach

The matching equation

[Lagerstr6m et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

@ This is a variant of the theory of matched asymptotic expansions

the multipole expansion M (h*?) = hol\,
match with
the PN expansion h*? = h‘;ﬁ

M(hoB) = M(h*P)

o Left side is the NZ expansion (r — 0) of the exterior MPM field
o Right side is the FZ expansion (r — +00) of the inner PN field

Luc Blanchet (G D PN expansion of GR Sao Paulo 50 / 99



Multipolar post-Minkowskian and matching approach

The matching equation

[Lagerstr6m et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

@ This is a variant of the theory of matched asymptotic expansions

the multipole expansion M (h*?) = hol\,
match with
the PN expansion h*? = h‘;ﬁ

M(hoB) = M(h*P)

o Left side is the NZ expansion (r — 0) of the exterior MPM field
o Right side is the FZ expansion (r — +00) of the inner PN field

@ The matching equation has been implemented at any post-Minkowskian
order in the exterior field and any PN order in the inner field
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Multipolar post-Minkowskian and matching approach

The matching equation

[Lagerstr6m et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

@ This is a variant of the theory of matched asymptotic expansions

the multipole expansion M (h*?) = hol\,
match with
the PN expansion h*? = h‘;ﬁ

M(hoB) = M(h*P)

o Left side is the NZ expansion (r — 0) of the exterior MPM field
o Right side is the FZ expansion (r — +00) of the inner PN field

@ The matching equation has been implemented at any post-Minkowskian
order in the exterior field and any PN order in the inner field

@ It gives a unique (formal) multipolar-post-Newtonian solution valid
everywhere inside and outside the source
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Multipolar post-Minkowskian and matching approach

The matching equation

[Lagerstrém et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

exterior zone

E——

matching zone
3 9
: near zone

actual solution
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Multipolar post-Minkowskian and matching approach

The matching equation

[Lagerstrém et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

exterior zone

E——

multipole expansion

matching zone
3 9
: near zone

actual solution

Luc Blanchet
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Multipolar post-Minkowskian and matching approach

The matching equation

[Lagerstrt')m et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

exterior zone

—

multipole expansion

matching zone
3 9
: near zone

actual solution

Luc Blanchet

PN expansion of GR
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Multipolar post-Minkowskian and matching approach

The matching equation

[Lagerstr6m et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

multipole expansion

———' E

exterior zone - matching zone
] =
: hear zone
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Multipolar post-Minkowskian and matching approach

General solution for the multipolar field (sianchet 1095, 1008]

+o0 uv
M(h™) = FPOLMA™) + 3 0 {M (T T/C)}
£=0

homogeneous retarded solution

where  MP(t FP/dsxxL/ dzde(z) 7 (x,t — zr/c)
—,_/

PN expansion of the pseudo-tensor

@ The FP procedure plays the role of an UV regularization in the non-linearity
term but an IR regularization in the multipole moments

@ From this one obtains the multipole moments of the source at any PN order
solving the wave generation problem

@ This is a formal PN solution i.e. a set of rules for generating the PN series
regardless of the exact mathematocal nature of this series
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Multipolar post-Minkowskian and matching approach

General solution for the inner PN field

[Poujade & Blanchet 2002; Blanchet, Faye & Nissanke 2004]

+oo MY (g _ puv
Y = FPDrztli_/w + ZaL {RL (t T/C) RL (t + T/C) }
T

£=0

homogeneous antisymmetric solution

where RPY(t) = FP/dSX.f?L/ dzve(z) M(TH)(x,t — 2r/c)
1

multipole expansion of the pseudo-tensor

@ The radiation reaction effects starting at 2.5PN order appropriate to an
isolated system are determined to any order

@ In particular nonlinear radiation reaction effects associated with tails are
contained in the second term and start at 4PN order

Luc Blanchet (G PN expansion of GR Sao Paulo



Multipolar post-Minkowskian and matching approach

Radiative moments at future null infinity

@ Correct for the “tortoise” logarithmic deviation of retarded time in harmonic
coordinates with respect to the actual null coordinate

radiative coordinates harmonic coordinates logarithmic deviation

. —_——
null coordinate —~N—
A R 2GM 1
S T EN
C C C CTo r
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Multipolar post-Minkowskian and matching approach

Radiative moments at future null infinity

@ Correct for the “tortoise” logarithmic deviation of retarded time in harmonic
coordinates with respect to the actual null coordinate

radiative coordinates harmonic coordinates logarithmic deviation

null coordinate — —N—
A R 2GM 1
U = T— — = TR 3 ln(r> O()
c c c cTo r

@ Asymptotic waveform is parametrized by radiative moments Uy, and Vp,

1 & 1
RIT =2 "Np oU . o ab(ilNar—1 Vivor— Ol =
ij RZ -2 Uijr—2(u) +eapNar—1 Viypr—2(u) + (R2)

£=2 mass-type current-type

Sao Paulo 54 /99

PN expansion of GR

Luc Blanchet (G



Multipolar post-Minkowskian and matching approach

Radiative moments at future null infinity

@ Correct for the “tortoise” logarithmic deviation of retarded time in harmonic
coordinates with respect to the actual null coordinate

radiative coordinates harmonic coordinates logarithmic deviation

null coordinate — —N—
A R 2GM 1
U = T— — = TR 3 ln(r> O()
c c c cTo r

@ Asymptotic waveform is parametrized by radiative moments Uy, and Vp,

1 & 1
| L— Ni_oUiir_of ab(iNar—1 Vivor— ol =
ij RZ L—2Uijr—o(u) +e¢ b(i+VaL—1 Vj)bL 2(u) + (R2)

£=2 mass-type current-type

© The radiative moments Uy, and V7, are the observables of the radiation field

at future null infinity

Sao Paulo 54 /99
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Multipolar post-Minkowskian and matching approach

The 4.5PN radiative quadrupole moment

+oo
Ui (t) = I () + G dril(t —7) [2 In <T> + H]

) 03 0 27-0 6
1.5PN tail integral
G| 2 [t 3y
+ 5{—7/ dTI((l‘l)L-IJ(-‘;)a(t — T) + instantaneous terms}
¢ 0

2.5PN memory integral

G2M? [t ) of T 57 T 124627
arlP(t—7) 2 (— ) + = In | —
T s /0 Ty =) [ . <2TO> *35 n(m) + 22050]

3PN tail-of-tail integral

G3M? [T 4. 5( 7 129268 428
drl(t—71) |z (— |+ + o+ 7
te /O Tl (=) {3 " <27’0> Tt o T 315”]

4.5PN tail-of-tail-of-tail integral
1
+0 (=
clo0
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Multipolar post-Minkowskian and matching approach

Gravitational wave tails
[Bonnor 1959; Bonnor & Rotenberg 1961; Price 1971; Blanchet & Damour 1988, 1992; Blanchet 1993, 1997]

fieldr point

The tails are produced by backscatter

of linear GWs generated by the variations
of I;; off the curvature induced by the
matter source’s total mass M

,;- /

matter source

. 4G GM [* uw—t
tail (4)

— 00

The tail is dominantly a 1.5PN effect
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Multipolar post-Minkowskian and matching approach

3.5PN energy flux of compact binaries

1PN 1.5PN tail
FW = 352éy2x5{1 =+ <— 1323467 ?; ) x4 drad/?
2.5PN tail
T 927165 5\ 8191 583 \ .
+( o072 s04 " T 18" >x+< 672 24”)“
3PN tail-of-tail
[6643739519 16 5 1712 856, oo
69854400 ' 3 105 £ 105
. <134543 41 2) 903 7754 2
7776 48 30247 T 34
16285 214745 193385 1
i <_ 504 1728 U 3024 ”2) ma'? 40 (c8>}
3.5PN tail
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Multipolar post-Minkowskian and matching approach

Measurement of PN parameters [Lico,virgo collaboration 2016]

10! ! 1 ]
GWI50914
GWISI226 | ..
@ GWIS1226,GWI50914 :

; , v [ | 3 i
10° : | '
' ||
: n

(0]

20 N

10~

OPN 0.5PN 1PN 1.5PN 2PN 2.5PN 3PN 3.5PN
PN order
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Multipolar post-Minkowskian and matching approach

Measurement of PN parameters [Lico,virgo collaboration 2016]

10! — 5 !
7 GW150914 H
] ! GWI51226 | ..
1@ GWI512264GW150914
1o , ; || 3 i
[ | i
8 10 - 8 2
1 ) B\
B A
] test of the
(O] ® i
0] e - tail effect
: \ J
_ \ y A
\ ./

Luc Blanchet (GR

0PN 0.5PN 1PN 1.5PN 2PN 2.5PN 3PN 3.5PN

PN order

PN expansion of GR
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Multipolar post-Minkowskian and matching approach

4-5PN CoeffiCiel’lt in the GW ﬂUX [Marchand, Blanchet, Faye 2017]

field point

(dE>4'5PN 328, 4 {(265978667519 6848

i 5G 0" 745113600 105 'F
342Uy [206224 4L, N
105 * 2176 12"

1
(133112905 , 3719141 5\ )
290304 38016

matter source

@ The 4.5PN tail effect represents the complete 4.5PN coefficient in the GW
energy flux in the case of circular orbits

o Perfect agreement with results from BH perturbation theory in the small
mass ratio limit v — 0 [Tanaka, Tagoshi & Sasaki 1996]

@ However the 4PN term in the flux is still in progress
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FLUX-BALANCE EQUATIONS FOR ENERGY & MOMENTA
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Flux-balance equations for energy, momenta and center of mass

Gravitational radiation reaction to 4PN order

For general matter systems the 4PN radiation reaction derives from radiation
reaction potentials valid in a specific extension of the [Burke & Thorne 1971] gauge

2.5PN radiation reaction 3.5PN scalar correction
G i G ik 10 _ L 2 i (1)
Vreac = — 5e 5 j[ +07 |:189(17J I’i,jk: — %T’ $JIIJ
AGPM o [T o T 11 1
- i dr 10t —7) |In [ == o
oo ool (5) 5o ()

4PN radiation reaction tail

G k6 4 ) 1
V;reac — ci5 |:21xﬂ ]jk' 45 €ij kxj J +O 077

3.5PN vector correction
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Flux-balance equations for energy, momenta and center of mass

Radiation reaction derivation of balance equations

@ Metric accurate to 1PN order for conservative effects and to 3.5PN order for
dissipative radiation reaction effects

= 1+2V 2V2+19 +19 + 0O !
goo = 2 ! 6 600 P 800 10

W v Lol
gOZ - CS 05 501 C7 701 69

2y 4 1 1
9ij = 6ij (1 + 02) + 674 (Wij — 5ijWkk) + 676 .gij + O <C8>
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Flux-balance equations for energy, momenta and center of mass

Radiation reaction derivation of balance equations

@ Metric accurate to 1PN order for conservative effects and to 3.5PN order for
dissipative radiation reaction effects

= 1+2V 2V2+19 +19 + 0O !
goo = 2 ! 6 600 P 800 10

W v Lol
goi = 63 C5 501 C7 701 69

2y 4 1 1
9ij = 6ij (1 + 02) + 674 (Wij — 5ijWkk) + 676 .gij + O <C8>

@ Potentials are composed of a conservative part and a dissipative one

_ cons eac
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Flux-balance equations for energy, momenta and center of mass

Radiation reaction derivation of balance equations

@ Metric accurate to 1PN order for conservative effects and to 3.5PN order for
dissipative radiation reaction effects

= 1+2V 2V2+19 +19 + 0O !
goo = 2 ! 6 600 P 800 10

W v Lol
goi = 63 C5 501 C7 701 69

2y 4 1 1
9ij = (57;j (1 + 02) + 674 (WU — 6ijWkk) + 676 .gij + O <C8>
@ Potentials are composed of a conservative part and a dissipative one

_ cons eac

@ Flux balance equations are obtained by integrating the matter equations of
motion V,TH*” = 0 over the source

1
ay(\/ _gT:) = 5 v~y a,ugpang
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Flux-balance equations for energy, momenta and center of mass

Radiation reaction derivation of balance equations

@ Define the matter current and stresses

TOO —I—Tii TOi B
o = - 3 g; = 045 = T
c c

@ To conservative 1PN order the invariants of the matter system are given by

1 1
E = /d3x (002+20U—0i¢+ 62[—40Wii+20iUi+~--])
5 1 1
JiZEijk d XX O'k—l-g 40’kU—4UUk—§O'akatX
= [ a3 L s0.0,x
P = X 01—2620 10t

1 U
Gi = /dSXIi <0'+ g |:J2 a'jj:|>

Luc Blanchet (GReCO PN expansion of GR Sao Paulo 63 /99



Flux-balance equations for energy, momenta and center of mass

Radiation reaction derivation of balance equations

© Well known results for the energy and angular momentum

111 1 1
e _ G (11<3)I(3) + 1 {1(4)1(4) n GJ(s)J@D Lo <)
4571 i 3

dt S \5 W T 2 [189 HkTik
s _ G 2.0, 1 11e @ 320,50 1
P (5Ijl La' + 2 | gz limfem + 5750 T | | T O 5
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Flux-balance equations for energy, momenta and center of mass

Radiation reaction derivation of balance equations

© Well known results for the energy and angular momentum

e _ ¢ (1I<3>I<3>+ 1 { 1 ;@ J<3)J<3>]> +O<cls)

dt S \5 9 189wk uk F

dfi G () 1(3) 3) ;@ | 325050 1
P (5Ijz Ly + > 63IJlmIklm TR Rl
@ And for linear momentum (this effect responsible for the recoil of the source)

dp, G2 16 1
i _ [ 107 16 e J<3>] Lo (cg>

dt 63 WkTik T 45
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Flux-balance equations for energy, momenta and center of mass

Radiation reaction derivation of balance equations

© Well known results for the energy and angular momentum

dE G (1 (3) 7(3) 1 1 (4) 7(4) 16 7(3) (3) 1
dt c® (51” Iij ¢ | 189 Wk ik T 457 Jij © c8
dJ; G 2 (2) 1(3) 1 1 (3) +(4) 32 (2) 7(3) 1
dt c5€ijk (SIjl T 2 6377 Liam 457t Tk © 8

@ And for linear momentum (this effect responsible for the recoil of the source)

3) 73) 1
Bt t] o(3)
© However we find also for the center-of-mass position [Blanchet & Faye 2018

o (%)

Strangely enough this formula does not appear in the GW litterature

Luc Blanchet (GReCO)

2
2 ;@)

63 ijk* ik

dp

ar _ G
dt

c7

16
45

_ 26 e

21¢7 ijk* ik

dG;
dt

K2

PN expansion of GR
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Flux-balance equations for energy, momenta and center of mass

Direct calculation of the GW fluxes at infinity

@ Introduce a retarded null coordinate u satisfying

‘g‘“’@uuﬁyu =0 ‘

@ For instance choose u =t — r,/c with the tortoise coordinate

r. =14+ 2G2]\4 In <r> @) (1>
c 70 r
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Flux-balance equations for energy, momenta and center of mass

Direct calculation of the GW fluxes at infinity

@ Perform a coordinate change (¢,x) — (u,X) in the conservation law of the
pseudo-tensor 9,7 = 0 to get

0 o :
_~ |10 b . _
Bl (x,u+1rye/c) —n,T (x,qur*/c)} +8z{7' (x,u+r*/c)} 0
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Flux-balance equations for energy, momenta and center of mass

Direct calculation of the GW fluxes at infinity

@ Perform a coordinate change (¢,x) — (u,X) in the conservation law of the
pseudo-tensor 9,7 = 0 to get

(%, u 4 7, /c) — niTH(x, u+r*/c)} +0; {T“ (%, u+r*/c)} =0

cOu
@ Integrating over a volume V tending to infinity with « =const
dE ’
@ = —C . dSl T(O;W(X,U+T*/C)
dJ; :
T —5ijk/ ds; 2? Té\l/\/(X,u +7./c)
U oV
dpP? -
= — ds; 74 .
T /av i Tew (X, u+ry/c)
d(;Z 1 ij
T = P, — C/avds (a: TGW T’*’TG<N) (x,u+1y/c)
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Flux-balance equations for energy, momenta and center of mass

Direct calculation of the GW fluxes at infinity

@ Perform a coordinate change (¢,x) — (u,X) in the conservation law of the
pseudo-tensor 9,7 = 0 to get

%[T“O(X,U+T*/C) fniT’”(x,qur*/c)] +0; {7””(X,U+T*/C)] =0
cou

@ Integrating over a volume V tending to infinity with « =const

E= / d3x [7—00 —nt TOi] (x,u+1s/C)
%
1 .

Ji = = €ijk / d3x 27 |:Tk0 —nl Tkl] (x,u+7y/c)
¢ %

1 . o
P, = f/ d3X[TOZ —nl TU}(X,U'FT’*/C)
cJy

G, = l d3x [xi (Too _ ni TOj) —r, (TOi — ni Tij)} (x,u+14/C)

C2 v

Sao Paulo 67 / 99
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Flux-balance equations for energy, momenta and center of mass

Direct calculation of the GW fluxes at infinity

A long calculation to control the leading 1/r2 and subleading 1/73 terms in the
GW pseudo-tensor when r — +o0o gives the fluxes as full multipole series
parametrized by the multipole moments Iz, and Jr, up to order O(G?)

dE__io G{ (C+1)(€+2) 1) (@)
_ 5

L@\ @-nmeirnn
n 400+ 2) <é}1)<é}1)
AU—1)+n+nn 28k

dJ; = @ (C+1)(+2) © @)
du _E”"“;;c%ﬂ{(e_ Dae+ o Lt L

462(6—1— 2) (Z) (441)
(€= D)@+ Di2e+ 1yn J7et e

+c2
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Flux-balance equations for energy, momenta and center of mass

Direct calculation of the GW fluxes at infinity

A long calculation to control the leading 1/r% and subleading 1/72 terms in the

GW pseudo-tensor when r — +oo gives the fluxes as full multipole series
parametrized by the multipole moments I7, and Jr up to order O(G?)

}

dPl-__Jio G [ 26+2)(E+3) (42 ()
du )i+
n 8({+2) <é}1) <é;1)
(€ —1)(C+ 1)l(20 + 1)1 Tk F Lot JRLod
8(¢ +3) (¢2) (¢
e AU+1)(20+3)n 2t
du !
i“ G_[2L+2)(C+3) D (H1  8(E+3) (o ey
A aee+3) TP eapey)n T 0k
[Blanchet & Faye 2018]
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Fokker approach to the PN equations of motion

FOKKER APPROACH TO THE PN EOM
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Fokker approach to the PN equations of motion

The 1PN equations of motion

[Lorentz & Droste 1917; Einstein, Infeld & Hoffmann 1938]

;{," s
SRS TR

d%r 4 Gmp Gme Gmp B TBD
de2 Z =) nAB Z o Z . L
B#A AP C7a € D+#B BD
1 3
+ 0*2 (’U‘ZA + 2’023 — 4UA - v — 5(,UB . nAB)2>:|
Gm G?*mpm
# 2 ayvaolan Gop —dua)l =5 52 37
B75A B#AD;&BCTABT
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Fokker approach to the PN equations of motion

4PN: state-of-the-art on equations of motion

1PN Lorentz-Droste-Einstein-Infeld-Hoffmann term

1 5G*mimy  4G*m3 i
7 3 + 3 +... n12+...

radiation reaction

¢ T12 712
1 1 1 1 1
+74[]+ci5[]+76[]+077[] +£[ ]+O<9)
—— e e —— ———
2PN 2.5PN 3PN 3.5PN 4PN

radiation reaction conservative & radiation tail

Jaranowski & Schiafer 1999; Damour, Jaranowski & Schifer 2001ab]
Blanchet-Faye-de Andrade 2000, 2001; Blanchet & lyer 2002]

[
3PN

[ltoh & Futamase 2003; Itoh 2004]

[Foffa & Sturani 2011]

[Jaranowski & Schafer 2013; Damour, Jaranowski & Schafer 2014]
4PN

[Bernard, Blanchet, Bohé, Faye, Marchand & Marsat 2015, 2016, 2017abc]
[Foffa & Sturani 2012, 2013] (partial results)

Luc Blanchet (
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ADM Hamiltonian
Harmonic EOM
Surface integral method

Effective field theory

ADM Hamiltonian
Fokker Lagrangian
Effective field theory
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Fokker approach to the PN equations of motion

The Fokker Lagrangian approach to the 4PN EOM

Based on collaborations with

Laura Bernard, Alejandro Bohé, Guillaume Faye,
Tanguy Marchand & Sylvain Marsat

[PRD 93, 084037 (2016); 95, 044026 (2017); 96, 104043 (2017); 97, 044023 (2018); PRD 97, 044037 (2018)]
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Fokker approach to the PN equations of motion

Fokker action of IN particles rouer 1020]

@ Gauge-fixed Einstein-Hilbert action for N point particles

Sgf. = 167TG/d4 R “QWWFU}
| —

Gauge-fixing term

- ZmAcg/dt \/—(gu,,)A vl /e?
A

N point particles

@ Fokker action is obtained by inserting an explicit PN solution of the Einstein
field equations
Guv(%,1) — G, (x528(1), vp(1), )
© The PN equations of motion of the N particles (self-gravitating system) are

0S¢ _ 0Lk (8LF> 0

(S:EA - 6.’BA S dt 8’1),4
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Fokker approach to the PN equations of motion

The gravitational wave tail effect

[Blanchet & Damour 1988; Blanchet 1993, 1997; Foffa & Sturani 2011; Galley, Leibovich, Porto et al. 2016]

field pomt

@ In the near zone (4PN effect)

s = L] ldtdt 19w 19(¢)

5¢8

matter source
@ In the far zone (1.5PN effect)

. 4G GM t—t
tail (4)
Wyt = e | @ ( - >
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Fokker approach to the PN equations of motion

Problem of the UV divergences

[t'Hooft & Veltman 1972; Bollini & Giambiagi 1972; Breitenlohner & Maison 1977]

@ Einstein’s field equations are solved in d spatial dimensions (with d € C) with
distributional sources. In Newtonian approximation

2(d — 2)

AU = —4
a1

Gp

@ For two point-particles p = m9(q)(x — @1) + m2d(q)(x — T2) we get

~2(d-2)k Gmy Gmy . I (%2)
U(x,t) = -1 <|x—a:1|d—2+|x—:c2|d—2> with k—iWﬂ

2

@ Computations are performed when R(d) is a large negative number, and the
result is analytically continued for any d € C except for isolated poles

@ Dimensional regularization is then followed by a renormalization of the
worldline of the particles so as to absorb the poles oc (d — 3)~!
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Fokker approach to the PN equations of motion

Problem of the IR divergences

@ The tail effect implies the appearance of IR divergences in the Fokker action
at the 4PN order

@ Our initial calculation of the Fokker action was based on the Hadamard
regularization to treat the IR divergences (FP procedure when B — 0)

© However computing the conserved energy and periastron advance for circular
orbits we found it does not agree with GSF calculations

@ The problem was due to the HR and conjectured that a different IR
regularization would give (modulo shifts)

Gimm3m3 /. .
L=L"R+ Tw (01(n12012)2 + f’2U%2)
12

two ambiguity parameters §; and d2

@ Matching with GSF results for the energy and periastron advance uniquely
fixes the two ambiguity parameters and we are in complete agreement with
the results from the Hamiltonian formalism [DJs]

Luc Blanchet (G D PN expansion of GR Sao Paulo 76 / 99



Fokker approach to the PN equations of motion

Conserved energy for a non-local Hamiltonian

@ Because of the tail effect at 4PN order the Lagrangian or Hamiltonian
becomes non-local in time

H [Xa p] = HO (X7 p) + Hta” [X; P]
non-local piece at 4PN
@ Hamilton's equations involve functional derivatives

da? _O0H dp; _(5H
dt — op; dt ot

© The conserved energy is not given by the Hamiltonian on-shell but
E = H + AHA® + AHPC where the AC term averages to zero and

2GM 2G?M 2
AHDij 03 J—_'GW:7 <(I(3)) >

5¢5 ij

@ On the other hand [pJs] perform a non-local shift to transform the
Hamiltonian into a local one, and both procedure are equivalent
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Fokker approach to the PN equations of motion

Conserved energy for circular orbits at 4PN order

@ The 4PN energy for circular orbits in the small mass ratio limit is known from
GSF of the redshift variable [Le Tiec, Blanchet & Whiting 2012: Bini & Damour 2013]

@ This permits to fix the ambiguity parameter o and to complete the 4PN
equations of motion

2 3 v 27 19 v?
EAPN _ _HCT ) sV _et P e
2 + 4 12 v 8 + 8" 21

+<_675 [34445 205 Q]V 155 » 35 s)xg

64 576 96 06" " 5184”7

3969 123671 9037 2 896 448
+ (- 123 + ==+ — 15 In(16x)| v

T 5760 1536 15
498449 3157 ,] o 301 5 TT .\ .
{ 3456 ' 576 } s e ) ”
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Fokker approach to the PN equations of motion

Periastron advance for circular orbits at 4PN order

The periastron advanced (or relativistic precession) constitutes a second invariant
which is also known in the limit of circular o