INSTITUT D'ASTROPHYSIQUE DE PARIS

The Sound of Space-Time The Dawn of Gravitational Wave Science

INTRODUCTION TO THE POST-NEWTONIAN EXPANSION OF GR &

ANALYTIC MODELING OF GRAVITATIONAL WAVES

Luc Blanchet

Gravitation et Cosmologie ($\mathcal{GR}\mathcal{ECO}$) Institut d'Astrophysique de Paris

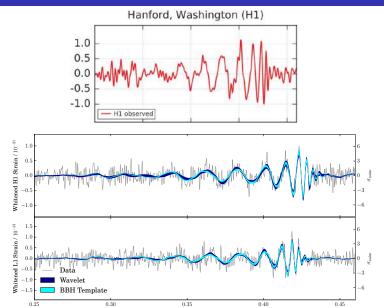
26-29 novembre 2018

Outline of the lectures

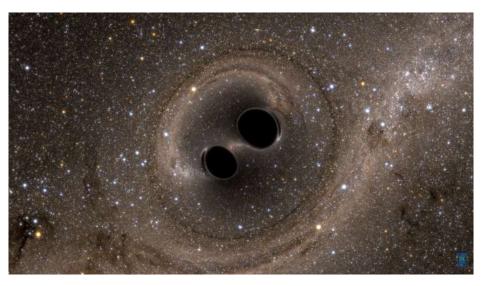
- Gravitational wave events and gravitational astronomy
- Methods to compute gravitational wave templates
- Perturbative methods in general relativity
- 4 Einstein quadrupole moment formalism
- 5 Generation of gravitational waves by isolated systems
- 6 Multipolar post-Minkowskian and matching approach
- Flux-balance equations for energy, momenta and center of mass
- 8 Fokker approach to the PN equations of motion
- Post-Newtonian versus perturbation theory
- Post-Newtonian versus post-Minkowskian
- Spin effects in compact binary systems

GRAVITATIONAL WAVE EVENTS

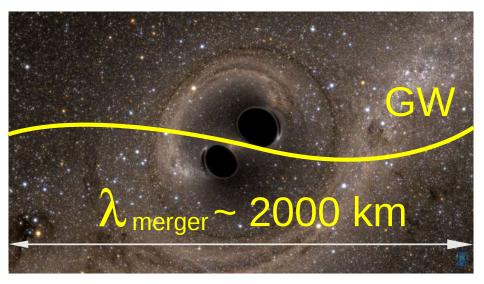
Binary black-hole event GW150914 [LIGO/Virgo collaboration 2016]



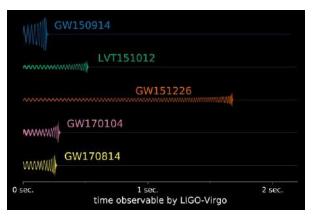
The Sound of Space-Time



The Sound of Space-Time



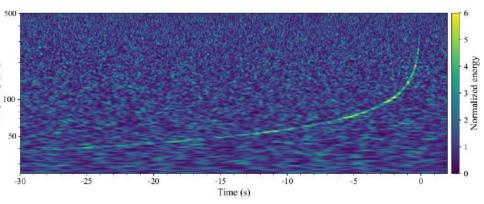
Gravitational wave events [LIGO/Virgo 2016, 2017]



- For BH binaries the detectors are mostly sensitive to the merger phase and a few cycles are observed before coalescence
- For NS binaries the detectors will be sensitive to the inspiral phase prior the merger and thousands of cycles are observable

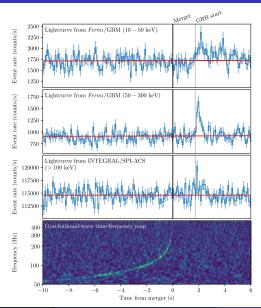
Luc Blanchet $(\mathcal{GR} \in \mathbb{CO})$ PN expansion of GR Sao Paulo

Binary neutron star event GW170817 [LIGO/Virgo 2017]



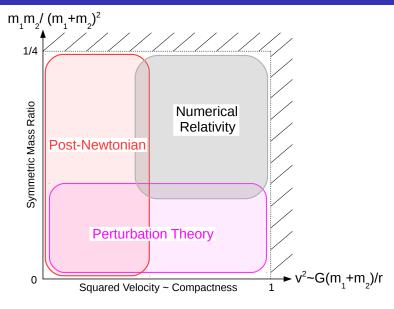
- \bullet The signal is observed during $\sim 100\,\mathrm{s}$ and ~ 3000 cycles and is the loudest gravitational-wave signal yet observed with a combined SNR of 32.4
- \bullet The chirp mass is accurately measured to $\mathcal{M}=\mu^{3/5}M^{2/5}=1.98\,M_{\odot}$
- ullet The distance is measured from the gravitational signal as $R=40~{
 m Mpc}$

The advent of multi-messenger astronomy

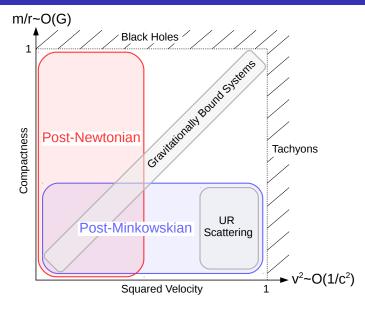


METHODS TO COMPUTE GW TEMPLATES

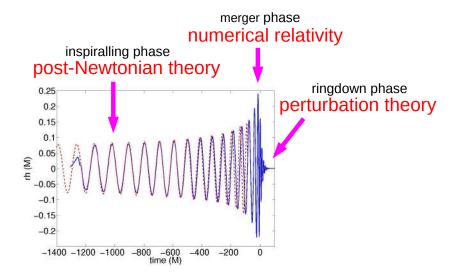
Methods to compute GW templates



Methods to compute GW templates



The gravitational chirp of compact binaries



Sao Paulo

The GW templates of compact binaries

- In principle, the templates are obtained by matching together:
 - A high-order 3.5PN waveform for the inspiral [Blanchet et al. 1998, 2002, 2004]
 - A highly accurate numerical waveform for the merger and ringdown [Pretorius 2005; Baker et al. 2006; Campanelli et al. 2006]
- In the practical data analysis, for black hole binaries (such as GW150914), effective methods that interpolate between the PN and NR play a key role:
 - Hybrid inspiral-merger-ringdown (IMR) waveforms [Ajith et al. 2011] are constructed by matching the PN and NR waveforms in a time interval through an intermediate phenomenological phase
 - Effective-one-body (EOB) waveforms [Buonanno & Damour 1998] are based on resummation techniques extending the domain of validity of the PN approximation beyond the inspiral phase
- In the case of neutron star binaries (such as GW170817), the masses are smaller and the templates are entirely based on the 3.5PN waveform

The GW templates of compact binaries

- In principle, the templates are obtained by matching together:
 - A high-order 3.5PN waveform for the inspiral [Blanchet et al. 1998, 2002, 2004]
 - A highly accurate numerical waveform for the merger and ringdown [Pretorius 2005; Baker et al. 2006; Campanelli et al. 2006]
- In the practical data analysis, for black hole binaries (such as GW150914), effective methods that interpolate between the PN and NR play a key role:
 - Hybrid inspiral-merger-ringdown (IMR) waveforms [Ajith et al. 2011] are constructed by matching the PN and NR waveforms in a time interval through an intermediate phenomenological phase
 - Effective-one-body (EOB) waveforms [Buonanno & Damour 1998] are based on resummation techniques extending the domain of validity of the PN approximation beyond the inspiral phase
- In the case of neutron star binaries (such as GW170817), the masses are smaller and the templates are entirely based on the 3.5PN waveform

The GW templates of compact binaries

- In principle, the templates are obtained by matching together:
 - A high-order 3.5PN waveform for the inspiral [Blanchet et al. 1998, 2002, 2004]
 - A highly accurate numerical waveform for the merger and ringdown [Pretorius 2005; Baker et al. 2006; Campanelli et al. 2006]
- In the practical data analysis, for black hole binaries (such as GW150914), effective methods that interpolate between the PN and NR play a key role:
 - Hybrid inspiral-merger-ringdown (IMR) waveforms [Ajith et al. 2011] are constructed by matching the PN and NR waveforms in a time interval through an intermediate phenomenological phase
 - Effective-one-body (EOB) waveforms [Buonanno & Damour 1998] are based on resummation techniques extending the domain of validity of the PN approximation beyond the inspiral phase
- In the case of neutron star binaries (such as GW170817), the masses are smaller and the templates are entirely based on the 3.5PN waveform

Luc Blanchet $(\mathcal{GR} \in \mathcal{CO})$ PN expansion of GR Sao Paulo

Methods to compute PN equations of motion

- ADM Hamiltonian canonical formalism [Ohta et al. 1973; Schäfer 1985]
- EOM in harmonic coordinates [Damour & Deruelle 1985; Blanchet & Faye 1998, 2000]
- Extended fluid balls [Grishchuk & Kopeikin 1986]
- Surface-integral approach [Itoh, Futamase & Asada 2000]
- Effective-field theory (EFT) [Goldberger & Rothstein 2006; Foffa & Sturani 2011]
- EOM derived in a general frame for arbitrary orbits
- Dimensional regularization is applied for UV divergences¹
- Radiation-reaction dissipative effects added separately by matching
- Spin effects can be computed within a pole-dipole approximation
- Tidal effects incorporated at leading 5PN and sub-leading 6PN orders

¹Except in the surface-integral approach

Methods to compute PN radiation field

- Multipolar-post-Minkowskian (MPM) & PN [Blanchet-Damour-lyer 1986, ..., 1998]
- ② Direct iteration of the relaxed field equations (DIRE) [Will-Wiseman-Pati 1996, ...]
- 3 Effective-field theory (EFT) [Hari Dass & Soni 1982; Goldberger & Ross 2010]
 - Involves a machinery of tails and related non-linear effects
 - Uses dimensional regularization to treat point-particle singularities
 - Phase evolution relies on balance equations valid in adiabatic approximation
 - Spin effects are incorporated within a pole-dipole approximation
- Provides polarization waveforms for DA & spin-weighted spherical harmonics decomposition for NR

Luc Blanchet $(\mathcal{GR} \in \mathbb{CO})$ PN expansion of GR Sao Paulo

PERTURBATIVE METHODS IN GENERAL RELATIVITY

1 Suppose we know a solution $\overline{g}(x)$ of the second-order PDE

$$E\big[\overline{g}(x)\big] = 0$$

② Assume a one-parameter family of solutions $g(x,\lambda)$ with $g(x,0)=\overline{g}(x)$

$$E[g(x,\lambda)] = 0$$

① Defining $h(x) \equiv (\partial g/\partial \lambda)(x,0)$ we obtain the linear second-order PDE

$$h\frac{\partial E}{\partial g}\left[\overline{g}\right] + \partial h\frac{\partial E}{\partial(\partial g)}\left[\overline{g}\right] + \partial^2 h\frac{\partial E}{\partial(\partial^2 g)}\left[\overline{g}\right] = 0$$

 $\ \, \textbf{0} \,$ A good approximation to the exact solution $g(x,\lambda)$ for non-zero but small λ is

$$q_{\text{lin}}(x) = \overline{g}(x) + \lambda h(x)$$

1 Suppose we know a solution $\overline{g}(x)$ of the second-order PDE

$$E\big[\overline{g}(x)\big] = 0$$

② Assume a one-parameter family of solutions $g(x,\lambda)$ with $g(x,0)=\overline{g}(x)$

$$E[g(x,\lambda)] = 0$$

① Defining $h(x) \equiv (\partial g/\partial \lambda)(x,0)$ we obtain the linear second-order PDE

$$h\frac{\partial E}{\partial g}\left[\overline{g}\right] + \partial h\frac{\partial E}{\partial(\partial g)}\left[\overline{g}\right] + \partial^2 h\frac{\partial E}{\partial(\partial^2 g)}\left[\overline{g}\right] = 0$$

 $\ \, \bullet \,$ A good approximation to the exact solution $g(x,\lambda)$ for non-zero but small λ is

$$g_{\text{lin}}(x) = \overline{g}(x) + \lambda h(x)$$

1 Suppose we know a solution $\overline{g}(x)$ of the second-order PDE

$$E\big[\overline{g}(x)\big] = 0$$

② Assume a one-parameter family of solutions $g(x,\lambda)$ with $g(x,0)=\overline{g}(x)$

$$E[g(x,\lambda)] = 0$$

3 Defining $h(x) \equiv (\partial g/\partial \lambda)(x,0)$ we obtain the linear second-order PDE

$$h\frac{\partial E}{\partial g}\left[\overline{g}\right] + \partial h\frac{\partial E}{\partial(\partial g)}\left[\overline{g}\right] + \partial^2 h\frac{\partial E}{\partial(\partial^2 g)}\left[\overline{g}\right] = 0$$

 $\ \, \textbf{0} \,$ A good approximation to the exact solution $g(x,\lambda)$ for non-zero but small λ is

$$g_{\text{lin}}(x) = \overline{g}(x) + \lambda h(x)$$

① Suppose we know a solution $\overline{g}(x)$ of the second-order PDE

$$E\big[\overline{g}(x)\big] = 0$$

② Assume a one-parameter family of solutions $g(x,\lambda)$ with $g(x,0)=\overline{g}(x)$

$$E[g(x,\lambda)] = 0$$

3 Defining $h(x) \equiv (\partial g/\partial \lambda)(x,0)$ we obtain the linear second-order PDE

$$\boxed{h\frac{\partial E}{\partial g}\left[\overline{g}\right] + \partial h\frac{\partial E}{\partial(\partial g)}\left[\overline{g}\right] + \partial^2 h\frac{\partial E}{\partial(\partial^2 g)}\left[\overline{g}\right] = 0}$$

 $\textbf{ 0} \ \, \text{A good approximation to the exact solution } g(x,\lambda) \text{ for non-zero but small } \lambda \text{ is}$

$$g_{\text{lin}}(x) = \overline{g}(x) + \lambda h(x)$$

Reliability of the perturbative equations

- ullet To any one-parameter family of solutions $g(x,\lambda)$ corresponds a solution h(x) of the linear perturbative equations
- But the converse is not necessarily true, *i.e.* given a solution h(x) there does not necessarily exist an exact solution such that $h(x) = (\partial g/\partial \lambda)(x,0)$
- More generally, an infinite set of solutions $h_n(x)$ (with $n \in \mathbb{N}$) of the perturbation equations to all non-linear orders n does not necessarily come from the Taylor expansion of some exact solution $g(x,\lambda)$ when $\lambda \to 0$

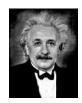
Knowing if it does is the problem of the reliability of the perturbation equations

Luc Blanchet (\mathcal{GReCO}) PN expansion of GR Sao Paulo

Einstein field equations as a "Problème bien posé"

• Start with the GR action for the metric $g_{\mu\nu}$ with the matter term

$$S_{\rm GR} = \underbrace{\frac{c^3}{16\pi G}\int {\rm d}^4 x\, \sqrt{-g}\, {\it R}}_{\rm Einstein-Hilbert\ action} + \underbrace{S_{\rm m}[g_{\mu\nu},\Psi]}_{\rm matter\ fields} \label{eq:SGR}$$



ullet Add the harmonic coordinates gauge-fixing term (where ${f g}^{lphaeta}=\sqrt{-g}g^{lphaeta}$)

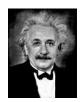
$$S_{\rm GR} = \frac{c^3}{16\pi G} \int {\rm d}^4x \bigg(\sqrt{-g}\, R \underbrace{-\frac{1}{2} \mathfrak{g}_{\alpha\beta} \partial_\mu \mathfrak{g}^{\alpha\mu} \partial_\nu \mathfrak{g}^{\beta\nu}}_{\rm gauge-fixing\ term} \bigg) + S_{\rm m}$$

• Get a well-posed system of equations [Hadamard 1932; Choquet-Bruhat 1952]

Einstein field equations as a "Problème bien posé"

• Start with the GR action for the metric $g_{\mu\nu}$ with the matter term

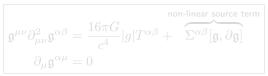
$$S_{\rm GR} = \underbrace{\frac{c^3}{16\pi G}\int {\rm d}^4 x\, \sqrt{-g\, {\it R}}}_{\rm Einstein-Hilbert\ action} + \underbrace{S_{\rm m}[g_{\mu\nu},\Psi]}_{\rm matter\ fields} \label{eq:SGR}$$



ullet Add the harmonic coordinates gauge-fixing term (where ${f g}^{lphaeta}=\sqrt{-g}g^{lphaeta}$)

$$S_{\rm GR} = \frac{c^3}{16\pi G} \int {\rm d}^4x \bigg(\sqrt{-g}\, R \underbrace{-\frac{1}{2} \mathfrak{g}_{\alpha\beta} \partial_\mu \mathfrak{g}^{\alpha\mu} \partial_\nu \mathfrak{g}^{\beta\nu}}_{\rm gauge-fixing\ term} \bigg) + S_{\rm m}$$

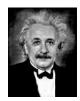
• Get a well-posed system of equations [Hadamard 1932; Choquet-Bruhat 1952]



Einstein field equations as a "Problème bien posé"

• Start with the GR action for the metric $g_{\mu\nu}$ with the matter term

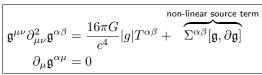
$$S_{\rm GR} = \underbrace{\frac{c^3}{16\pi G}\int {\rm d}^4 x\, \sqrt{-g}\, {\it I\hskip -2pt R}}_{\rm Einstein-Hilbert\ action} + \underbrace{S_{\rm m}[g_{\mu\nu},\Psi]}_{\rm matter\ fields} \label{eq:SGR}$$



ullet Add the harmonic coordinates gauge-fixing term (where ${\mathfrak g}^{lphaeta}=\sqrt{-g}g^{lphaeta}$)

$$S_{\rm GR} = \frac{c^3}{16\pi G} \int {\rm d}^4x \bigg(\sqrt{-g} \, R \underbrace{-\frac{1}{2} \mathfrak{g}_{\alpha\beta} \partial_\mu \mathfrak{g}^{\alpha\mu} \partial_\nu \mathfrak{g}^{\beta\nu}}_{\rm gauge-fixing \ term} \bigg) + S_{\rm m}$$

Get a well-posed system of equations [Hadamard 1932; Choquet-Bruhat 1952]



Perturbation around Minkowski space-time

Assume space-time slightly differs from Minkowski space-time $\eta_{lphaeta}$

$$\mathfrak{g}^{\alpha\beta} = \eta^{\alpha\beta} + h^{\alpha\beta}$$
 with $|h| \ll 1$

$$\Box h^{\alpha\beta} = \frac{16\pi G}{c^4} |g| T^{\alpha\beta} + \overbrace{\Lambda^{\alpha\beta}[h,\partial h,\partial^2 h]}^{\text{non-linear source term}} \equiv \frac{16\pi G}{c^4} \underbrace{\tau^{\alpha\beta}}_{\text{stress-energy pseudo-tensor}} \underbrace{\partial_\mu h^{\alpha\mu} = 0}_{\text{harmonic-gauge condition}}$$

where $\Box=\eta^{\mu\nu}\partial_{\mu}\partial_{\nu}$ is the flat d'Alembertian operator

The post-Minkowskian approximation

[Bertotti 1956; Bertotti & Plebanski 1960; Westpfahl et al. 1980, 1985; Bel et al. 1981; etc.]

Appropriate for weakly self-gravitating isolated matter sources

$$\varepsilon_{\rm PM} \equiv \frac{GM}{c^2 a} \ll 1 \quad \left\{ \begin{array}{l} M \ {\rm mass \ of \ source} \\ a \ {\rm size \ of \ source} \end{array} \right.$$

$$\mathfrak{g}^{\alpha\beta} = \eta^{\alpha\beta} + \sum_{n=1}^{+\infty} G^n \, h_{(n)}^{\alpha\beta}$$

$$\Box h_{(n)}^{\alpha\beta} = \frac{16\pi G}{c^4} |g| T_{(n)}^{\alpha\beta} \ + \ \overbrace{\Lambda_{(n)}^{\alpha\beta} [h_{(1)}, \cdots, h_{(n-1)}]}^{\text{know from previous iterations}}$$

$$\partial_\mu h_{(n)}^{\alpha\mu} = 0$$

Post-Newtonian expansion

[Lorentz & Droste 1917; Einstein, Infeld & Hoffmann 1932; Fock 1959; Chandrasekhar 1965; etc.]

Valid for isolated matter sources that are at once slowly moving, weakly stressed and weakly gravitating (so-called post-Newtonian source) in the sense that

$$\boxed{ \varepsilon_{\mathsf{PN}} \equiv \max \left\{ \left| \frac{T^{0i}}{T^{00}} \right|, \left| \frac{T^{ij}}{T^{00}} \right|^{1/2}, \left| \frac{U}{c^2} \right|^{1/2} \right\} \ll 1}$$

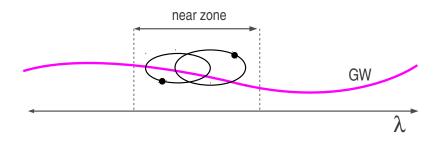
- ullet $\epsilon_{\rm PN}$ plays the role of a slow motion estimate $\epsilon_{\rm PN} \sim v/c \ll 1$
- For self-gravitating sources the internal motion is due to gravitational forces (e.g. a Newtonian binary system) hence $v^2 \sim GM/a$
- \bullet Gravitational wavelength $\lambda \sim c P$ where $P \sim a/v$ is the period of motion

$$\frac{a}{\lambda} \sim \frac{v}{c} \sim \varepsilon_{\rm PN}$$

Luc Blanchet $(GR_{\varepsilon}CO)$

Post-Newtonian expansion

[Lorentz & Droste 1917; Einstein, Infeld & Hoffmann 1932; Fock 1959; Chandrasekhar 1965; etc.]



- Near zone defined by $r \ll \lambda$ covers entirely the post-Newtonian source
- General PN expansion inside the source's near zone

$$h_{\mathsf{PN}}^{\alpha\beta}(\mathbf{x}, t, \mathbf{c}) = \sum_{p \geqslant 2} \frac{1}{c^p} h_p^{\alpha\beta}(\mathbf{x}, t, \ln c)$$

Luc Blanchet $(GR \in CO)$ PN expansion of GR

Multipolar expansion

[e.g. Pirani 1964; Geroch 1970; Hansen 1974; Thorne 1980; Simon & Beig 1983; Blanchet 1998]

Valid in the exterior of any possibly strong field isolated source

$$\frac{a}{r} < 1 \qquad \left\{ \begin{array}{l} a \text{ size of source} \\ r \text{ distance to source} \\ \lambda \sim cP \text{ wavelength of radiation} \end{array} \right.$$

$$\underbrace{I_L \sim Ma^\ell}_{\text{mass-type multipole moment}} \underbrace{J_L \sim Ma^\ell v}_{\text{current-type multipole moment}} \qquad (L = i_1 \cdots i_\ell)$$

Split space-time into near zone $r \ll \lambda$ and wave zone $r \gg \lambda$

$$\underbrace{h_{\text{NZ}} \sim \frac{G}{c^2} \sum_{\ell} \left[\frac{I_L}{r^{\ell+1}} + \frac{J_L}{cr^{\ell+1}} \right]}_{r \ll \lambda} \qquad \underbrace{h_{\text{WZ}} \sim \frac{G}{c^2 r} \sum_{\ell} \left[\frac{I_L^{(\ell)}}{c^{\ell}} + \frac{J_L^{(\ell)}}{c^{\ell+1}} \right]}_{r \gg \lambda}$$

Luc Blanchet $(\mathcal{GR}\varepsilon\mathbb{CO})$ PN expansion of GR

Multipolar expansion

[e.g. Pirani 1964; Geroch 1970; Hansen 1974; Thorne 1980; Simon & Beig 1983; Blanchet 1998]

The radiative multipolar field in the wave zone

$$h_{\rm WZ} \sim \frac{G}{c^2 r} \sum_{\ell} \left[\frac{I_L^{(\ell)}}{c^\ell} + \frac{J_L^{(\ell)}}{c^{\ell+1}} \right]$$

is actually a PN expansion in the case of a PN source

$$\boxed{\frac{I_L^{(\ell)}}{c^\ell} \sim \frac{Ma^\ell}{\lambda^\ell} \sim M\,\varepsilon_{\rm PN}^\ell}$$

• The quadrupole moment formalism gives the lowest order PN contribution to the radiation field due to the mass type quadrupole moment $(\ell=2)$

$$I_{ij} = Q_{ij} + \mathcal{O}(\varepsilon_{\text{PN}}^2)$$

$$Q_{ij}(t) = \int_{\text{PN source}} d^3\mathbf{x} \underbrace{\rho_{\text{N}}(\mathbf{x}, t)}_{\text{Newtonian mass density}} \left(x_i x_j - \frac{1}{3} \delta_{ij} r^2 \right)$$

Sao Paulo

Multipolar expansion

[e.g. Pirani 1964; Geroch 1970; Hansen 1974; Thorne 1980; Simon & Beig 1983; Blanchet 1998]

The radiative multipolar field in the wave zone

$$h_{\rm WZ} \sim \frac{G}{c^2 r} \sum_{\ell} \left[\frac{I_L^{(\ell)}}{c^\ell} + \frac{J_L^{(\ell)}}{c^{\ell+1}} \right] \label{eq:hwz}$$

is actually a PN expansion in the case of a PN source

$$\boxed{\frac{I_L^{(\ell)}}{c^\ell} \sim \frac{Ma^\ell}{\lambda^\ell} \sim M\,\varepsilon_{\rm PN}^\ell}$$

• The quadrupole moment formalism gives the lowest order PN contribution to the radiation field due to the mass type quadrupole moment ($\ell=2$)

$$\begin{split} I_{ij} &= Q_{ij} + \mathcal{O}(\varepsilon_{\mathsf{PN}}^2) \\ Q_{ij}(t) &= \int_{\mathsf{PN} \ \mathsf{source}} \mathrm{d}^3\mathbf{x} \ \underbrace{\rho_{\mathsf{N}}(\mathbf{x},t)}_{\substack{\mathsf{Newtonian} \\ \mathsf{mass \ density}}} \left(x_i x_j - \frac{1}{3} \delta_{ij} r^2 \right) \end{split}$$

Luc Blanchet $(GR \in CO)$

EINSTEIN QUADRUPOLE MOMENT FORMALISM

Quadrupole moment formalism [Einstein 1918; Landau & Lifchitz 1947]

Einstein quadrupole formula

$$\left[\left(\frac{\mathrm{d}E}{\mathrm{d}t} \right)^{\mathrm{GW}} = \frac{G}{5c^5} \left\{ \frac{\mathrm{d}^3 Q_{ij}}{\mathrm{d}t^3} \frac{\mathrm{d}^3 Q_{ij}}{\mathrm{d}t^3} + \mathcal{O}\left(\frac{v}{c}\right)^2 \right\}$$

$$h_{ij}^{\mathsf{TT}} = \frac{2G}{c^4 R} \left\{ \frac{\mathrm{d}^2 Q_{ij}}{\mathrm{d}t^2} \left(t - \frac{R}{c} \right) + \mathcal{O}\left(\frac{v}{c}\right) \right\}^{\mathsf{TT}} + \mathcal{O}\left(\frac{1}{R^2}\right)$$

$$F_i^{\rm reac} = -\frac{2G}{5c^5}\rho\,x^j\frac{{\rm d}^5Q_{ij}}{{\rm d}t^5} + \mathcal{O}\left(\frac{v}{c}\right)^7$$

Quadrupole moment formalism [Einstein 1918; Landau & Lifchitz 1947]

Einstein quadrupole formula

$$\boxed{ \left(\frac{\mathrm{d}E}{\mathrm{d}t} \right)^{\mathrm{GW}} = \frac{G}{5c^5} \left\{ \frac{\mathrm{d}^3 Q_{ij}}{\mathrm{d}t^3} \frac{\mathrm{d}^3 Q_{ij}}{\mathrm{d}t^3} + \mathcal{O}\left(\frac{v}{c}\right)^2 \right\}}$$

Amplitude quadrupole formula

$$h_{ij}^{\mathsf{TT}} = \frac{2G}{c^4 R} \left\{ \frac{\mathrm{d}^2 \mathbf{Q}_{ij}}{\mathrm{d}t^2} \left(t - \frac{R}{c} \right) + \mathcal{O}\left(\frac{v}{c}\right) \right\}^{\mathsf{TT}} + \mathcal{O}\left(\frac{1}{R^2}\right)$$

3 Radiation reaction formula [Chandrasekhar & Esposito 1970; Burke & Thorne 1970]

$$F_i^{\rm reac} = -\frac{2G}{5c^5}\rho \, x^j \frac{{\rm d}^5 Q_{ij}}{{\rm d}t^5} + \mathcal{O}\left(\frac{v}{c}\right)^7$$

27 / 99

which is a 2.5PN $\sim (v/c)^5$ effect in the source's equations of motion

Quadrupole moment formalism [Einstein 1918; Landau & Lifchitz 1947]

Einstein quadrupole formula

$$\left[\left(\frac{\mathrm{d}E}{\mathrm{d}t} \right)^{\mathrm{GW}} = \frac{G}{5c^5} \left\{ \frac{\mathrm{d}^3 \mathbf{Q}_{ij}}{\mathrm{d}t^3} \frac{\mathrm{d}^3 \mathbf{Q}_{ij}}{\mathrm{d}t^3} + \mathcal{O}\left(\frac{v}{c}\right)^2 \right\}$$

2 Amplitude quadrupole formula

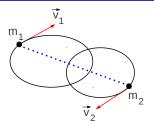
$$h_{ij}^{\mathsf{TT}} = \frac{2G}{c^4 R} \left\{ \frac{\mathrm{d}^2 \mathbf{Q}_{ij}}{\mathrm{d}t^2} \left(t - \frac{R}{c} \right) + \mathcal{O}\left(\frac{v}{c}\right) \right\}^{\mathsf{TT}} + \mathcal{O}\left(\frac{1}{R^2}\right)$$

Radiation reaction formula [Chandrasekhar & Esposito 1970; Burke & Thorne 1970]

$$F_i^{\rm reac} = -\frac{2G}{5c^5}\rho\,x^j\frac{{\rm d}^5Q_{ij}}{{\rm d}t^5} + \mathcal{O}\left(\frac{v}{c}\right)^7$$

which is a 2.5PN $\sim (v/c)^5$ effect in the source's equations of motion

Application to compact binaries [Peters & Mathews 1963; Peters 1964]



 $\left\{ \begin{array}{l} a \text{ semi-major axis of relative orbit} \\ e \text{ eccentricity of relative orbit} \\ \omega = \frac{2\pi}{P} \text{ orbital frequency} \end{array} \right.$

$$M = m_1 + m_2$$

$$\mu = \frac{m_1 m_2}{M}$$

$$\nu = \frac{\mu}{M} \quad 0 < \nu \leqslant \frac{1}{4}$$

Averaged energy and angular momentum balance equations

$$\langle \frac{\mathrm{d}E}{\mathrm{d}t} \rangle = -\langle \mathcal{F}^{\mathsf{GW}} \rangle \qquad \langle \frac{\mathrm{d}J_i}{\mathrm{d}t} \rangle = -\langle \mathcal{G}_i^{\mathsf{GW}} \rangle$$

are applied to a Keplerian orbit (using Kepler's law $GM = \omega^2 a^3$)

$$\langle \frac{\mathrm{d}P}{\mathrm{d}t} \rangle = -\frac{192\pi}{5c^5} \nu \left(\frac{2\pi GM}{P} \right)^{5/3} \frac{1 + \frac{73}{24}e^2 + \frac{37}{96}e^4}{(1 - e^2)^{7/2}}$$

$$\langle \frac{\mathrm{d}e}{\mathrm{d}t} \rangle = -\frac{608\pi}{15c^5} \nu \frac{e}{P} \left(\frac{2\pi GM}{P} \right)^{5/3} \frac{1 + \frac{121}{304}e^2}{(1 - e^2)^{5/2}}$$

[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

Compact binaries are circularized when they enter the detector's bandwidth

$$\boxed{E = -\frac{Mc^2}{2}\nu\,x \qquad \mathcal{F}^{\rm GW} = \frac{32}{5}\frac{c^5}{G}\nu^2x^5}$$

where $x=\left(\frac{GM\omega}{a^3}\right)^{2/3}$ denotes a small PN parameter defined with ω

2 Equating $\frac{dE}{dt} = -\mathcal{F}^{GW}$ gives a differential equation for x

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{64}{5} \frac{c^3 \nu}{GM} x^5 \quad \Longleftrightarrow \quad \frac{\dot{\omega}}{\omega^2} = \frac{96\nu}{5} \left(\frac{GM\omega}{c^3}\right)^{5/3}$$

$$\phi = \int \omega \, \mathrm{d}t = \int \frac{\omega}{\dot{\omega}} \, \mathrm{d}\omega$$

[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

Compact binaries are circularized when they enter the detector's bandwidth

$$\boxed{E = -\frac{Mc^2}{2}\nu\,x \qquad \mathcal{F}^{\rm GW} = \frac{32}{5}\frac{c^5}{G}\nu^2x^5}$$

where $x=\left(\frac{GM\omega}{z^3}\right)^{2/3}$ denotes a small PN parameter defined with ω

2 Equating $\frac{dE}{dt} = -\mathcal{F}^{GW}$ gives a differential equation for x

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{64}{5} \frac{c^3 \nu}{GM} x^5 \iff \frac{\dot{\omega}}{\omega^2} = \frac{96\nu}{5} \left(\frac{GM\omega}{c^3}\right)^{5/3}$$

$$\phi = \int \omega \, \mathrm{d}t = \int \frac{\omega}{\dot{\omega}} \, \mathrm{d}\omega$$

[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

Ompact binaries are circularized when they enter the detector's bandwidth

$$\boxed{E = -\frac{Mc^2}{2}\nu x \qquad \mathcal{F}^{\text{GW}} = \frac{32}{5}\frac{c^5}{G}\nu^2 x^5}$$

where $x=\left(\frac{GM\omega}{c^3}\right)^{2/3}$ denotes a small PN parameter defined with ω

 $\ \, \textbf{ Q} \,\,$ Equating $\frac{\mathrm{d}E}{\mathrm{d}t} = -\mathcal{F}^{\mathrm{GW}}$ gives a differential equation for x

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{64}{5} \frac{c^3 \nu}{GM} x^5 \quad \Longleftrightarrow \quad \frac{\dot{\omega}}{\omega^2} = \frac{96\nu}{5} \left(\frac{GM\omega}{c^3}\right)^{5/3}$$

This permits to solve for the orbital phase

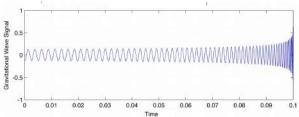
$$\phi = \int \omega \, \mathrm{d}t = \int \frac{\omega}{\dot{\omega}} \, \mathrm{d}\omega$$

[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

The amplitude and phase evolution follow an adiabatic chirp in time

$$a(t) = \left(\frac{256}{5} \frac{G^3 M^3 \nu}{c^5} (t_c - t)\right)^{1/4}$$
$$\phi(t) = \phi_c - \frac{1}{32\nu} \left(\frac{256}{5} \frac{c^3 \nu}{GM} (t_c - t)\right)^{5/8}$$

@ The amplitude and orbital frequency diverge at the instant of coalescence t_c since the approximation breaks down



Luc Blanchet (GReCO) PN expansion of GR

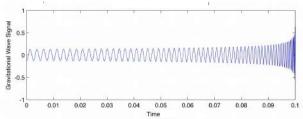
30 / 99

[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

The amplitude and phase evolution follow an adiabatic chirp in time

$$a(t) = \left(\frac{256}{5} \frac{G^3 M^3 \nu}{c^5} (t_c - t)\right)^{1/4}$$
$$\phi(t) = \phi_c - \frac{1}{32\nu} \left(\frac{256}{5} \frac{c^3 \nu}{GM} (t_c - t)\right)^{5/8}$$

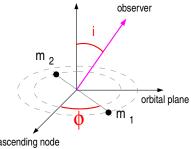
 $\ensuremath{\mathbf{@}}$ The amplitude and orbital frequency diverge at the instant of coalescence t_c since the approximation breaks down



Luc Blanchet $(\mathcal{GR} \in \mathbb{CO})$ PN expansion of GR

30 / 99

Waveform of inspiralling compact binaries



ascending node

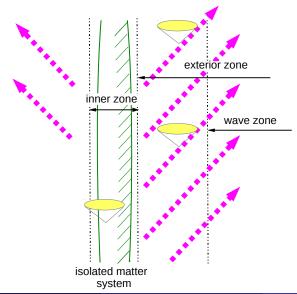
$$h_{+} = \frac{2G\mu}{c^{2}R} \left(\frac{GM\omega}{c^{3}}\right)^{2/3} \left(1 + \cos^{2}i\right) \cos\left(2\phi\right)$$
$$h_{\times} = \frac{2G\mu}{c^{2}R} \left(\frac{GM\omega}{c^{3}}\right)^{2/3} \left(2\cos i\right) \sin\left(2\phi\right)$$

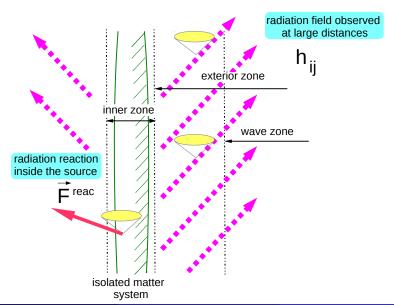
The distance of the source R is measurable from the GW signal [Schutz 1986]

Luc Blanchet $(GR \in CO)$ PN expansion of GR Sao Paulo

31 / 99

GENERATION OF GRAVITATIONAL WAVES





Generation problem

 What is the gravitational radiation field generated in a detector at large distances from the source?

Propagation problem

 Solve the propagation effects of gravitational waves from the source to the detector, including non-linear effects

Motion problem

 Obtain the equations of motion of the matter source including all conservative non-linear effects

Reaction problem

 Obtain the dissipative radiation reaction forces inside the source in reaction to the emission of gravitational waves

Luc Blanchet ($\mathcal{GR}\mathcal{ECO}$) PN expansion of GR Sao Paulo

Generation problem

 What is the gravitational radiation field generated in a detector at large distances from the source?

Propagation problem

 Solve the propagation effects of gravitational waves from the source to the detector, including non-linear effects

Motion problem

 Obtain the equations of motion of the matter source including all conservative non-linear effects

Reaction problem

• Obtain the dissipative radiation reaction forces inside the source in reaction to the emission of gravitational waves

Luc Blanchet $(GR \in CO)$ PN expansion of GR Sao Paulo

Generation problem

 What is the gravitational radiation field generated in a detector at large distances from the source?

Propagation problem

 Solve the propagation effects of gravitational waves from the source to the detector, including non-linear effects

Motion problem

 Obtain the equations of motion of the matter source including all conservative non-linear effects

Reaction problem

• Obtain the dissipative radiation reaction forces inside the source in reaction to the emission of gravitational waves

34 /

Luc Blanchet $(GR \in CO)$ PN expansion of GR Sao Paulo

Generation problem

 What is the gravitational radiation field generated in a detector at large distances from the source?

Propagation problem

 Solve the propagation effects of gravitational waves from the source to the detector, including non-linear effects

Motion problem

 Obtain the equations of motion of the matter source including all conservative non-linear effects

Reaction problem

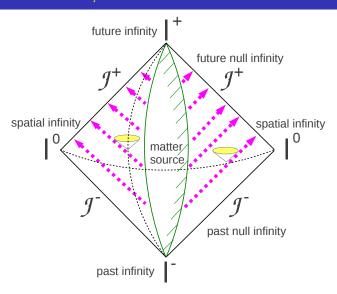
• Obtain the dissipative radiation reaction forces inside the source in reaction to the emission of gravitational waves

34 / 99

Luc Blanchet $(GR \in CO)$ PN expansion of GR Sao Paulo

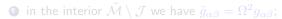
Asymptotic structure of radiating space-time

[Bondi-Sachs formalism 1960s]



Definition: [e.g. Geroch & Horowitz 1978]

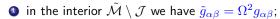
A space-time $(\mathcal{M}, g_{\alpha\beta})$ is said to be asymptotically simple at null infinity if there exists a C^{∞} manifold \mathcal{M} with boundary \mathcal{J} together with a C^{∞} Lorentz metric $\tilde{g}_{\alpha\beta}$ and a C^{∞} scalar field Ω on $\widetilde{\mathcal{M}}$ such that:



- \circ \mathcal{J} consists of two parts, \mathcal{J}^+ and \mathcal{J}^- , each with topology

Definition: [e.g. Geroch & Horowitz 1978]

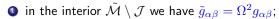
A space-time $(\mathcal{M},g_{\alpha\beta})$ is said to be asymptotically simple at null infinity if there exists a C^{∞} manifold $\tilde{\mathcal{M}}$ with boundary \mathcal{J} together with a C^{∞} Lorentz metric $\tilde{g}_{\alpha\beta}$ and a C^{∞} scalar field Ω on $\tilde{\mathcal{M}}$ such that:



- ② at the boundary ${\cal J}$ we have $\Omega=0$ and $\tilde g^{\alpha\beta}\tilde \nabla_\alpha\Omega\tilde \nabla_\beta\Omega=0$
- ② \mathcal{J} consists of two parts, \mathcal{J}^+ and \mathcal{J}^- , each with topology $S^2 \times \mathbb{R}$, with the \mathbb{R} 's being complete null generators.

Definition: [e.g. Geroch & Horowitz 1978]

A space-time $(\mathcal{M},g_{\alpha\beta})$ is said to be asymptotically simple at null infinity if there exists a C^{∞} manifold $\tilde{\mathcal{M}}$ with boundary \mathcal{J} together with a C^{∞} Lorentz metric $\tilde{g}_{\alpha\beta}$ and a C^{∞} scalar field Ω on $\tilde{\mathcal{M}}$ such that:

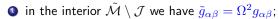


② at the boundary
$$\mathcal J$$
 we have $\Omega=0$ and $\tilde g^{\alpha\beta}\tilde \nabla_\alpha\Omega\tilde \nabla_\beta\Omega=0$;

① \mathcal{J} consists of two parts, \mathcal{J}^+ and \mathcal{J}^- , each with topology $S^2 \times \mathbb{R}$, with the \mathbb{R} 's being complete null generators.

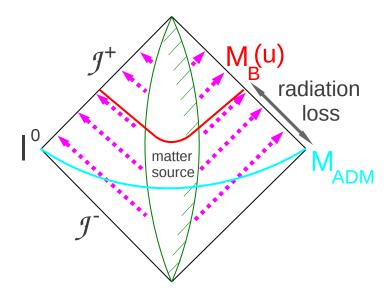
Definition: [e.g. Geroch & Horowitz 1978]

A space-time $(\mathcal{M},g_{\alpha\beta})$ is said to be asymptotically simple at null infinity if there exists a C^{∞} manifold $\tilde{\mathcal{M}}$ with boundary \mathcal{J} together with a C^{∞} Lorentz metric $\tilde{g}_{\alpha\beta}$ and a C^{∞} scalar field Ω on $\tilde{\mathcal{M}}$ such that:



- ② at the boundary $\mathcal J$ we have $\Omega=0$ and $\tilde g^{\alpha\beta}\tilde \nabla_\alpha\Omega\tilde \nabla_\beta\Omega=0$;
- $\begin{tabular}{ll} \begin{tabular}{ll} \be$

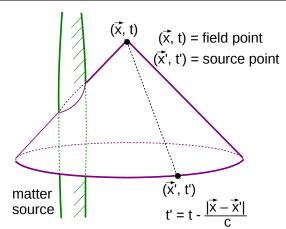
Bondi mass versus ADM mass



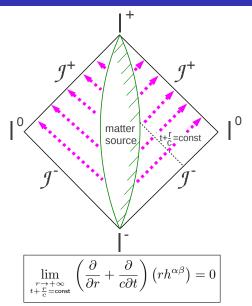
Kirchhoff's formula

For an homogeneous solution of the wave equation $\Box h = 0$

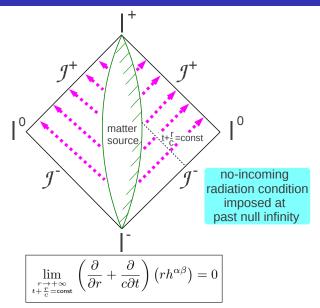
$$h(\mathbf{x},t) = \lim_{|\mathbf{x}'| \to +\infty} \iint \frac{\mathrm{d}\Omega'}{4\pi} \left(\frac{\partial}{\partial r} + \frac{\partial}{c\partial t} \right) (rh) \left(\mathbf{x}', t - \frac{|\mathbf{x} - \mathbf{x}'|}{c} \right)$$



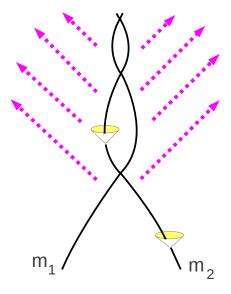
No-incoming radiation condition



No-incoming radiation condition



Two-body system formed from freely falling particles

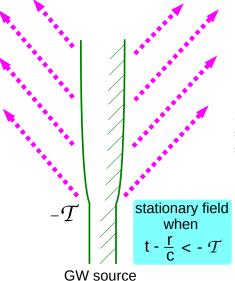


Gravitational motion of initially free particles when $t \to -\infty$ [Eder 1989]

$$\boldsymbol{x}(t) = \boldsymbol{V} t + \boldsymbol{W} \ln(-t) + \boldsymbol{X} + o(t^0)$$

where V and X are constant vectors. and $\boldsymbol{W} = GM\boldsymbol{V}/V^3$

Hypothesis of stationarity in the remote past



In practice all GW sources observed in astronomy (e.g. a compact binary system) will have been formed and started to emit GWs only from a finite instant in the past $-\mathcal{T}$

MULTIPOLAR POST-MINKOWSKIAN APPROACH

Linearized multipolar vacuum solution [Pirani 1964; Thorne 1980]

Solution of linearized vacuum field equations in harmonic coordinates

$$\Box h_{(1)}^{\alpha\beta} = \partial_{\mu} h_{(1)}^{\alpha\mu} = 0$$

$$h_{(1)}^{00} = -\frac{4}{c^2} \sum_{\ell=0}^{+\infty} \frac{(-)^{\ell}}{\ell!} \partial_L \left(\frac{1}{r} \mathbf{I_L}\right)$$

$$L = i_1 i_2 \cdots i_\ell$$

$$h_{(1)}^{0i} = \frac{4}{c^3} \sum_{\ell=1}^{+\infty} \frac{(-)^{\ell}}{\ell!} \left\{ \partial_{L-1} \left(\frac{1}{r} \frac{I_{iL-1}^{(1)}}{I_{iL-1}} \right) + \frac{\ell}{\ell+1} \varepsilon_{iab} \partial_{aL-1} \left(\frac{1}{r} \frac{J_{bL-1}}{I_{bL-1}} \right) \right\}$$

$$h_{(1)}^{ij} = -\frac{4}{c^4} \sum_{\ell=2}^{+\infty} \frac{(-)^{\ell}}{\ell!} \left\{ \partial_{L-2} \left(\frac{1}{r} \frac{I_{ijL-2}^{(2)}}{I_{ijL-2}} \right) + \frac{2\ell}{\ell+1} \partial_{aL-2} \left(\frac{1}{r} \varepsilon_{ab(i} \frac{J_{j)bL-2}^{(1)}}{J_{j)bL-2}} \right) \right\}$$

- multipole moments $I_L(u)$ and $J_L(u)$ are arbitrary functions of u = t r/c
- mass $M \equiv I = \text{const}$, center-of-mass position $G_i \equiv I_i = \text{const}$ linear momentum $P_i \equiv I_i^{(1)} = 0$, angular momentum $J_i = \mathrm{const}$

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

The linearized solution is the starting point of an explicit MPM algorithm

$$h_{\mathrm{MPM}}^{\alpha\beta} = \sum_{n=1}^{+\infty} G^n h_{(n)}^{\alpha\beta}$$

where $h_{(1)}^{lpha eta}$ is defined from the multipole moments I_L and J_L

ullet Hierarchy of perturbation equations is solved by induction over n

$$\Box h_{(n)}^{\alpha\beta} = \Lambda_{(n)}^{\alpha\beta} [h_{(1)}, h_{(2)}, \dots, h_{(n-1)}]$$
$$\partial_{\mu} h_{(n)}^{\alpha\mu} = 0$$

 \bullet A regularization is required in order to cope with the divergency of the multipolar expansion when $r\to 0$

Luc Blanchet (GReCO) PN expansion of GR Sao Paulo

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

The linearized solution is the starting point of an explicit MPM algorithm

$$h_{\text{MPM}}^{\alpha\beta} = \sum_{n=1}^{+\infty} G^n h_{(n)}^{\alpha\beta}$$

where $h_{(1)}^{lphaeta}$ is defined from the multipole moments I_L and J_L

 $oldsymbol{0}$ Hierarchy of perturbation equations is solved by induction over n

$$\Box h_{(n)}^{\alpha\beta} = \Lambda_{(n)}^{\alpha\beta}[h_{(1)}, h_{(2)}, \dots, h_{(n-1)}]$$
$$\partial_{\mu} h_{(n)}^{\alpha\mu} = 0$$

Sao Paulo

 \bullet A regularization is required in order to cope with the divergency of the multipolar expansion when $r\to 0$

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

The linearized solution is the starting point of an explicit MPM algorithm

$$h_{\text{MPM}}^{\alpha\beta} = \sum_{n=1}^{+\infty} G^n h_{(n)}^{\alpha\beta}$$

where $h_{(1)}^{lpha eta}$ is defined from the multipole moments I_L and J_L

 $oldsymbol{0}$ Hierarchy of perturbation equations is solved by induction over n

$$\Box h_{(n)}^{\alpha\beta} = \Lambda_{(n)}^{\alpha\beta}[h_{(1)}, h_{(2)}, \dots, h_{(n-1)}]$$
$$\partial_{\mu} h_{(n)}^{\alpha\mu} = 0$$

Sao Paulo

 \blacksquare A regularization is required in order to cope with the divergency of the multipolar expansion when $r\to 0$

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

 $\textbf{ 0} \ \, \text{Multiply source term by } r^{\pmb{B}} \text{ where } B \in \mathbb{C} \text{ and integrate}$

$$u_{(n)}^{\alpha\beta}({\color{black}B})=\Box^{-1}_{\mathrm{ret}}\left[r^{{\color{black}B}}\Lambda_{(n)}^{\alpha\beta}\right]$$

② Consider Laurent expansion when $B \rightarrow 0$

$$u_{(n)}^{\alpha\beta}(\pmb{B}) = \sum_{j=j_{\min}}^{+\infty} u_{j(n)}^{\alpha\beta} \pmb{B}^j \quad \text{then} \quad \left\{ \begin{array}{l} j \leqslant -1 & \Longrightarrow & \square u_{j(n)}^{\alpha\beta} = 0 \\ j \geqslant 0 & \Longrightarrow & \square u_{j(n)}^{\alpha\beta} = \frac{(\ln r)^j}{j!} \Lambda_{(n)}^{\alpha\beta} \end{array} \right.$$

① Define the finite part (FP) when B o 0 to be the zeroth coefficient $u_{0(n)}^{lpha eta}$

$$u_{(n)}^{\alpha\beta} = \mathsf{FP}\Box_{\mathrm{ret}}^{-1} \left[r^{\pmb{B}} \Lambda_{(n)}^{\alpha\beta} \right] \quad \mathsf{then} \quad \Box u_{(n)}^{\alpha\beta} = \Lambda_{(n)}^{\alpha\beta}$$

Luc Blanchet $(GR \varepsilon CO)$

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

1 Multiply source term by $r^{\pmb{B}}$ where $B \in \mathbb{C}$ and integrate

$$u_{(n)}^{\alpha\beta}(\underline{\pmb{B}}) = \Box_{\mathrm{ret}}^{-1} \left[r^{\underline{\pmb{B}}} \Lambda_{(n)}^{\alpha\beta} \right]$$

2 Consider Laurent expansion when $B \to 0$

$$u_{(n)}^{\alpha\beta}(\textbf{\textit{B}}) = \sum_{j=j_{\min}}^{+\infty} u_{j(n)}^{\alpha\beta} \textbf{\textit{B}}^{j} \quad \text{then} \quad \left\{ \begin{array}{l} j \leqslant -1 & \Longrightarrow & \square u_{j(n)}^{\alpha\beta} = 0 \\ j \geqslant 0 & \Longrightarrow & \square u_{j(n)}^{\alpha\beta} = \frac{(\ln r)^{j}}{j!} \Lambda_{(n)}^{\alpha\beta} \end{array} \right.$$

① Define the finite part (FP) when $B \to 0$ to be the zeroth coefficient $u_{0(n)}^{\alpha\beta}$

$$u_{(n)}^{\alpha\beta} = \mathsf{FP}\Box_{\mathrm{ret}}^{-1} \left[r^{\pmb{B}} \Lambda_{(n)}^{\alpha\beta} \right] \quad \mathsf{then} \quad \Box u_{(n)}^{\alpha\beta} = \Lambda_{(n)}^{\alpha\beta}$$

Luc Blanchet $(GR_{\varepsilon}CO)$

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

1 Multiply source term by $r^{\pmb{B}}$ where $B \in \mathbb{C}$ and integrate

$$u_{(n)}^{\alpha\beta}(\underline{\pmb{B}}) = \Box_{\mathrm{ret}}^{-1} \left[r^{\underline{\pmb{B}}} \Lambda_{(n)}^{\alpha\beta} \right]$$

2 Consider Laurent expansion when $B \to 0$

$$u_{(n)}^{\alpha\beta}(\textbf{\textit{B}}) = \sum_{j=j_{\min}}^{+\infty} u_{j(n)}^{\alpha\beta} \textbf{\textit{B}}^{j} \quad \text{then} \quad \left\{ \begin{array}{l} j \leqslant -1 & \Longrightarrow & \square u_{j(n)}^{\alpha\beta} = 0 \\ j \geqslant 0 & \Longrightarrow & \square u_{j(n)}^{\alpha\beta} = \frac{(\ln r)^{j}}{j!} \Lambda_{(n)}^{\alpha\beta} \end{array} \right.$$

9 Define the finite part (FP) when $B \to 0$ to be the zeroth coefficient $u_{0(n)}^{\alpha\beta}$

$$u_{(n)}^{\alpha\beta} = \mathsf{FP}\Box^{-1}_{\mathrm{ret}} \left[r^{B} \Lambda_{(n)}^{\alpha\beta} \right] \quad \text{then} \quad \Box u_{(n)}^{\alpha\beta} = \Lambda_{(n)}^{\alpha\beta}$$

Luc Blanchet $(GR_{\varepsilon}CO)$

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

Harmonic gauge condition is not yet satisfied

$$w_{(n)}^{\alpha} = \partial_{\mu} u_{(n)}^{\alpha\mu} = \mathsf{FP} \,\Box_{\mathrm{ret}}^{-1} \left[\underline{B} \, r^{\underline{B}-1} n_i \Lambda_{(n)}^{\alpha i} \right]$$

② But $\square w_{(n)}^{\alpha} = 0$ hence we can compute $v_{(n)}^{\alpha\beta}$ such that at once

$$\Box u_{(n)}^{\alpha\beta} = 0 \quad \text{and} \quad \partial_{\mu} u_{(n)}^{\alpha\mu} = -w_{(n)}^{\alpha}$$

$$h_{(n)}^{\alpha\beta} = u_{(n)}^{\alpha\beta} + v_{(n)}^{\alpha\beta}$$

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

Harmonic gauge condition is not yet satisfied

$$w_{(n)}^{\alpha} = \partial_{\mu} u_{(n)}^{\alpha\mu} = \mathsf{FP} \,\Box_{\mathrm{ret}}^{-1} \left[\underline{B} \, r^{\underline{B}-1} n_i \Lambda_{(n)}^{\alpha i} \right]$$

 $\mbox{ @ But } \square w^{\alpha}_{(n)} = 0$ hence we can compute $v^{\alpha\beta}_{(n)}$ such that at once

$$\Box u_{(n)}^{\alpha\beta} = 0 \quad \text{and} \quad \partial_{\mu} u_{(n)}^{\alpha\mu} = -w_{(n)}^{\alpha}$$

Thus we define

$$h_{(n)}^{\alpha\beta}=u_{(n)}^{\alpha\beta}+v_{(n)}^{\alpha\beta}$$

Luc Blanchet $(GR \varepsilon CO)$

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

Harmonic gauge condition is not yet satisfied

$$w_{(n)}^{\alpha} = \partial_{\mu} u_{(n)}^{\alpha\mu} = \mathsf{FP} \,\Box_{\mathrm{ret}}^{-1} \left[\underline{B} \, r^{\underline{B}-1} n_i \Lambda_{(n)}^{\alpha i} \right]$$

 $\mbox{ @ But } \square w^{\alpha}_{(n)} = 0$ hence we can compute $v^{\alpha\beta}_{(n)}$ such that at once

$$\Box u_{(n)}^{\alpha\beta} = 0 \quad \text{and} \quad \partial_{\mu} u_{(n)}^{\alpha\mu} = -w_{(n)}^{\alpha}$$

Thus we define

$$h_{(n)}^{\alpha\beta} = u_{(n)}^{\alpha\beta} + v_{(n)}^{\alpha\beta}$$

Luc Blanchet $(GR \in CO)$

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

Theorem 1:

The MPM solution is the most general solution of Einstein's vacuum equations outside an isolated matter system

Theorem 2:

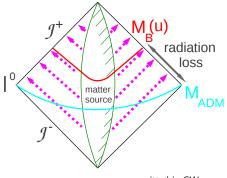
The general structure of the PN expansion is

$$h_{\mathsf{PN}}^{\alpha\beta}(\mathbf{x},t,c) = \sum_{\substack{p\geqslant 2\\q\geqslant 0}} \frac{(\ln c)^q}{c^p} h_{p,q}^{\alpha\beta}(\mathbf{x},t)$$

Theorem 3:

The MPM solution is asymptotically flat at future null infinity in the sense of Penrose and agrees with the Bondi-Sachs formalism

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]



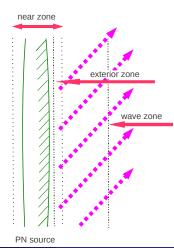
mass-energy emitted in GW

$$M_{\rm B}(u) = M_{\rm ADM} - \overbrace{\frac{G}{5c^7} \int_{-\infty}^u {\rm d}t \, M_{ij}^{(3)}(t) M_{ij}^{(3)}(t)}^{} \\ + \begin{cases} {\rm higher\text{-}order\ multipole\ moments\ and} \\ {\rm higher\text{-}order\ PM\ approximations} \\ {\rm computable\ to\ any\ order\ by\ the\ MPM\ algorithm} \end{cases}$$

The MPM-PN formalism

[Blanchet 1995, 1998; Poujade & Blanchet 2002; Blanchet, Faye & Nissanke 2005]

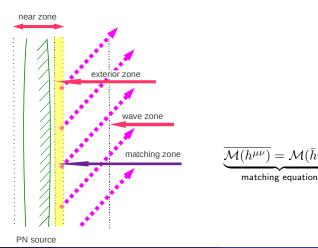
A multipolar post-Minkowskian (MPM) expansion in the exterior zone is matched to a general post-Newtonian (PN) expansion in the near zone



The MPM-PN formalism

[Blanchet 1995, 1998; Poujade & Blanchet 2002; Blanchet, Faye & Nissanke 2005]

A multipolar post-Minkowskian (MPM) expansion in the exterior zone is matched to a general post-Newtonian (PN) expansion in the near zone



Luc Blanchet $(GR \in CO)$

[Lagerström et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

This is a variant of the theory of matched asymptotic expansions

$$\begin{array}{l} \text{match} & \left\{ \begin{array}{l} \text{the multipole expansion} & \mathcal{M}(h^{\alpha\beta}) \equiv h_{\mathsf{MPM}}^{\alpha\beta} \\ & \text{with} \\ \\ \text{the PN expansion} & \bar{h}^{\alpha\beta} \equiv h_{\mathsf{PN}}^{\alpha\beta} \end{array} \right. \\ \\ & \left[\overline{\mathcal{M}(h^{\alpha\beta})} = \mathcal{M}(\bar{h}^{\alpha\beta}) \right] \end{array}$$

- Left side is the NZ expansion $(r \to 0)$ of the exterior MPM field
- ullet Right side is the FZ expansion $(r
 ightarrow +\infty)$ of the inner PN field
- The matching equation has been implemented at any post-Minkowskian order in the exterior field and any PN order in the inner field
- It gives a unique (formal) multipolar-post-Newtonian solution valid everywhere inside and outside the source

[Lagerström et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

This is a variant of the theory of matched asymptotic expansions

$$\begin{array}{l} \text{match} & \left\{ \begin{array}{l} \text{the multipole expansion} & \mathcal{M}(h^{\alpha\beta}) \equiv h_{\mathsf{MPM}}^{\alpha\beta} \\ & \text{with} \\ \text{the PN expansion} & \bar{h}^{\alpha\beta} \equiv h_{\mathsf{PN}}^{\alpha\beta} \end{array} \right. \\ \\ & \left[\overline{\mathcal{M}(h^{\alpha\beta})} = \mathcal{M}(\bar{h}^{\alpha\beta}) \right] \end{array}$$

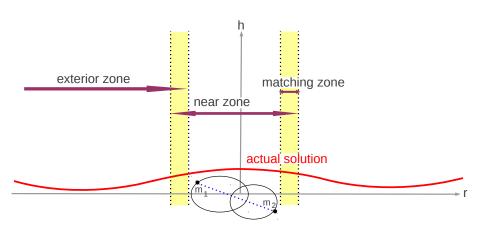
- Left side is the NZ expansion $(r \to 0)$ of the exterior MPM field
- \bullet Right side is the FZ expansion $(r \to +\infty)$ of the inner PN field
- The matching equation has been implemented at any post-Minkowskian order in the exterior field and any PN order in the inner field
- It gives a unique (formal) multipolar-post-Newtonian solution valid everywhere inside and outside the source

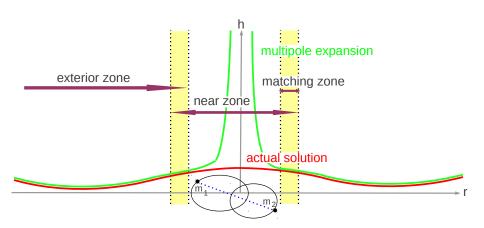
[Lagerström et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

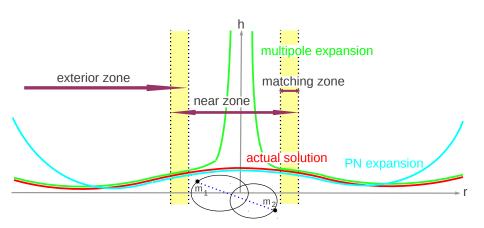
This is a variant of the theory of matched asymptotic expansions

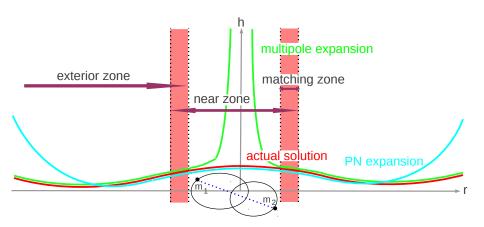
$$\begin{array}{l} \text{match} & \left\{ \begin{array}{l} \text{the multipole expansion} & \mathcal{M}(h^{\alpha\beta}) \equiv h_{\mathsf{MPM}}^{\alpha\beta} \\ & \text{with} \\ \text{the PN expansion} & \bar{h}^{\alpha\beta} \equiv h_{\mathsf{PN}}^{\alpha\beta} \end{array} \right. \\ \\ & \left. \overline{\overline{\mathcal{M}(h^{\alpha\beta})}} = \mathcal{M}(\bar{h}^{\alpha\beta}) \right] \end{array}$$

- Left side is the NZ expansion $(r \to 0)$ of the exterior MPM field
- ullet Right side is the FZ expansion $(r
 ightarrow +\infty)$ of the inner PN field
- The matching equation has been implemented at any post-Minkowskian order in the exterior field and any PN order in the inner field
- It gives a unique (formal) multipolar-post-Newtonian solution valid everywhere inside and outside the source









General solution for the multipolar field [Blanchet 1995, 1998]

$$\mathcal{M}(h^{\mu\nu}) = \mathsf{FP}\Box_{\mathsf{ret}}^{-1}\mathcal{M}(\Lambda^{\mu\nu}) + \sum_{\ell=0}^{+\infty} \partial_L \left\{ \frac{M_L^{\mu\nu}(t-r/c)}{r} \right\}$$
 homogeneous retarded solution
$$M_L^{\mu\nu}(t) = \mathsf{FP} \int \mathrm{d}^3\mathbf{x}\,\hat{x}_L \int_{-1}^1 \mathrm{d}z\,\delta_\ell(z) \underbrace{\bar{\tau}^{\mu\nu}(\mathbf{x},t-zr/c)}_{\mathsf{PN} \; \mathsf{expansion} \; \mathsf{of} \; \mathsf{the} \; \mathsf{pseudo-tensor}}_{\mathsf{PN} \; \mathsf{expansion} \; \mathsf{of} \; \mathsf{the} \; \mathsf{pseudo-tensor}}$$

- The FP procedure plays the role of an UV regularization in the non-linearity term but an IR regularization in the multipole moments
- From this one obtains the multipole moments of the source at any PN order solving the wave generation problem
- This is a formal PN solution i.e. a set of rules for generating the PN series regardless of the exact mathematocal nature of this series

Luc Blanchet $(\mathcal{GR} \in \mathcal{CO})$ PN expansion of GR Sao Paulo

General solution for the inner PN field

[Poujade & Blanchet 2002; Blanchet, Faye & Nissanke 2004]

$$\bar{h}^{\mu\nu} = \text{FP} \square_{\text{ret}}^{-1} \bar{\tau}^{\mu\nu} + \underbrace{\sum_{\ell=0}^{+\infty} \partial_L \left\{ \frac{R_L^{\mu\nu}(t-r/c) - R_L^{\mu\nu}(t+r/c)}{r} \right\}}_{\text{homogeneous antisymmetric solution}}$$

where $R_L^{\mu\nu}(t) = \text{FP} \int \mathrm{d}^3\mathbf{x}\,\hat{x}_L \int_{\mathbf{1}}^{\infty} \mathrm{d}z\,\gamma_\ell(z) \ \underline{\mathcal{M}(\tau^{\mu\nu})(\mathbf{x},t-zr/c)}$

multipole expansion of the pseudo-tensor

53 / 99

- The radiation reaction effects starting at 2.5PN order appropriate to an isolated system are determined to any order
- In particular nonlinear radiation reaction effects associated with tails are contained in the second term and start at 4PN order

Luc Blanchet $(\mathcal{GR} \in \mathcal{CO})$ PN expansion of GR Sao Paulo

Radiative moments at future null infinity

Correct for the "tortoise" logarithmic deviation of retarded time in harmonic coordinates with respect to the actual null coordinate

$$\overbrace{u}^{\text{null coordinates}} \equiv \overbrace{T - \frac{R}{c}}^{\text{radiative coordinates}} = \overbrace{t - \frac{r}{c}}^{\text{harmonic coordinates}} - \overbrace{\frac{2GM}{c^3} \ln \left(\frac{r}{c\tau_0}\right)}^{\text{logarithmic deviation}} + \mathcal{O}\left(\frac{1}{r}\right)$$

@ Asymptotic waveform is parametrized by radiative moments U_L and V_L

$$h_{ij}^{\rm TT} = \frac{1}{R} \sum_{\ell=2}^{\infty} N_{L-2} \underbrace{U_{ijL-2}(u)}_{\rm mass-type} + \varepsilon_{ab(i} N_{aL-1} \underbrace{V_{j)bL-2}(u)}_{\rm current-type} + \mathcal{O}\left(\frac{1}{R^2}\right)$$

① The radiative moments U_L and V_L are the observables of the radiation field at future null infinity

Luc Blanchet ($\mathcal{G}\mathbb{R}\mathfrak{sCO}$) PN expansion of GR Sao Paulo 54 /

Radiative moments at future null infinity

Correct for the "tortoise" logarithmic deviation of retarded time in harmonic coordinates with respect to the actual null coordinate

$$\overbrace{u}^{\text{null coordinate}} \equiv \overbrace{T - \frac{R}{c}}^{\text{radiative coordinates}} = \overbrace{t - \frac{r}{c}}^{\text{harmonic coordinates}} - \overbrace{\frac{2GM}{c^3} \ln \left(\frac{r}{c\tau_0}\right)}^{\text{logarithmic deviation}} + \mathcal{O}\left(\frac{1}{r}\right)$$

@ Asymptotic waveform is parametrized by radiative moments U_L and V_L

$$h_{ij}^{\mathsf{TT}} = \frac{1}{R} \sum_{\ell=2}^{\infty} N_{L-2} \underbrace{\underbrace{U_{ijL-2}(u)}_{\mathsf{mass-type}} + \varepsilon_{ab(i} N_{aL-1} \underbrace{V_{j)bL-2}(u)}_{\mathsf{current-type}} + \mathcal{O}\left(\frac{1}{R^2}\right)}_{\mathsf{current-type}}$$

 $\ \, \odot \,$ The radiative moments U_L and V_L are the observables of the radiation field at future null infinity

Luc Blanchet $(\mathcal{GR}\mathcal{ECO})$ PN expansion of GR Sao Paulo

Radiative moments at future null infinity

Correct for the "tortoise" logarithmic deviation of retarded time in harmonic coordinates with respect to the actual null coordinate

$$\overbrace{u}^{\text{null coordinate}} \equiv \overbrace{T - \frac{R}{c}}^{\text{radiative coordinates}} = \overbrace{t - \frac{r}{c}}^{\text{harmonic coordinates}} - \overbrace{\frac{2GM}{c^3} \ln \left(\frac{r}{c\tau_0}\right)}^{\text{logarithmic deviation}} + \mathcal{O}\left(\frac{1}{r}\right)$$

② Asymptotic waveform is parametrized by radiative moments U_L and V_L

$$h_{ij}^{\rm TT} = \frac{1}{R} \sum_{\ell=2}^{\infty} N_{L-2} \underbrace{\frac{\textbf{\textit{U}}_{ijL-2}(\textbf{\textit{u}})}{\text{mass-type}}} + \varepsilon_{ab(i} N_{aL-1} \underbrace{\frac{\textbf{\textit{V}}_{j)bL-2}(\textbf{\textit{u}})}{\text{current-type}}} + \mathcal{O}\left(\frac{1}{R^2}\right)$$

lacktriangledown The radiative moments U_L and V_L are the observables of the radiation field at future null infinity

Luc Blanchet (\mathcal{GReCO}) PN expansion of GR Sao Paulo

The 4.5PN radiative quadrupole moment

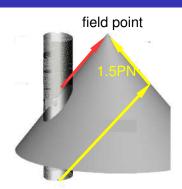
$$\begin{split} U_{ij}(t) &= I_{ij}^{(2)}(t) + \underbrace{\frac{GM}{c^3} \int_0^{+\infty} \mathrm{d}\tau I_{ij}^{(4)}(t-\tau) \left[2\ln\left(\frac{\tau}{2\tau_0}\right) + \frac{11}{6} \right]}_{\text{1.5PN tail integral}} \\ &+ \frac{G}{c^5} \Biggl\{ \underbrace{-\frac{2}{7} \int_0^{+\infty} \mathrm{d}\tau I_{a < i}^{(3)} I_{j > a}^{(3)}(t-\tau)}_{\text{2.5PN memory integral}} + \inf\left[\frac{G^2 M^2}{c^6} \int_0^{+\infty} \mathrm{d}\tau I_{ij}^{(5)}(t-\tau) \left[2\ln^2\left(\frac{\tau}{2\tau_0}\right) + \frac{57}{35}\ln\left(\frac{\tau}{2\tau_0}\right) + \frac{124627}{22050} \right] \right]}_{\text{3PN tail-of-tail integral}} \\ &+ \underbrace{\frac{G^3 M^3}{c^9} \int_0^{+\infty} \mathrm{d}\tau I_{ij}^{(6)}(t-\tau) \left[\frac{4}{3}\ln^3\left(\frac{\tau}{2\tau_0}\right) + \dots + \frac{129268}{33075} + \frac{428}{315}\pi^2 \right]}_{\text{4.5PN tail-of-tail integral}} \\ &+ \mathcal{O}\left(\frac{1}{c^{10}}\right) \end{split}$$

Luc Blanchet ($\mathcal{GR} \in \mathbb{CO}$) PN expansion of GR

Gravitational wave tails

[Bonnor 1959; Bonnor & Rotenberg 1961; Price 1971; Blanchet & Damour 1988, 1992; Blanchet 1993, 1997]

The tails are produced by backscatter of linear GWs generated by the variations of I_{ij} off the curvature induced by the matter source's total mass M



matter source

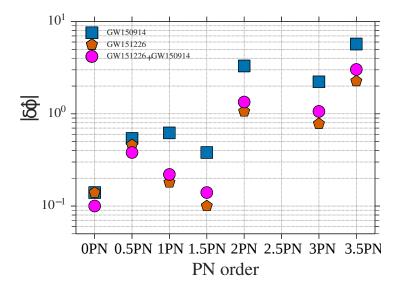
$$\delta h_{ij}^{\rm tail} = \frac{4G}{c^4 r} \underbrace{\frac{GM}{c^3} \int_{-\infty}^{u} \mathrm{d}t \, I_{ij}^{(4)}(t) \ln \left(\frac{u-t}{\tau_0}\right)}_{\text{The tail is dominantly a 1.5PN effect}} + \cdots$$

3.5PN energy flux of compact binaries

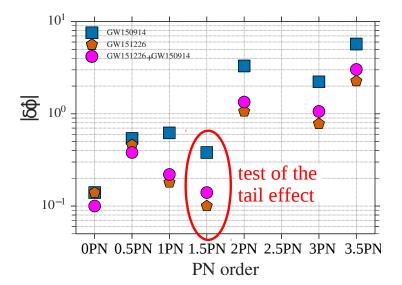
$$\mathcal{F}^{\mathsf{GW}} = \frac{32c^5}{5G}\nu^2 x^5 \bigg\{ 1 + \overbrace{\left(-\frac{1247}{336} - \frac{35}{12}\nu\right)}^{\mathsf{1PN}} x + \overbrace{4\pi x^{3/2}}^{\mathsf{1.5PN \ tail}} \\ + \left(-\frac{44711}{9072} + \frac{9271}{504}\nu + \frac{65}{18}\nu^2\right) x^2 + \overbrace{\left(-\frac{8191}{672} - \frac{583}{24}\nu\right)}^{\mathsf{2.5PN \ tail}} \pi x^{5/2} \\ + \left[\frac{6643739519}{69854400} + \overbrace{\frac{16}{3}\pi^2 - \frac{1712}{105}\gamma_{\mathsf{E}} - \frac{856}{105}\ln(16\,x)} \right. \\ + \left. \left(-\frac{134543}{7776} + \frac{41}{48}\pi^2\right)\nu - \frac{94403}{3024}\nu^2 - \frac{775}{324}\nu^3\right] x^3 \\ + \underbrace{\left(-\frac{16285}{504} + \frac{214745}{1728}\nu + \frac{193385}{3024}\nu^2\right)\pi x^{7/2}}_{\mathsf{3.5PN \ tail}} + \mathcal{O}\left(\frac{1}{c^8}\right) \bigg\}$$

Luc Blanchet (GR€CO) PN expansion of GR

Measurement of PN parameters [LIGO/Virgo collaboration 2016]



Measurement of PN parameters [LIGO/Virgo collaboration 2016]



Sao Paulo

4.5PN coefficient in the GW flux [Marchand, Blanchet, Faye 2017]

$$\left(\frac{\mathrm{d}E}{\mathrm{d}t}\right)^{4.5\mathrm{PN}} = \frac{32c^5}{5G}\nu^2x^5 \left\{ \left(\frac{265978667519}{745113600} - \frac{6848}{105}\gamma_\mathrm{E} \right. \right. \\ \left. - \frac{3424}{105}\ln\left(16x\right) + \left[\frac{2062241}{22176} + \frac{41}{12}\pi^2\right]\nu \right. \\ \left. - \frac{133112905}{290304}\nu^2 - \frac{3719141}{38016}\nu^3\right)\pi x^{9/2} \right\}$$

field point

Sao Paulo

- The 4.5PN tail effect represents the complete 4.5PN coefficient in the GW energy flux in the case of circular orbits
- Perfect agreement with results from BH perturbation theory in the small mass ratio limit $\nu \to 0$ [Tanaka, Tagoshi & Sasaki 1996]
- However the 4PN term in the flux is still in progress

Luc Blanchet $(GR \in CO)$ PN expansion of GR

Flux-balance equations for energy, momenta and center of mass

FLUX-BALANCE EQUATIONS FOR ENERGY & MOMENTA

Gravitational radiation reaction to 4PN order

For general matter systems the 4PN radiation reaction derives from radiation reaction potentials valid in a specific extension of the [Burke & Thorne 1971] gauge

$$V^{\text{reac}} = -\underbrace{\frac{G}{5c^5}x^{ij}I_{ij}^{(5)}}_{\text{5}c^5} + \underbrace{\frac{G}{c^7}\left[\frac{1}{189}x^{ijk}I_{ijk}^{(7)} - \frac{1}{70}r^2x^{ij}I_{ij}^{(7)}\right]}_{\text{4PN radiation reaction tail}} \\ -\underbrace{\frac{4G^2M}{5c^8}x^{ij}\int_0^{+\infty} \mathrm{d}\tau\,I_{ij}^{(7)}(t-\tau)\left[\ln\left(\frac{\tau}{2\tau_0}\right) + \frac{11}{12}\right]}_{\text{4PN radiation reaction tail}} + \mathcal{O}\left(\frac{1}{c^9}\right)$$

$$V_i^{\text{reac}} = \underbrace{\frac{G}{c^5}\left[\frac{1}{21}\hat{x}^{ijk}I_{jk}^{(6)} - \frac{4}{45}\,\varepsilon_{ijk}\,x^{jl}\,J_{kl}^{(5)}\right]}_{\text{3.5PN vector correction}} + \mathcal{O}\left(\frac{1}{c^7}\right)$$

Luc Blanchet (GRεCO) PN expansion of GR Sao Paulo 61 / 99

 Metric accurate to 1PN order for conservative effects and to 3.5PN order for dissipative radiation reaction effects

$$g_{00} = -1 + \frac{2\mathcal{V}}{c^2} - \frac{2\mathcal{V}^2}{c^4} + \frac{1}{c^6} \frac{g_{00}}{6} + \frac{1}{c^8} \frac{g_{00}}{8} + \mathcal{O}\left(\frac{1}{c^{10}}\right)$$

$$g_{0i} = -\frac{4\mathcal{V}_i}{c^3} + \frac{1}{c^5} \frac{g_{0i}}{5} + \frac{1}{c^7} \frac{g_{0i}}{7} + \mathcal{O}\left(\frac{1}{c^9}\right)$$

$$g_{ij} = \delta_{ij} \left(1 + \frac{2\mathcal{V}}{c^2}\right) + \frac{4}{c^4} \left(W_{ij} - \delta_{ij} W_{kk}\right) + \frac{1}{c^6} \frac{g_{ij}}{6} + \mathcal{O}\left(\frac{1}{c^8}\right)$$

Openal of a conservative part and a dissipative one

$$\mathcal{V}_{\mu} = V_{\mu}^{\rm cons} + \boxed{V_{\mu}^{\rm reac}}$$

① Flux balance equations are obtained by integrating the matter equations of motion $\nabla_{\nu}T^{\mu\nu}=0$ over the source

$$\partial_{\nu} \left(\sqrt{-g} T_{\mu}^{\nu} \right) = \frac{1}{2} \sqrt{-g} \, \partial_{\mu} g_{\rho\sigma} T^{\rho\sigma}$$

 Metric accurate to 1PN order for conservative effects and to 3.5PN order for dissipative radiation reaction effects

$$\begin{split} g_{00} &= -1 + \frac{2\mathcal{V}}{c^2} - \frac{2\mathcal{V}^2}{c^4} + \frac{1}{c^6} \frac{g_{00}}{6} + \frac{1}{c^8} \frac{g_{00}}{8} + \mathcal{O}\left(\frac{1}{c^{10}}\right) \\ g_{0i} &= -\frac{4\mathcal{V}_i}{c^3} + \frac{1}{c^5} \frac{g_{0i}}{5} + \frac{1}{c^7} \frac{g_{0i}}{7} + \mathcal{O}\left(\frac{1}{c^9}\right) \\ g_{ij} &= \delta_{ij} \left(1 + \frac{2\mathcal{V}}{c^2}\right) + \frac{4}{c^4} \left(W_{ij} - \delta_{ij} W_{kk}\right) + \frac{1}{c^6} \frac{g_{ij}}{6} + \mathcal{O}\left(\frac{1}{c^8}\right) \end{split}$$

Potentials are composed of a conservative part and a dissipative one

$$\mathcal{V}_{\mu} = V_{\mu}^{\mathsf{cons}} + \boxed{V_{\mu}^{\mathsf{reac}}}$$

① Flux balance equations are obtained by integrating the matter equations of motion $\nabla_{\nu}T^{\mu\nu}=0$ over the source

$$\partial_{\nu} \left(\sqrt{-g} T_{\mu}^{\nu} \right) = \frac{1}{2} \sqrt{-g} \, \partial_{\mu} g_{\rho\sigma} T^{\rho\sigma}$$

Metric accurate to 1PN order for conservative effects and to 3.5PN order for dissipative radiation reaction effects

$$\begin{split} g_{00} &= -1 + \frac{2\mathcal{V}}{c^2} - \frac{2\mathcal{V}^2}{c^4} + \frac{1}{c^6} \frac{g_{00}}{6} + \frac{1}{c^8} \frac{g_{00}}{8} + \mathcal{O}\left(\frac{1}{c^{10}}\right) \\ g_{0i} &= -\frac{4\mathcal{V}_i}{c^3} + \frac{1}{c^5} \frac{g_{0i}}{5} + \frac{1}{c^7} \frac{g_{0i}}{7} + \mathcal{O}\left(\frac{1}{c^9}\right) \\ g_{ij} &= \delta_{ij} \left(1 + \frac{2\mathcal{V}}{c^2}\right) + \frac{4}{c^4} \left(W_{ij} - \delta_{ij} W_{kk}\right) + \frac{1}{c^6} \frac{g_{ij}}{6} + \mathcal{O}\left(\frac{1}{c^8}\right) \end{split}$$

Potentials are composed of a conservative part and a dissipative one

$$\mathcal{V}_{\mu} = V_{\mu}^{\mathsf{cons}} + \boxed{V_{\mu}^{\mathsf{reac}}}$$

Flux balance equations are obtained by integrating the matter equations of motion $\nabla_{\nu}T^{\mu\nu}=0$ over the source

$$\partial_{\nu} \left(\sqrt{-g} T_{\mu}^{\nu} \right) = \frac{1}{2} \sqrt{-g} \, \partial_{\mu} g_{\rho\sigma} T^{\rho\sigma}$$

Luc Blanchet ($GR\varepsilon CO$) PN expansion of GR

Define the matter current and stresses

$$\sigma = \frac{T^{00} + T^{ii}}{c^2} \qquad \sigma_i = \frac{T^{0i}}{c} \qquad \sigma_{ij} = T^{ij}$$

To conservative 1PN order the invariants of the matter system are given by

$$E = \int d^3 \mathbf{x} \left(\sigma c^2 + \frac{1}{2} \sigma U - \sigma_{ii} + \frac{1}{c^2} \left[-4\sigma W_{ii} + 2\sigma_i U_i + \cdots \right] \right)$$

$$J_i = \varepsilon_{ijk} \int d^3 \mathbf{x} \, x_j \left(\sigma_k + \frac{1}{c^2} \left[4\sigma_k U - 4\sigma U_k - \frac{1}{2} \sigma \, \partial_k \partial_t X \right] \right)$$

$$P_i = \int d^3 \mathbf{x} \left[\sigma_i - \frac{1}{2c^2} \sigma \partial_i \partial_t X \right]$$

$$G_i = \int d^3 \mathbf{x} \, x_i \left(\sigma + \frac{1}{c^2} \left[\frac{\sigma U}{2} - \sigma_{jj} \right] \right)$$

Luc Blanchet $(\mathcal{GR}\mathcal{ECO})$ PN expansion of GR Sao Paulo

Well known results for the energy and angular momentum

$$\begin{split} \frac{\mathrm{d}E}{\mathrm{d}t} &= -\frac{G}{c^5} \left(\frac{1}{5} I_{ij}^{(3)} I_{ij}^{(3)} + \frac{1}{c^2} \left[\frac{1}{189} I_{ijk}^{(4)} I_{ijk}^{(4)} + \frac{16}{45} J_{ij}^{(3)} J_{ij}^{(3)} \right] \right) + \mathcal{O}\left(\frac{1}{c^8} \right) \\ \frac{\mathrm{d}J_i}{\mathrm{d}t} &= -\frac{G}{c^5} \varepsilon_{ijk} \left(\frac{2}{5} I_{jl}^{(2)} I_{kl}^{(3)} + \frac{1}{c^2} \left[\frac{1}{63} I_{jlm}^{(3)} I_{klm}^{(4)} + \frac{32}{45} J_{jl}^{(2)} J_{kl}^{(3)} \right] \right) + \mathcal{O}\left(\frac{1}{c^8} \right) \end{split}$$

② And for linear momentum (this effect responsible for the recoil of the source)

$$\frac{\mathrm{d}P_i}{\mathrm{d}t} = -\frac{G}{c^7} \left[\frac{2}{63} I_{ijk}^{(4)} I_{jk}^{(3)} + \frac{16}{45} \varepsilon_{ijk} I_{jl}^{(3)} J_{kl}^{(3)} \right] + \mathcal{O}\left(\frac{1}{c^9}\right)$$

O However we find also for the center-of-mass position [Blanchet & Faye 2018]

$$\frac{dG_i}{dt} = P_i - \frac{2G}{21c^7} I_{ijk}^{(3)} I_{jk}^{(3)} + \mathcal{O}\left(\frac{1}{c^9}\right)$$

Strangely enough this formula does not appear in the GW litterature

Well known results for the energy and angular momentum

$$\begin{split} \frac{\mathrm{d}E}{\mathrm{d}t} &= -\frac{G}{c^5} \left(\frac{1}{5} I_{ij}^{(3)} I_{ij}^{(3)} + \frac{1}{c^2} \left[\frac{1}{189} I_{ijk}^{(4)} I_{ijk}^{(4)} + \frac{16}{45} J_{ij}^{(3)} J_{ij}^{(3)} \right] \right) + \mathcal{O}\left(\frac{1}{c^8} \right) \\ \frac{\mathrm{d}J_i}{\mathrm{d}t} &= -\frac{G}{c^5} \varepsilon_{ijk} \left(\frac{2}{5} I_{jl}^{(2)} I_{kl}^{(3)} + \frac{1}{c^2} \left[\frac{1}{63} I_{jlm}^{(3)} I_{klm}^{(4)} + \frac{32}{45} J_{jl}^{(2)} J_{kl}^{(3)} \right] \right) + \mathcal{O}\left(\frac{1}{c^8} \right) \end{split}$$

And for linear momentum (this effect responsible for the recoil of the source)

$$\frac{\mathrm{d}P_i}{\mathrm{d}t} = -\frac{G}{c^7} \left[\frac{2}{63} I_{ijk}^{(4)} I_{jk}^{(3)} + \frac{16}{45} \varepsilon_{ijk} I_{jl}^{(3)} J_{kl}^{(3)} \right] + \mathcal{O}\left(\frac{1}{c^9}\right)$$

3 However we find also for the center-of-mass position [Blanchet & Faye 2018]

$$\frac{dG_i}{dt} = P_i - \frac{2G}{21c^7} I_{ijk}^{(3)} I_{jk}^{(3)} + \mathcal{O}\left(\frac{1}{c^9}\right)$$

Strangely enough this formula does not appear in the GW litterature

Well known results for the energy and angular momentum

$$\begin{split} \frac{\mathrm{d}E}{\mathrm{d}t} &= -\frac{G}{c^5} \left(\frac{1}{5} I_{ij}^{(3)} I_{ij}^{(3)} + \frac{1}{c^2} \left[\frac{1}{189} I_{ijk}^{(4)} I_{ijk}^{(4)} + \frac{16}{45} J_{ij}^{(3)} J_{ij}^{(3)} \right] \right) + \mathcal{O}\left(\frac{1}{c^8} \right) \\ \frac{\mathrm{d}J_i}{\mathrm{d}t} &= -\frac{G}{c^5} \varepsilon_{ijk} \left(\frac{2}{5} I_{jl}^{(2)} I_{kl}^{(3)} + \frac{1}{c^2} \left[\frac{1}{63} I_{jlm}^{(3)} I_{klm}^{(4)} + \frac{32}{45} J_{jl}^{(2)} J_{kl}^{(3)} \right] \right) + \mathcal{O}\left(\frac{1}{c^8} \right) \end{split}$$

And for linear momentum (this effect responsible for the recoil of the source)

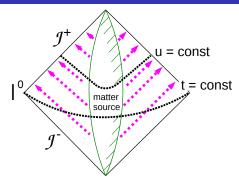
$$\frac{\mathrm{d}P_i}{\mathrm{d}t} = -\frac{G}{c^7} \left[\frac{2}{63} I_{ijk}^{(4)} I_{jk}^{(3)} + \frac{16}{45} \varepsilon_{ijk} I_{jl}^{(3)} J_{kl}^{(3)} \right] + \mathcal{O}\left(\frac{1}{c^9}\right)$$

Mowever we find also for the center-of-mass position [Blanchet & Faye 2018]

$$dG_i = P_i - \frac{2G}{21c^7} I_{ijk}^{(3)} I_{jk}^{(3)} + \mathcal{O}\left(\frac{1}{c^9}\right)$$

Strangely enough this formula does not appear in the GW litterature

Direct calculation of the GW fluxes at infinity



• Introduce a retarded null coordinate u satisfying

$$g^{\mu\nu}\partial_{\mu}u\partial_{\nu}u=0$$

ullet For instance choose $u=t-r_*/c$ with the tortoise coordinate

$$r_* = r + \frac{2GM}{c^2} \ln\left(\frac{r}{r_0}\right) + \mathcal{O}\left(\frac{1}{r}\right)$$

65 / 99

Luc Blanchet $(\mathcal{GR} \in \mathcal{CO})$ PN expansion of GR Sao Paulo

Direct calculation of the GW fluxes at infinity

9 Perform a coordinate change $(t, \mathbf{x}) \to (u, \mathbf{x})$ in the conservation law of the pseudo-tensor $\partial_{\nu} \tau^{\mu\nu} = 0$ to get

$$\frac{\partial}{c\partial u} \left[\tau^{\mu 0}(\mathbf{x}, u + r_*/c) - n_*^i \tau^{\mu i}(\mathbf{x}, u + r_*/c) \right] + \partial_i \left[\tau^{\mu i}(\mathbf{x}, u + r_*/c) \right] = 0$$

② Integrating over a volume V tending to infinity with u = const

$$\frac{dE}{du} = -c \int_{\partial \mathcal{V}} dS_i \, \tau_{\mathsf{GW}}^{0i}(\mathbf{x}, u + r_*/c)$$

$$\frac{dJ_i}{du} = -\varepsilon_{ijk} \int_{\partial \mathcal{V}} dS_l \, x^j \, \tau_{\mathsf{GW}}^{kl}(\mathbf{x}, u + r_*/c)$$

$$\frac{dP^i}{du} = -\int_{\partial \mathcal{V}} dS_j \, \tau_{\mathsf{GW}}^{ij}(\mathbf{x}, u + r_*/c)$$

$$\frac{dG_i}{du} = P_i - \frac{1}{c} \int_{\partial \mathcal{V}} dS_j \left(x^i \, \tau_{\mathsf{GW}}^{0j} - r_* \, \tau_{\mathsf{GW}}^{ij} \right) (\mathbf{x}, u + r_*/c)$$

Luc Blanchet (\mathcal{GReCO}) PN expansion of GR Sao Paulo 66 / 99

Direct calculation of the GW fluxes at infinity

9 Perform a coordinate change $(t, \mathbf{x}) \to (u, \mathbf{x})$ in the conservation law of the pseudo-tensor $\partial_{\nu} \tau^{\mu\nu} = 0$ to get

$$\frac{\partial}{c\partial u} \left[\tau^{\mu 0}(\mathbf{x}, u + r_*/c) - n_*^i \tau^{\mu i}(\mathbf{x}, u + r_*/c) \right] + \partial_i \left[\tau^{\mu i}(\mathbf{x}, u + r_*/c) \right] = 0$$

f 2 Integrating over a volume $\cal V$ tending to infinity with u=const

$$\frac{\mathrm{d}E}{\mathrm{d}u} = -c \int_{\partial \mathcal{V}} \mathrm{d}S_i \, \tau_{\mathsf{GW}}^{0i}(\mathbf{x}, u + r_*/c)
\frac{\mathrm{d}J_i}{\mathrm{d}u} = -\varepsilon_{ijk} \int_{\partial \mathcal{V}} \mathrm{d}S_l \, x^j \, \tau_{\mathsf{GW}}^{kl}(\mathbf{x}, u + r_*/c)
\frac{\mathrm{d}P^i}{\mathrm{d}u} = -\int_{\partial \mathcal{V}} \mathrm{d}S_j \, \tau_{\mathsf{GW}}^{ij}(\mathbf{x}, u + r_*/c)
\frac{\mathrm{d}G_i}{\mathrm{d}u} = P_i - \frac{1}{c} \int_{\partial \mathcal{V}} \mathrm{d}S_j \left(x^i \, \tau_{\mathsf{GW}}^{0j} - r_* \, \tau_{\mathsf{GW}}^{ij} \right) (\mathbf{x}, u + r_*/c)$$

Luc Blanchet (\mathcal{GReCO}) PN expansion of GR Sao Paulo

Direct calculation of the GW fluxes at infinity

① Perform a coordinate change $(t,\mathbf{x}) \to (u,\mathbf{x})$ in the conservation law of the pseudo-tensor $\partial_{\nu} \tau^{\mu\nu} = 0$ to get

$$\frac{\partial}{c\partial u} \left[\tau^{\mu 0}(\mathbf{x}, u + r_*/c) - n_*^i \tau^{\mu i}(\mathbf{x}, u + r_*/c) \right] + \partial_i \left[\tau^{\mu i}(\mathbf{x}, u + r_*/c) \right] = 0$$

f 2 Integrating over a volume $\cal V$ tending to infinity with u=const

$$E = \int_{\mathcal{V}} d^{3}\mathbf{x} \Big[\tau^{00} - n_{*}^{i} \tau^{0i} \Big] (\mathbf{x}, u + r_{*}/c)$$

$$J_{i} = \frac{1}{c} \varepsilon_{ijk} \int_{\mathcal{V}} d^{3}\mathbf{x} x^{j} \Big[\tau^{k0} - n_{*}^{l} \tau^{kl} \Big] (\mathbf{x}, u + r_{*}/c)$$

$$P_{i} = \frac{1}{c} \int_{\mathcal{V}} d^{3}\mathbf{x} \Big[\tau^{0i} - n_{*}^{j} \tau^{ij} \Big] (\mathbf{x}, u + r_{*}/c)$$

$$G_{i} = \frac{1}{c^{2}} \int_{\mathcal{V}} d^{3}\mathbf{x} \Big[x^{i} (\tau^{00} - n_{*}^{j} \tau^{0j}) - r_{*} (\tau^{0i} - n_{*}^{j} \tau^{ij}) \Big] (\mathbf{x}, u + r_{*}/c)$$

Luc Blanchet (\mathcal{GReCO}) PN expansion of GR Sao Paulo

Direct calculation of the GW fluxes at infinity

A long calculation to control the leading $1/r^2$ and subleading $1/r^3$ terms in the GW pseudo-tensor when $r\to +\infty$ gives the fluxes as full multipole series parametrized by the multipole moments I_L and J_L up to order $\mathcal{O}(G^2)$

$$\frac{\mathrm{d}\frac{E}{\mathrm{d}u} = -\sum_{\ell=2}^{+\infty} \frac{G}{c^{2\ell+1}} \left\{ \frac{(\ell+1)(\ell+2)}{(\ell-1)\ell\ell!(2\ell+1)!!} \frac{(\ell+1)(\ell+1)}{I_L} + \frac{4\ell(\ell+2)}{c^2(\ell-1)(\ell+1)!(2\ell+1)!!} \frac{(\ell+1)(\ell+1)}{J_L} \right\}$$

$$\frac{\mathrm{d}\frac{J_i}{\mathrm{d}u} = -\varepsilon_{ijk} \sum_{\ell=2}^{+\infty} \frac{G}{c^{2\ell+1}} \left\{ \frac{(\ell+1)(\ell+2)}{(\ell-1)\ell!(2\ell+1)!!} \frac{(\ell)}{I_{jL-1}} \frac{(\ell+1)}{I_{kL-1}} + \frac{4\ell^2(\ell+2)}{c^2(\ell-1)(\ell+1)!(2\ell+1)!!} \frac{(\ell)}{J_{jL-1}} \frac{(\ell+1)}{J_{kL-1}} \right\}$$

Luc Blanchet (\mathcal{GReCO}) PN expansion of GR

Sao Paulo

Direct calculation of the GW fluxes at infinity

A long calculation to control the leading $1/r^2$ and subleading $1/r^3$ terms in the GW pseudo-tensor when $r\to +\infty$ gives the fluxes as full multipole series parametrized by the multipole moments I_L and J_L up to order $\mathcal{O}(G^2)$

$$\begin{split} \frac{\mathrm{d} P_i}{\mathrm{d} u} &= -\sum_{\ell=2}^{+\infty} \frac{G}{c^{2\ell+3}} \bigg\{ \frac{2(\ell+2)(\ell+3)}{\ell(\ell+1)!(2\ell+3)!!} \frac{(\ell+2)}{I \ iL} \frac{(\ell+1)}{I \ L} \\ &\quad + \frac{8(\ell+2)}{(\ell-1)(\ell+1)!(2\ell+1)!!} \varepsilon_{ijk} \frac{(\ell+1)}{I \ jL-1} \frac{(\ell+1)}{J \ kL-1} \\ &\quad + \frac{8(\ell+3)}{c^2(\ell+1)!(2\ell+3)!!} \frac{(\ell+2)(\ell+1)}{J \ iL} \bigg\} \\ \frac{\mathrm{d} G_i}{\mathrm{d} u} &= P_i \\ &\quad - \sum_{\ell=2}^{+\infty} \frac{G}{c^{2\ell+3}} \bigg\{ \frac{2(\ell+2)(\ell+3)}{\ell \ell!(2\ell+3)!!} \frac{(\ell+1)}{I \ iL} \frac{(\ell+1)}{I \ kL} + \frac{8(\ell+3)}{c^2\ell!(2\ell+3)!!} \frac{(\ell+1)(\ell+1)}{J \ iL} \bigg\} \end{split}$$

Luc Blanchet (GReCO) PN expansion of GR Sao Paulo

FOKKER APPROACH TO THE PN EOM

The 1PN equations of motion

[Lorentz & Droste 1917; Einstein, Infeld & Hoffmann 1938]

$$\begin{split} \frac{\mathrm{d}^2 \boldsymbol{r}_A}{\mathrm{d}t^2} &= -\sum_{B \neq A} \frac{Gm_B}{r_{AB}^2} \boldsymbol{n}_{AB} \bigg[1 - 4\sum_{C \neq A} \frac{Gm_C}{c^2 r_{AC}} - \sum_{D \neq B} \frac{Gm_D}{c^2 r_{BD}} \left(1 - \frac{\boldsymbol{r}_{AB} \cdot \boldsymbol{r}_{BD}}{r_{BD}^2} \right) \\ &\qquad \qquad + \frac{1}{c^2} \bigg(\boldsymbol{v}_A^2 + 2 \boldsymbol{v}_B^2 - 4 \boldsymbol{v}_A \cdot \boldsymbol{v}_B - \frac{3}{2} (\boldsymbol{v}_B \cdot \boldsymbol{n}_{AB})^2 \bigg) \bigg] \\ &\qquad \qquad + \sum_{B \neq A} \frac{Gm_B}{c^2 r_{AB}^2} \boldsymbol{v}_{AB} [\boldsymbol{n}_{AB} \cdot (3 \boldsymbol{v}_B - 4 \boldsymbol{v}_A)] - \frac{7}{2} \sum_{B \neq A} \sum_{D \neq B} \frac{G^2 m_B m_D}{c^2 r_{AB} r_{BD}^3} \boldsymbol{n}_{BD} \end{split}$$

4PN: state-of-the-art on equations of motion

$$\frac{\mathrm{d}v_1^i}{\mathrm{d}t} = -\frac{Gm_2}{r_{12}^2} n_{12}^i \\ + \frac{1}{c^2} \left\{ \left[\frac{5G^2m_1m_2}{r_{12}^3} + \frac{4G^2m_2^2}{r_{12}^3} + \cdots \right] n_{12}^i + \cdots \right\} \\ + \frac{1}{c^4} \left[\cdots \right] + \frac{1}{c^5} \left[\cdots \right] + \frac{1}{c^6} \left[\cdots \right] + \frac{1}{c^7} \left[\cdots \right] + \frac{1}{c^8} \left[\cdots \right] + \mathcal{O}\left(\frac{1}{c^9} \right) \\ + \underbrace{\frac{1}{c^4} \left[\cdots \right]}_{\text{2PN}} + \underbrace{\frac{1}{c^5} \left[\cdots \right]}_{\text{radiation reaction}} + \underbrace{\frac{1}{c^7} \left[\cdots \right]}_{\text{3PN}} + \underbrace{\frac{1}{c^8} \left[\cdots \right]}_{\text{radiation reaction}} + \mathcal{O}\left(\frac{1}{c^9} \right) \\ + \underbrace{\frac{1}{c^8} \left[\cdots \right]}_{\text{2PN}} + \underbrace{\frac{1}{c^5} \left[\cdots \right]}_{\text{radiation reaction}} + \underbrace{\frac{1}{c^7} \left[\cdots \right]}_{\text{3PN}} + \underbrace{\frac{1}{c^8} \left[\cdots \right]}_{\text{radiation reaction}} + \mathcal{O}\left(\frac{1}{c^9} \right) \\ + \underbrace{\frac{1}{c^8} \left[\cdots \right]}_{\text{2PN}} + \underbrace{\frac{1}{c^5} \left[\cdots \right]}_{\text{radiation reaction}} + \underbrace{\frac{1}{c^7} \left[\cdots \right]}_{\text{radiation reaction}} + \underbrace{\frac{1}{c^8} \left[\cdots \right]}_{\text{conservative \& radiation tail}} + \mathcal{O}\left(\frac{1}{c^9} \right) \\ + \underbrace{\frac{1}{c^8} \left[\cdots \right]}_{\text{2PN}} + \underbrace{\frac{1}{c^8} \left[\cdots \right]}_{\text{radiation reaction}} + \underbrace{\frac{1}{c^8} \left[\cdots \right]}_{\text{radiation reaction}} + \underbrace{\frac{1}{c^8} \left[\cdots \right]}_{\text{conservative \& radiation tail}} + \underbrace{\frac{1}{c^8} \left[\cdots \right]}_{\text{2PN}} + \underbrace{\frac{1}{c^8} \left[\cdots \right]}_{\text{2PN}} + \underbrace{\frac{1}{c^8} \left[\cdots \right]}_{\text{radiation reaction}} + \underbrace{\frac{1}{c^8} \left[\cdots \right]}_{\text{radiation reaction}} + \underbrace{\frac{1}{c^8} \left[\cdots \right]}_{\text{2PN}} + \underbrace{\frac{1}{c^8} \left[\cdots \right]}_{\text{2PN$$

[Jaranowski & Schäfer 1999; Damour, Jaranowski & Schäfer 2001ab] [Blanchet-Faye-de Andrade 2000, 2001; Blanchet & Iyer 2002] [Itoh & Futamase 2003; Itoh 2004] [Foffa & Sturani 2011]

4PN { [Jaranowski & Schäfer 2013; Damour, Jaranowski & Schäfer 2014] [Bernard, Blanchet, Bohé, Faye, Marchand & Marsat 2015, 2016, 2017abc] [Foffa & Sturani 2012, 2013] (partial results)

ADM Hamiltonian Harmonic EOM Surface integral method Effective field theory

ADM Hamiltonian Fokker Lagrangian Effective field theory

The Fokker Lagrangian approach to the 4PN EOM

Based on collaborations with

Laura Bernard, Alejandro Bohé, Guillaume Faye, Tanguy Marchand & Sylvain Marsat

[PRD 93, 084037 (2016); 95, 044026 (2017); 96, 104043 (2017); 97, 044023 (2018); PRD 97, 044037 (2018)]

Fokker action of N particles [Fokker 1929]

lacktriangle Gauge-fixed Einstein-Hilbert action for N point particles

$$\begin{split} S_{\rm g.f.} &= \frac{c^3}{16\pi G} \int \mathrm{d}^4 x \, \sqrt{-g} \Big[R \underbrace{-\frac{1}{2} g_{\mu\nu} \Gamma^\mu \Gamma^\nu}_{\text{Gauge-fixing term}} \Big] \\ &- \sum_A \underbrace{m_A c^2 \int \mathrm{d} t \, \sqrt{-(g_{\mu\nu})_A \, v_A^\mu v_A^\nu / c^2}}_{N \text{ point particles}} \end{split}$$

Fokker action is obtained by inserting an explicit PN solution of the Einstein field equations

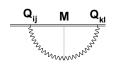
$$g_{\mu\nu}(\mathbf{x},t) \longrightarrow \overline{g}_{\mu\nu}(\mathbf{x}; \boldsymbol{x}_B(t), \boldsymbol{v}_B(t), \cdots)$$

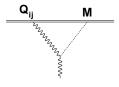
lacktriangle The PN equations of motion of the N particles (self-gravitating system) are

$$\delta S_{\mathsf{F}} = \frac{\partial L_{\mathsf{F}}}{\partial \boldsymbol{x}_{\mathsf{A}}} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L_{\mathsf{F}}}{\partial \boldsymbol{v}_{\mathsf{A}}} \right) + \dots = 0$$

The gravitational wave tail effect

[Blanchet & Damour 1988; Blanchet 1993, 1997; Foffa & Sturani 2011; Galley, Leibovich, Porto et al. 2016]

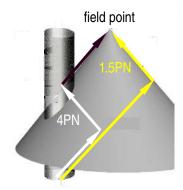




In the near zone (4PN effect)

$$S^{\text{tail}} = \frac{G^2 M}{5c^8} \iint \frac{\mathrm{d}t \mathrm{d}t'}{|t - t'|} \, I_{ij}^{(3)}(t) \, I_{ij}^{(3)}(t')$$

• In the far zone (1.5PN effect)



matter source

$$h_{ij}^{\text{tail}} = \frac{4G}{c^4 r} \frac{GM}{c^3} \int_{-\infty}^t dt' \frac{I_{ij}^{(4)}}{I_{ij}}(t') \ln\left(\frac{t - t'}{\tau_0}\right)$$

Problem of the UV divergences

[t'Hooft & Veltman 1972; Bollini & Giambiagi 1972; Breitenlohner & Maison 1977]

1 Einstein's field equations are solved in d spatial dimensions (with $d \in \mathbb{C}$) with distributional sources. In Newtonian approximation

$$\Delta U = -4\pi \frac{2(d-2)}{d-1} G \rho$$

② For two point-particles $ho=m_1\delta_{(d)}({f x}-{m x}_1)+m_2\delta_{(d)}({f x}-{m x}_2)$ we get

$$U(\mathbf{x},t) = \frac{2(d-2)k}{d-1} \left(\frac{Gm_1}{|\mathbf{x} - \mathbf{x}_1|^{d-2}} + \frac{Gm_2}{|\mathbf{x} - \mathbf{x}_2|^{d-2}} \right) \quad \text{with} \quad k = \frac{\Gamma\left(\frac{d-2}{2}\right)}{\pi^{\frac{d-2}{2}}}$$

75 / 99

- **②** Computations are performed when $\Re(d)$ is a large negative number, and the result is analytically continued for any $d \in \mathbb{C}$ except for isolated poles
- ① Dimensional regularization is then followed by a renormalization of the worldline of the particles so as to absorb the poles $\propto (d-3)^{-1}$

Luc Blanchet $(\mathcal{GR} \in \mathbb{CO})$ PN expansion of GR Sao Paulo

Problem of the IR divergences

- The tail effect implies the appearance of IR divergences in the Fokker action at the 4PN order
- ② Our initial calculation of the Fokker action was based on the Hadamard regularization to treat the IR divergences (FP procedure when $B \to 0$)
- However computing the conserved energy and periastron advance for circular orbits we found it does not agree with GSF calculations
- The problem was due to the HR and conjectured that a different IR regularization would give (modulo shifts)

$$L = L^{\rm HR} + \underbrace{\frac{G^4 m \, m_1^2 m_2^2}{c^8 r_{12}^4} \Big(\frac{\delta_1 (n_{12} v_{12})^2 + \delta_2 v_{12}^2 \Big)}_{\text{two ambiguity parameters } \underline{\delta_1} \text{ and } \underline{\delta_2}}$$

• Matching with GSF results for the energy and periastron advance uniquely fixes the two ambiguity parameters and we are in complete agreement with the results from the Hamiltonian formalism [DJS]

Conserved energy for a non-local Hamiltonian

 Because of the tail effect at 4PN order the Lagrangian or Hamiltonian becomes non-local in time

$$H\left[\mathbf{x},\mathbf{p}\right] = H_0\left(\mathbf{x},\mathbf{p}\right) + \underbrace{H_{\mathsf{tail}}\left[\mathbf{x},\mathbf{p}\right]}_{\mathsf{non-local piece at 4PN}}$$

4 Hamilton's equations involve functional derivatives

$$\frac{\mathrm{d}x^i}{\mathrm{d}t} = \frac{\delta H}{\delta p_i} \qquad \frac{\mathrm{d}p_i}{\mathrm{d}t} = -\frac{\delta H}{\delta x^i}$$

① The conserved energy is not given by the Hamiltonian on-shell but $E=H+\Delta H^{\rm AC}+\Delta H^{\rm DC}$ where the AC term averages to zero and

$$\Delta H^{\rm DC} = -\frac{2GM}{c^3} \mathcal{F}^{\rm GW} = -\frac{2G^2M}{5c^5} \langle \left(I_{ij}^{(3)}\right)^2 \rangle$$

Sao Paulo

77 / 99

On the other hand [DJS] perform a non-local shift to transform the Hamiltonian into a local one, and both procedure are equivalent

Conserved energy for circular orbits at 4PN order

- The 4PN energy for circular orbits in the small mass ratio limit is known from GSF of the redshift variable [Le Tiec, Blanchet & Whiting 2012; Bini & Damour 2013]
- ullet This permits to fix the ambiguity parameter lpha and to complete the 4PN equations of motion

$$\begin{split} E^{\text{4PN}} &= -\frac{\mu c^2 x}{2} \bigg\{ 1 + \left(-\frac{3}{4} - \frac{\nu}{12} \right) x + \left(-\frac{27}{8} + \frac{19}{8} \nu - \frac{\nu^2}{24} \right) x^2 \\ &\quad + \left(-\frac{675}{64} + \left[\frac{34445}{576} - \frac{205}{96} \pi^2 \right] \nu - \frac{155}{96} \nu^2 - \frac{35}{5184} \nu^3 \right) x^3 \\ &\quad + \left(-\frac{3969}{128} + \left[-\frac{123671}{5760} + \frac{9037}{1536} \pi^2 + \frac{896}{15} \gamma_{\text{E}} + \frac{448}{15} \ln(16x) \right] \nu \\ &\quad + \left[-\frac{498449}{3456} + \frac{3157}{576} \pi^2 \right] \nu^2 + \frac{301}{1728} \nu^3 + \frac{77}{31104} \nu^4 \right) x^4 \bigg\} \end{split}$$

Luc Blanchet $(\mathcal{GR}\mathcal{ECO})$ PN expansion of GR Sao Paulo

Periastron advance for circular orbits at 4PN order

The periastron advanced (or relativistic precession) constitutes a second invariant which is also known in the limit of circular orbits from GSF calculations

$$\begin{split} K^{\text{4PN}} &= 1 + 3x + \left(\frac{27}{2} - 7\nu\right)x^2 \\ &\quad + \left(\frac{135}{2} + \left[-\frac{649}{4} + \frac{123}{32}\pi^2\right]\nu + 7\nu^2\right)x^3 \\ &\quad + \left(\frac{2835}{8} + \left[-\frac{275941}{360} + \frac{48007}{3072}\pi^2 - \frac{1256}{15}\ln x\right. \\ &\quad - \frac{592}{15}\ln 2 - \frac{1458}{5}\ln 3 - \frac{2512}{15}\gamma_{\text{E}}\right]\nu \\ &\quad + \left[\frac{5861}{12} - \frac{451}{32}\pi^2\right]\nu^2 - \frac{98}{27}\nu^3\right)x^4 \end{split}$$

Luc Blanchet $(GR \in CO)$ PN expansion of GR Sao Paulo

Dimensional regularization of the IR divergences

The Hadamard regularization of IR divergences reads

$$I_{\mathcal{R}}^{\mathsf{HR}} = \underset{B=0}{\mathsf{FP}} \int_{r>\mathcal{R}} \mathrm{d}^3 \mathbf{x} \left(\frac{r}{r_0}\right)^{B} F(\mathbf{x})$$

The corresponding dimensional regularization reads

$$I_{\mathcal{R}}^{\mathsf{DR}} = \int_{r>\mathcal{R}} \frac{\mathrm{d}^{d}\mathbf{x}}{\ell_{0}^{d-3}} F^{(d)}(\mathbf{x})$$

• The difference between the two regularization is of the type $(\varepsilon = d - 3)$

$$\mathcal{D}I = \sum_{q} \left[\underbrace{\frac{1}{(q-1)\varepsilon}}_{\mathsf{IR pole}} - \ln\left(\frac{r_0}{\ell_0}\right) \right] \int d\Omega_{2+\varepsilon} \, \varphi_{3,q}^{(\varepsilon)}(\mathbf{n}) + \mathcal{O}\left(\varepsilon\right)$$

Luc Blanchet $(GR \in CO)$

Ambiguity-free completion of the 4PN EOM

[Marchand, Bernard, Blanchet & Faye 2017]

The tail effect contains a UV pole which cancels the IR pole coming from the instantaneous part of the action

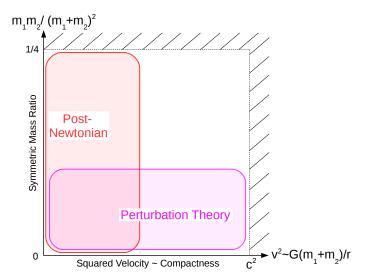
$$g_{00}^{\mathrm{tail}} = -\frac{8G^2M}{5c^8}\,x^{ij}\int_0^{+\infty}\mathrm{d}\tau \bigg[\ln\bigg(\frac{c\sqrt{\overline{q}}\,\tau}{2\ell_0}\bigg)\underbrace{-\frac{1}{2\varepsilon}}_{\mathrm{UV\ pole}} + \frac{41}{60}\bigg]I_{ij}^{(7)}(t-\tau) + \mathcal{O}\left(\frac{1}{c^{10}}\right)$$

- ② Adding up all contributions we obtain the conjectured form of the ambiguity terms with the correct values of the ambiguity parameters δ_1 and δ_2
- It is likely that the EFT formalism will also succeed in deriving the full EOM without ambiguities [Porto & Rothstein 2017]
- The lack of a consistent matching between the near zone and the far zone in the ADM Hamiltonian formalism [DJS] forces this formalism to be still plagued by one ambiguity parameter

Luc Blanchet (GR∉CO) PN expansion of GR Sao Paulo 81 / 99

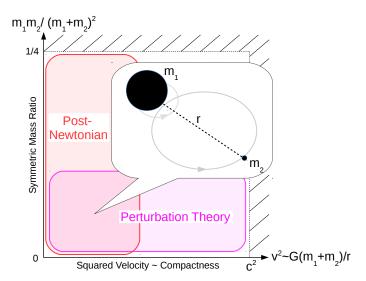
PN VERSUS PERTURBATION THEORY

Post-Newtonian versus perturbation theory



Sao Paulo

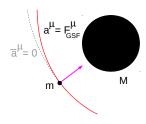
Post-Newtonian versus perturbation theory



Problem of the gravitational self-force (GSF)

[Mino, Sasaki & Tanaka 1997; Quinn & Wald 1997; Detweiler & Whiting 2003]

- A particle is moving on a background space-time of a massive black hole
- Its stress-energy tensor modifies the background gravitational field
- Because of the back-reaction the motion of the particle deviates from a background geodesic hence the gravitational self force

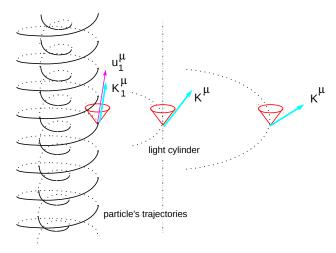


$$\bar{a}^{\mu} = F_{\mathsf{GSF}}^{\mu} = \mathcal{O}\left(\frac{m}{M}\right)$$

The GSF is computed to high accuracy by

- numerical methods [Sago, Barack & Detweiler 2008; Shah, Friedmann & Whiting 2014]
- analytical ones [Mano, Susuki & Takasugi 1996ab; Bini & Damour 2013, 2014]

Looking at the conservative part of the dynamics



Space-time for exact circular orbits admits a Helical Killing Vector (HKV) K^{μ}

Luc Blanchet ($GR \in CO$) PN expansion of GR Sao Paulo

Choice of a gauge-invariant observable [Detweiler 2008]

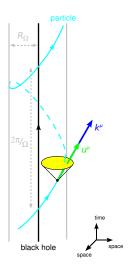
 For exactly circular orbits the geometry admits a helical Killing vector with

$$K^{\mu}\partial_{\mu}=\partial_{t}+\Omega\,\partial_{\varphi}$$
 (asymptotically)

The four-velocity of the particle is necessarily tangent to the Killing vector hence

$$K_1^{\mu} = \mathbf{z_1} \, u_1^{\mu}$$

- **1** This z_1 is the Killing energy of the particle associated with the HKV and is also a redshift
- The relation $z_1(\Omega)$ is well-defined in both PN and GSF approaches and is gauge-invariant

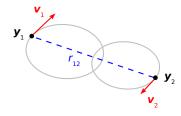


Post-Newtonian calculation of the redshift factor

[Blanchet, Detweiler, Le Tiec & Whiting 2010, 2011; Blanchet, Fave & Whiting 2014, 2015]

In a coordinate system such that $K^{\mu}\partial_{\mu}=\partial_{t}+\frac{\omega}{\omega}\partial_{\varphi}$ we have

$$z_1 = \frac{1}{u_1^t} = \left(-\underbrace{\left(g_{\mu\nu}\right)_1}_{\text{regularized metric}} \frac{v_1^\mu v_1^\nu}{c^2}\right)^{1/2}$$



87 / 99

One needs a self-field regularization

- Hadamard "partie finie" regularization is extremely useful in practical calculations but yields (UV and IR) ambiguity parameters at high PN orders
- Dimensional regularization is an extremely powerful regularization which seems to be free of ambiguities at any PN order

Standard PN theory agrees with GSF calculations

$$\begin{split} u_{\mathrm{SF}}^t &= -y - 2y^2 - 5y^3 + \left(-\frac{121}{3} + \frac{41}{32}\pi^2\right)y^4 \\ &+ \left(-\frac{1157}{15} + \frac{677}{512}\pi^2 - \frac{128}{5}\gamma_{\mathrm{E}} - \frac{64}{5}\ln(16y)\right)y^5 \\ &- \frac{956}{105}y^6\ln y - \frac{13696\pi}{525}y^{13/2} - \frac{51256}{567}y^7\ln y + \frac{81077\pi}{3675}y^{15/2} \\ &+ \frac{27392}{525}y^8\ln^2 y + \frac{82561159\pi}{467775}y^{17/2} - \frac{27016}{2205}y^9\ln^2 y \\ &- \frac{11723776\pi}{55125}y^{19/2}\ln y - \frac{4027582708}{9823275}y^{10}\ln^2 y \\ &+ \frac{99186502\pi}{1157625}y^{21/2}\ln y + \frac{23447552}{165375}y^{11}\ln^3 y + \cdots \end{split}$$

- 1 Integral PN terms such as 3PN permit checking dimensional regularization
- Half-integral PN terms starting at 5.5PN order permit checking the non-linear tails (and tail-of-tails)

Luc Blanchet $(\mathcal{GR} \in \mathcal{CO})$ PN expansion of GR Sao Paulo

Standard PN theory agrees with GSF calculations

$$\begin{split} u_{\rm SF}^t &= -y - 2y^2 - 5y^3 + \left(-\frac{121}{3} + \frac{41}{32}\pi^2\right)y^4 \\ &+ \left(-\frac{1157}{15} + \frac{677}{512}\pi^2 - \frac{128}{5}\gamma_{\rm E} - \frac{64}{5}\ln(16y)\right)y^5 \\ &- \frac{956}{105}y^6\ln y - \frac{13696\pi}{525}y^{13/2} - \frac{51256}{567}y^7\ln y + \frac{81077\pi}{3675}y^{15/2} \\ &+ \frac{27392}{525}y^8\ln^2 y + \frac{82561159\pi}{467775}y^{17/2} - \frac{27016}{2205}y^9\ln^2 y \\ &- \frac{11723776\pi}{55125}y^{19/2}\ln y - \frac{4027582708}{9823275}y^{10}\ln^2 y \\ &+ \frac{99186502\pi}{1157625}y^{21/2}\ln y + \frac{23447552}{165375}y^{11}\ln^3 y + \cdots \end{split}$$

- Integral PN terms such as 3PN permit checking dimensional regularization
- Half-integral PN terms starting at 5.5PN order permit checking the non-linear tails (and tail-of-tails)

Luc Blanchet (GReCO) PN expansion of GR Sao Paulo

Standard PN theory agrees with GSF calculations

$$u_{SF}^{t} = -y - 2y^{2} - 5y^{3} + \left(-\frac{121}{3} + \frac{41}{32}\pi^{2}\right)y^{4}$$

$$+ \left(-\frac{1157}{15} + \frac{677}{512}\pi^{2} - \frac{128}{5}\gamma_{E} - \frac{64}{5}\ln(16y)\right)y^{5}$$

$$-\frac{956}{105}y^{6}\ln y - \frac{13696\pi}{525}y^{13/2} - \frac{51256}{567}y^{7}\ln y + \frac{81077\pi}{3675}y^{15/2}$$

$$+ \frac{27392}{525}y^{8}\ln^{2}y + \frac{82561159\pi}{467775}y^{17/2} - \frac{27016}{2205}y^{9}\ln^{2}y$$

$$- \frac{11723776\pi}{55125}y^{19/2}\ln y - \frac{4027582708}{9823275}y^{10}\ln^{2}y$$

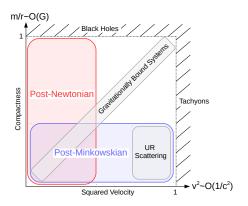
$$+ \frac{99186502\pi}{1157625}y^{21/2}\ln y + \frac{23447552}{165375}y^{11}\ln^{3}y + \cdots$$

- Integral PN terms such as 3PN permit checking dimensional regularization
- Half-integral PN terms starting at 5.5PN order permit checking the machinery of non-linear tails (and tail-of-tails)

Luc Blanchet (GReCO) PN expansion of GR Sao Paulo

POST-NEWTONIAN VERSUS POST-MINKOWSKIAN

The post-Minkowskian approximation



- The ultra relativistic gravitational scattering of two particles has been solved up to the 2PM order [Westpfahl et al. 1980, 1985; Portilla 1980]
- \bullet A closed-form expression for the Hamiltonian of N particles at the 1PM order has been found [Ledvinka, Schäfer & Bičak 2008]

Comparing 4PN with 1PM [Blanchet & Fokas 2018]

lacktriangle The 1PM field equations of N particles in harmonic coordinates read

$$\Box h^{\mu\nu} = \frac{16\pi}{c^2} \sum_{a=1}^{N} Gm_a \int_{-\infty}^{+\infty} d\tau_a \, u_a^{\mu} u_a^{\nu} \delta^{(4)}(x - y_a)$$

The Lienard-Wiechert solution is

$$h^{\mu\nu}(x) = -\frac{4}{c^2} \sum_a \frac{Gm_a \, u_a^{\mu} u_a^{\nu}}{r_a^{\text{ret}} \, (ku)_a^{\text{ret}}}$$

where $r_a^{\text{ret}} = |x - x_a^{\text{ret}}|$ and $(ku)_a^{\text{ret}}$ is the redshift factor

In small 1PM terms trajectories are straight lines hence the retardations can be explicitly performed

$$h^{\mu\nu}({\bf x},t) = -\frac{4}{c^2} \sum_a \frac{G m_a \, u_a^\mu u_a^\nu}{r_a \sqrt{1 + (n_a u_a)^2}} \label{eq:hmu}$$

Comparing 4PN with 1PM [Blanchet & Fokas 2018]

• This yields the 1PM equations of motion but in PN like form²

$$\frac{\mathrm{d}\boldsymbol{v}_{a}}{\mathrm{d}t} = -\gamma_{a}^{-2} \sum_{b \neq a} \frac{Gm_{b}}{r_{ab}^{2} y_{ab}^{3/2}} \left[(2\epsilon_{ab}^{2} - 1)\boldsymbol{n}_{ab} + \gamma_{b} \left(-4\epsilon_{ab}\gamma_{a}(n_{ab}v_{a}) + (2\epsilon_{ab}^{2} + 1)\gamma_{b}(n_{ab}v_{b}) \right) \frac{\boldsymbol{v}_{ab}}{c^{2}} \right]$$

These equations of motion are conservative and admit a conserved energy

$$E = \sum_{a} m_{a}c^{2}\gamma_{a} + \sum_{a} \sum_{b \neq a} \frac{Gm_{a}m_{b}}{r_{ab}y_{ab}^{1/2}} \left\{ \gamma_{a} \left(2\epsilon_{ab}^{2} + 1 - 4\frac{\gamma_{b}}{\gamma_{a}}\epsilon_{ab} \right) + \frac{\gamma_{b}^{2}}{\gamma_{a}} \left(2\epsilon_{ab}^{2} - 1 \right) \frac{\dot{r}_{ab}(n_{ab}v_{b}) - (v_{ab}v_{b})}{\left(v_{ab}^{2} - \dot{r}_{ab}^{2} \right) y_{ab} + \frac{\gamma_{b}^{2}}{c^{2}} \left(\dot{r}_{ab}(n_{ab}v_{b}) - (v_{ab}v_{b}) \right)^{2}} \right\}$$

 $^{^2}y_{ab}=1+(n_{ab}u_a)^2$ and $\epsilon_{ab}=-(u_au_b)$

Comparing 4PN with 1PM [Blanchet & Fokas 2018]

The 1PM Lagrangian in harmonic coordinates is a generalized one

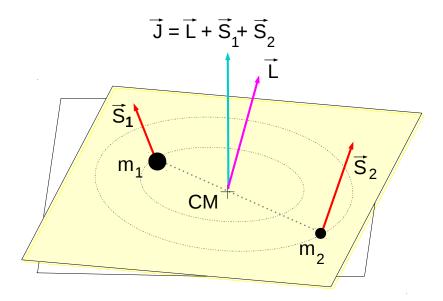
$$L = \sum_a -\frac{m_a c^2}{\gamma_a} + \lambda + \underbrace{\sum_a q_a^i a_a^i}_{\text{accelerations}}$$

② The 1PM Lagrangian can be computed up to any PN order from the terms of order G in the conserved energy say $E=\sum_a m_a c^2 \gamma_a + \varepsilon$

- We checked in a particular case that the Hamiltonian differs by a canonical transformation from the closed-form expression of the 1PM Hamiltonian in ADM coordinates [Ledvinka, Schäfer & Bičak 2008]
- lacktriangle All the results reproduce the terms linear in G in the 4PN harmonic coordinates equations of motion and Lagrangian [BBBFMM]

SPIN EFFECTS IN COMPACT BINARIES

Black hole binary system with spins



Sao Paulo

Spinning particles in a pole-dipole approximation



particle's worldline parametrized by au

• The spin degrees of freedom are described by an orthonormal moving tetrad along the worldline

$$g_{\mu\nu} \, e_A^{\ \mu} e_B^{\ \nu} = \eta_{AB}$$

The rotation tensor of the tetrad is defined as

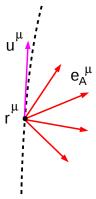
$$\frac{\mathrm{D}e_A^{\ \mu}}{\mathrm{d}\tau} = -\Omega^{\mu\nu}e_A$$

 Because of the orthonormality condition the rotation tensor is antisymmetric

$$\Omega^{\mu\nu} = -\Omega^{\nu\mu}$$

The dynamical degrees of freedom of the particle are the particle's position and the moving tetrad and the internal structure of the particle is neglected

Spinning particles in a pole-dipole approximation



particle's worldline parametrized by au

• The spin degrees of freedom are described by an orthonormal moving tetrad along the worldline

$$g_{\mu\nu} \, e_A^{\ \mu} e_B^{\ \nu} = \eta_{AB}$$

2 The rotation tensor of the tetrad is defined as

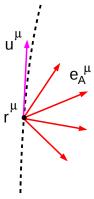
$$\frac{\mathrm{D}e_A^{\ \mu}}{\mathrm{d}\tau} = -\Omega^{\mu\nu}e_{A\nu}$$

 Because of the orthonormality condition the rotation tensor is antisymmetric

$$\Omega^{\mu\nu} = -\Omega^{\nu\mu}$$

The dynamical degrees of freedom of the particle are the particle's position and the moving tetrad and the internal structure of the particle is neglected

Spinning particles in a pole-dipole approximation



particle's worldline parametrized by au

• The spin degrees of freedom are described by an orthonormal moving tetrad along the worldline

$$g_{\mu\nu}\,e_A^{\mu}e_B^{\nu}=\eta_{AB}$$

2 The rotation tensor of the tetrad is defined as

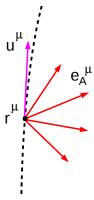
$$\frac{\mathrm{D}e_A^{\ \mu}}{\mathrm{d}\tau} = -\Omega^{\mu\nu}e_{A\nu}$$

 Because of the orthonormality condition the rotation tensor is antisymmetric

$$\Omega^{\mu\nu} = -\Omega^{\nu\mu}$$

 The dynamical degrees of freedom of the particle are the particle's position and the moving tetrad and the internal structure of the particle is neglected

Spinning particles in a pole-dipole approximation



particle's worldline parametrized by $\boldsymbol{\tau}$

The spin degrees of freedom are described by an orthonormal moving tetrad along the worldline

$$g_{\mu\nu}\,e_A^{\mu}e_B^{\nu}=\eta_{AB}$$

The rotation tensor of the tetrad is defined as

$$\frac{\mathrm{D}e_A^{\ \mu}}{\mathrm{d}\tau} = -\Omega^{\mu\nu}e_{A\nu}$$

 Because of the orthonormality condition the rotation tensor is antisymmetric

$$\Omega^{\mu\nu} = -\Omega^{\nu\mu}$$

The dynamical degrees of freedom of the particle are the particle's position and the moving tetrad and the internal structure of the particle is neglected

[Hanson & Regge 1974; Bailey & Israel 1975]

• Following effective field theories we define a general action principle

$$\label{eq:sparse} \boxed{S\big[r^{\mu},e_{A}^{\ \mu}\big] = \sum_{\text{particles}} \int_{-\infty}^{+\infty} \mathrm{d}\tau \, L\big(u^{\mu},\Omega^{\mu\nu},g_{\mu\nu}\big)}$$

The particle's linear momentum and spin tensor are the conjugate momenta

$$p_{\mu} = \frac{\partial L}{\partial u^{\mu}} \qquad S_{\mu\nu} = 2 \frac{\partial L}{\partial \Omega^{\mu\nu}}$$

We just impose that the action obeys basic symmetry principles

It should be a Lorentz scalar

It should be a covariant scalar

$$2\frac{\partial L}{\partial q_{\mu\nu}} = p^{\mu}u^{\nu} + S^{\mu}_{\ \rho}\Omega^{\nu\rho}$$

ullet It should be invariant under worldline reparametrization $(au o\lambda au)$

$$L = p_{\mu}u^{\mu} + \frac{1}{2}S_{\mu\nu}\Omega^{\mu\nu}$$

Sao Paulo

[Hanson & Regge 1974; Bailey & Israel 1975]

• Following effective field theories we define a general action principle

$$\label{eq:special_special} \boxed{S\big[r^{\mu},e_{A}^{\ \mu}\big] = \sum_{\text{particles}} \int_{-\infty}^{+\infty} \mathrm{d}\tau \, L\big(u^{\mu},\Omega^{\mu\nu},g_{\mu\nu}\big)}$$

The particle's linear momentum and spin tensor are the conjugate momenta

$$p_{\mu} = \frac{\partial L}{\partial u^{\mu}} \qquad S_{\mu\nu} = 2 \frac{\partial L}{\partial \Omega^{\mu\nu}}$$

We just impose that the action obeys basic symmetry principles:
 It should be a Lorentz scalar
 It should be a covariant scalar.

$$2\frac{\partial L}{\partial g_{\mu\nu}} = p^{\mu}u^{\nu} + S^{\mu}_{\ \rho}\Omega^{\nu\rho}$$

ullet It should be invariant under worldline reparametrization $(au o\lambda au)$

 $L = p_{\mu}u^{\mu} + \frac{1}{2}S_{\mu\nu}\Omega^{\mu\nu}$

[Hanson & Regge 1974; Bailey & Israel 1975]

• Following effective field theories we define a general action principle

$$\label{eq:spectrum} \boxed{S\big[r^{\mu},e_{A}^{\ \mu}\big] = \sum_{\text{particles}} \int_{-\infty}^{+\infty} \mathrm{d}\tau \, L\big(u^{\mu},\Omega^{\mu\nu},g_{\mu\nu}\big)}$$

The particle's linear momentum and spin tensor are the conjugate momenta

$$p_{\mu} = \frac{\partial L}{\partial u^{\mu}} \qquad S_{\mu\nu} = 2 \frac{\partial L}{\partial \Omega^{\mu\nu}}$$

- We just impose that the action obeys basic symmetry principles:
 - It should be a Lorentz scalar
 - It should be a covariant scala

$$2\frac{\partial L}{\partial g_{\mu\nu}} = p^{\mu}u^{\nu} + S^{\mu}_{\ \rho}\Omega^{\nu\rho}$$

ullet It should be invariant under worldline reparametrization $(au o \lambda au)$

$$L = p_{\mu}u^{\mu} + \frac{1}{2}S_{\mu\nu}\Omega^{\mu\nu}$$

[Hanson & Regge 1974; Bailey & Israel 1975]

• Following effective field theories we define a general action principle

$$\label{eq:spectrum} \boxed{S\big[r^{\mu},e_{A}^{\ \mu}\big] = \sum_{\text{particles}} \int_{-\infty}^{+\infty} \mathrm{d}\tau \, L\big(u^{\mu},\Omega^{\mu\nu},g_{\mu\nu}\big)}$$

The particle's linear momentum and spin tensor are the conjugate momenta

$$p_{\mu} = \frac{\partial L}{\partial u^{\mu}} \qquad S_{\mu\nu} = 2 \frac{\partial L}{\partial \Omega^{\mu\nu}}$$

- We just impose that the action obeys basic symmetry principles:
 - It should be a Lorentz scalar
 - It should be a covariant scalar

$$2\frac{\partial L}{\partial g_{\mu\nu}} = p^{\mu}u^{\nu} + S^{\mu}_{\ \rho}\Omega^{\nu\rho}$$

ullet It should be invariant under worldline reparametrization $(au o \lambda au)$

$$L = p_{\mu}u^{\mu} + \frac{1}{2}S_{\mu\nu}\Omega^{\mu\nu}$$

[Hanson & Regge 1974; Bailey & Israel 1975]

• Following effective field theories we define a general action principle

$$\label{eq:spectrum} \boxed{S\big[r^{\mu},e_{A}^{\ \mu}\big] = \sum_{\text{particles}} \int_{-\infty}^{+\infty} \mathrm{d}\tau \, L\big(u^{\mu},\Omega^{\mu\nu},g_{\mu\nu}\big)}$$

The particle's linear momentum and spin tensor are the conjugate momenta

$$p_{\mu} = \frac{\partial L}{\partial u^{\mu}} \qquad S_{\mu\nu} = 2 \frac{\partial L}{\partial \Omega^{\mu\nu}}$$

- We just impose that the action obeys basic symmetry principles:
 - It should be a Lorentz scalar
 - It should be a covariant scalar

$$2\frac{\partial L}{\partial g_{\mu\nu}} = p^{\mu}u^{\nu} + S^{\mu}_{\ \rho}\Omega^{\nu\rho}$$

ullet It should be invariant under worldline reparametrization $(au o \lambda au)$

$$L = p_{\mu}u^{\mu} + \frac{1}{2}S_{\mu\nu}\Omega^{\mu\nu}$$

[Hanson & Regge 1974; Bailey & Israel 1975]

• Following effective field theories we define a general action principle

$$\label{eq:spectrum} \boxed{S\big[r^{\mu},e_{A}^{\ \mu}\big] = \sum_{\text{particles}} \int_{-\infty}^{+\infty} \mathrm{d}\tau \, L\big(u^{\mu},\Omega^{\mu\nu},g_{\mu\nu}\big)}$$

The particle's linear momentum and spin tensor are the conjugate momenta

$$p_{\mu} = \frac{\partial L}{\partial u^{\mu}} \qquad S_{\mu\nu} = 2 \frac{\partial L}{\partial \Omega^{\mu\nu}}$$

- We just impose that the action obeys basic symmetry principles:
 - It should be a Lorentz scalar
 - It should be a covariant scalar

$$2\frac{\partial L}{\partial g_{\mu\nu}} = p^{\mu}u^{\nu} + S^{\mu}_{\rho}\Omega^{\nu\rho}$$

• It should be invariant under worldline reparametrization $(au o \lambda au)$

$$L = p_{\mu}u^{\mu} + \frac{1}{2}S_{\mu\nu}\Omega^{\mu\nu}$$

Equations of motion and of spin precession

• Varying the action with respect to the tetrad $e_A^{\ \mu}$ (holding the metric $g_{\mu\nu}$ fixed) gives the spin precession equation

$$\boxed{\frac{\mathrm{D}S_{\mu\nu}}{\mathrm{d}\tau} = p_{\mu}u_{\nu} - p_{\nu}u_{\mu}}$$

② Varying with respect to the position r^{μ} gives the famous Mathisson-Papapetrou [Mathisson 1937; Papapetrou 1951] equation of motion

$$\frac{\mathrm{D}p_{\mu}}{\mathrm{d}\tau} = -\frac{1}{2}u^{\nu}R_{\mu\nu\rho\sigma}S^{\rho\sigma}$$

① Varying with respect to the metric $g_{\mu\nu}$ (keeping $e_{A[\mu}\delta e^A_{\ \nu]}=0$) gives the stress-energy tensor of the spinning particles [Trautman 1958; Dixon 1979]

$$T^{\mu\nu} = \sum_{\text{particles}} \int d\tau \, p^{(\mu} \, u^{\nu)} \, \frac{\delta^{(4)}(x-r)}{\sqrt{-g}} - \nabla_{\rho} \int d\tau \, S^{\rho(\mu} \, u^{\nu)} \, \frac{\delta^{(4)}(x-r)}{\sqrt{-g}}$$

Luc Blanchet ($\mathcal{GR}\mathcal{ECO}$) PN expansion of GR Sao Paulo 98

Equations of motion and of spin precession

• Varying the action with respect to the tetrad $e_{\scriptscriptstyle A}{}^{\mu}$ (holding the metric $g_{\mu\nu}$ fixed) gives the spin precession equation

$$\frac{\mathrm{D}S_{\mu\nu}}{\mathrm{d}\tau} = p_{\mu}u_{\nu} - p_{\nu}u_{\mu}$$

2 Varying with respect to the position r^{μ} gives the famous Mathisson-Papapetrou [Mathisson 1937; Papapetrou 1951] equation of motion

$$\boxed{\frac{\mathrm{D}p_{\mu}}{\mathrm{d}\tau} = -\frac{1}{2}u^{\nu}R_{\mu\nu\rho\sigma}S^{\rho\sigma}}$$

① Varying with respect to the metric $g_{\mu\nu}$ (keeping $e_{A[\mu}\delta e^{A}_{\nu]}=0$) gives the

$$T^{\mu\nu} = \sum_{\text{particles}} \int d\tau \, p^{(\mu} \, u^{\nu)} \, \frac{\delta^{(4)}(x-r)}{\sqrt{-g}} - \nabla_{\rho} \int d\tau \, S^{\rho(\mu} \, u^{\nu)} \, \frac{\delta^{(4)}(x-r)}{\sqrt{-g}}$$

Equations of motion and of spin precession

• Varying the action with respect to the tetrad $e_A^{\ \mu}$ (holding the metric $g_{\mu\nu}$ fixed) gives the spin precession equation

$$\frac{\mathrm{D}S_{\mu\nu}}{\mathrm{d}\tau} = p_{\mu}u_{\nu} - p_{\nu}u_{\mu}$$

② Varying with respect to the position r^{μ} gives the famous Mathisson-Papapetrou [Mathisson 1937; Papapetrou 1951] equation of motion

$$\boxed{\frac{\mathrm{D}p_{\mu}}{\mathrm{d}\tau} = -\frac{1}{2}u^{\nu}R_{\mu\nu\rho\sigma}S^{\rho\sigma}}$$

• Varying with respect to the metric $g_{\mu\nu}$ (keeping $e_{A[\mu}\delta e^A_{\nu]}=0$) gives the stress-energy tensor of the spinning particles [Trautman 1958; Dixon 1979]

$$T^{\mu\nu} = \sum_{\text{particles}} \int d\tau \, p^{(\mu} \, u^{\nu)} \, \frac{\delta^{(4)}(x-r)}{\sqrt{-g}} - \nabla_{\rho} \int d\tau \, S^{\rho(\mu} \, u^{\nu)} \, \frac{\delta^{(4)}(x-r)}{\sqrt{-g}}$$

Luc Blanchet $(\mathcal{GR} \in \mathbb{CO})$ PN expansion of GR

To correctly account for the number of degrees of freedom associated with the spin we impose a suplementary condition [Tulczyjew 1957, 1959]

$$S^{\mu\nu}p_{\nu}=0$$

② With the latter choice for the SSC, the particle's mass $m^2 = -g^{\mu\nu}p_{\mu}p_{\nu}$ and

$$\frac{\mathrm{D}m}{\mathrm{d}\tau} = 0$$
 $\frac{\mathrm{D}s}{\mathrm{d}\tau} = 0$

$$p^{\mu} = m \, u^{\mu} + \mathcal{O}(S^2)$$

$$\frac{\mathrm{D}S_{\mu\nu}}{\mathrm{d}\tau} = \mathcal{O}(S^2)$$

To correctly account for the number of degrees of freedom associated with the spin we impose a suplementary condition [Tulczyjew 1957, 1959]

$$S^{\mu\nu}p_{\nu}=0$$

② With the latter choice for the SSC, the particle's mass $m^2=-g^{\mu\nu}p_\mu p_\nu$ and the four-dimensional spin magnitude $s^2=S^{\mu\nu}S_{\mu\nu}$ are constant

$$\frac{\mathrm{D}m}{\mathrm{d}\tau} = 0 \qquad \frac{\mathrm{D}s}{\mathrm{d}\tau} = 0$$

① The link between the four velocity u^{μ} and the four linear momentum p^{μ} is entirely specified, hence the Lagrangian is specified. At linear order in the spins we have

$$p^{\mu} = m \, u^{\mu} + \mathcal{O}(S^2)$$

The equation for the spin reduces to the equation of parallel transport

$$\frac{\mathrm{D}S_{\mu\nu}}{\mathrm{d}\tau} = \mathcal{O}(S^2)$$

• To correctly account for the number of degrees of freedom associated with the spin we impose a suplementary condition [Tulczyjew 1957, 1959]

$$S^{\mu\nu}p_{\nu}=0$$

② With the latter choice for the SSC, the particle's mass $m^2=-g^{\mu\nu}p_{\mu}p_{\nu}$ and the four-dimensional spin magnitude $s^2=S^{\mu\nu}S_{\mu\nu}$ are constant

$$\frac{\mathrm{D}m}{\mathrm{d}\tau} = 0 \qquad \frac{\mathrm{D}s}{\mathrm{d}\tau} = 0$$

① The link between the four velocity u^μ and the four linear momentum p^μ is entirely specified, hence the Lagrangian is specified. At linear order in the spins we have

$$p^{\mu} = m u^{\mu} + \mathcal{O}(S^2)$$

The equation for the spin reduces to the equation of parallel transport

$$\frac{\mathrm{D}S_{\mu\nu}}{\mathrm{d}\tau} = \mathcal{O}(S^2)$$

• To correctly account for the number of degrees of freedom associated with the spin we impose a suplementary condition [Tulczyjew 1957, 1959]

$$S^{\mu\nu}p_{\nu}=0$$

② With the latter choice for the SSC, the particle's mass $m^2=-g^{\mu\nu}p_{\mu}p_{\nu}$ and the four-dimensional spin magnitude $s^2=S^{\mu\nu}S_{\mu\nu}$ are constant

$$\frac{\mathrm{D}m}{\mathrm{d}\tau} = 0 \qquad \frac{\mathrm{D}s}{\mathrm{d}\tau} = 0$$

① The link between the four velocity u^μ and the four linear momentum p^μ is entirely specified, hence the Lagrangian is specified. At linear order in the spins we have

$$p^{\mu} = m u^{\mu} + \mathcal{O}(S^2)$$

The equation for the spin reduces to the equation of parallel transport

$$\frac{\mathrm{D}S_{\mu\nu}}{\mathrm{d}\tau} = \mathcal{O}(S^2)$$