Emergent dimerization and localization in disordered quantum systems

André P. Vieira

Instituto de Física, USP

Condensed Matter Theory in the Metropolis

André P. Vieira MBL and emergent dimerization

José A. Hoyos

Instituto de Física de São Carlos, USP

PHYSICAL REVIEW B 98, 104203 (2018)

Emergent dimerization and localization in disordered quantum chains

André P. Vieira1 and José A. Hoyos2

¹Instituto de Física, Universidade de São Paulo, C.P. 66318, São Paulo, SP 05508-090, Brazil
²Instituto de Física de São Carlos, Universidade de São Paulo, C.P. 369, São Carlos, SP 13560-970, Brazil

(Received 21 April 2018; published 14 September 2018)

- Introduction
 - Localization
 - Disordered but deterministic quantum spin chains
- Emergent dimerization and localization
- Conclusions and perspectives

Anderson localization Anderson, *Phys. Rev.* 109, 1492 (1958)

In 1d isolated systems, single-particle states under a random potential $\{\lambda_j\}$ are (exponentially) localized for any amount of disorder. There is no diffusion in the absence of a thermal bath.

$$H = t \sum_{j=1}^{L} \left(c_j^{\dagger} c_{j+1} + c_{j+1}^{\dagger} c_j \right) - \sum_{j=1}^{L} h_j n_j, \qquad n_j \equiv c_j^{\dagger} c_j$$

Figure taken from Billy et al., Nature 453, 891 (2008).

Interacting fermions in 1D

$$H = t \sum_{j=1}^{L} \left(c_{j}^{\dagger} c_{j+1} + c_{j+1}^{\dagger} c_{j} \right) - \sum_{j=1}^{L} h_{j} n_{j} - V \sum_{j=1}^{L} \left(n_{j} - \frac{1}{2} \right) \left(n_{j+1} - \frac{1}{2} \right)$$

Mapping fermions to spins via the Jordan–Wigner transformation:

$$H = J \sum_{j=1}^{L} \left(S_{j}^{x} S_{j+1}^{x} + S_{j}^{y} S_{j+1}^{y} + \Delta S_{j}^{z} S_{j+1}^{z} \right) - \sum_{j=1}^{L} h_{j} S_{j}^{z} \quad (J \propto t, \ J' \propto V)$$

The quantum XXZ chain with bond disorder

We focus on systems described by the following Hamiltonian:

$$H = \sum_{j=1}^{L} J_j \left(S_j^x S_{j+1}^x + S_j^y S_{j+1}^y + \Delta S_j^z S_{j+1}^z \right)$$

- The anisotropy parameter Δ gauges the fermion-fermion interactions; we study the cases Δ = 0 (XX chain, noninteracting) and Δ = 1 (Heisenberg chain).
- We assume $J_j > 0$ (antiferromagnetic couplings).
- Low-energy behavior strongly depends on how $\{J_j\}$ is chosen.

Uniform chain

$$H = J \sum_{j=1}^{L} \left(S_j^{x} S_{j+1}^{x} + S_j^{y} S_{j+1}^{y} + \Delta S_j^{z} S_{j+1}^{z} \right), \quad (J > 0, 0 \le \Delta \le 1)$$

- Néel state $(\dots \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \dots)$ is **not** an eigenstate; $\vec{S}_{2j} \rightarrow -\vec{S}_{2j} \Rightarrow \left[S_{2j}^x, S_{2j}^y\right] = -iS_{2j}^z \neq iS_{2j}^z$
- Ground state is a **critical** singlet (*L* even) Total spin: $\vec{S} = \vec{S}_1 + \vec{S}_2 + \dots + \vec{S}_N$; $\vec{S}^2 |\Psi_0\rangle = 0$

$$\left\langle S_{j}^{\alpha}S_{j+r}^{\alpha}\right\rangle_{0}\sim\frac{(-1)^{r}}{r^{\eta_{\alpha}}};\qquad E_{1}-E_{0}=0,\quad\eta_{\alpha}=\eta_{\alpha}\left(\Delta\right)$$

Alternating bonds: enforced dimerization

$$J_j = J \left[1 + \delta \left(-1
ight)^j
ight] > 0, \qquad 0 \leq \Delta \leq 1$$

$$|\bigcirc\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

Noncritical ground state

• Nonzero gap to (extended) lowest excited states:

$$\Delta E \sim |\delta|^{v}, \qquad v = v(\Delta) = rac{2(\pi - \arccos \Delta)}{3\pi - 4 \arccos \Delta},$$

• Ground-state correlations:
$$\left_{0}\sim\exp{(-r/\xi)}.$$

Breaking translation symmetry

- Randomness: bonds chosen (independently) from a probability distribution *P*(*J_i*).
- Deterministic aperiodicity (quasicrystals)

1D analogues of quasicrystals

• Substitution (inflation) rules

Fibonacci : $\begin{cases} a \to ab \\ b \to a \end{cases} \qquad abaababaabaab \dots$

• Gives rise to an *aperiodic* sequence of bonds J_a and J_b .

Weak disorder: the Harris–Luck criterion Harris, J. Phys. C 7, 1671 (1974); Luck, EPL 24, 359 (1993)

- In the context of the antiferromagnetic XXZ chain, the criterion involves the fluctuations of $\varepsilon_j = J_{2j} J_{2j-1}$.
- Assuming that these fluctuations grow with the system size L as

$$G_L \sim L^{\omega}$$
,

with some "wandering exponent" ω , disorder will be perturbatively relevant if

$$\omega>\max\left\{0,1-\left(dv
ight)^{-1}
ight\}=0\qquad (d=1,0\leq\Delta\leq1)\,.$$

- For randomness, $\omega = \frac{1}{2}$: weak disorder is *relevant*.
- For deterministic aperiodicity, ω depends on the substitution rule, and can be gauged independently of the modulation strength $r = 1 J_a/J_b$.

$$H = \sum_{j} J_j \vec{S}_j \cdot \vec{S}_{j+1}, \qquad J_j > 0$$

For the XXZ case $(0 \le \Delta \le 1)$ a similar relation holds, but Δ is also renormalized.

Strong disorder: Fibonacci bonds APV, PRL 94, 077201 (2005); PRB 71, 134408(2005)

• Geometric fluctuations for XXZ chain with Fibonacci bonds:

 $G_L \sim \ln L$, formally $\omega = 0^+ \rightarrow$ weak disorder is *marginal*.

• Effective parameters of the SDRG scheme:

$$J' = rac{1}{1+\Delta_0} \cdot rac{J_I J_r}{J_0} \equiv \gamma_2(\Delta_0) rac{J_I J_r}{J_0}, \qquad \Delta' = rac{1+\Delta_0}{2} \Delta_I \Delta_r$$

• Bonds J_a and J_b , assuming $\rho = J_a/J_b \ll 1$:

$$J'_{a} = \gamma_{2}^{2} \frac{J^{2}_{a}}{J^{2}_{b}}, \quad J'_{b} = \gamma_{2} \frac{J^{2}_{a}}{J_{b}}, \quad \Omega \sim J_{b}$$

• Iterating *n* times reveals gapless excitations in the T.L.:

$$\Omega_n \sim r_n^{-\zeta(\rho)} \exp\left(-\mu \ln^2 r_n\right) \qquad XX \text{ chain} \to \mu = 0$$

Strong disorder: Fibonacci bonds APV, *PRL* 94, 077201 (2005); *PRB* 71, 134408(2005)

Low-temperature thermodynamic behavior

Strong disorder: deterministic aperiodicity APV, PRL 94, 077201 (2005); PRB 71, 134408(2005)

• For bonds chosen from substitution rules with $\omega > 0$ (perturbatively relevant) and no average dimerization $(\overline{J_{2j-1}} = \overline{J_{2j}})$, length and energy scales are related by

 $\Omega \sim \exp(cr^{\omega}).$

- Discrete characteristic length and energy scales.
- Distinction between average and typical behavior.
- Asymptotically (long lengths, low energies) valid also for weak initial modulation.
- What about perturbatively irrelevant bond sequences?

- Large family of substitution rules with $\omega = 0$ and no average dimerization $(\overline{J_{2j-1}} = \overline{J_{2j}})$.
- Representative example:

$$\begin{cases} aa \rightarrow aa ba ab ab ba \\ ab \rightarrow aa ba ab \\ ba \rightarrow ab ba aa ab ba \end{cases}$$

- Harris–Luck criterion predicts weak modulation to be irrelevant; confirmed by bosonization approach.
- What about *strong modulation*?

• For strong modulation, SDRG can be used.

$$J'_{l,r} = \gamma_3(\Delta_0) J_{l,r}$$

 $\Delta'_{l,r} = \delta_3(\Delta_0) \Delta_{l,r}$

Which are now the 'strongest' bonds?

• For strong modulation, SDRG can be used.

- Applying SDRG in the noninteracting XX limit ($\Delta = 0$), an effective uniform chain is produced \rightarrow both weak and strong modulation are irrelevant.
- This is confirmed by free-fermion calculations for large systems, with $L\simeq 10^5$ sites.

Emergent dimerization Perturbatively irrelevant bond sequences: APV and Hoyos, PRB **98** 104203 (2018)

• In the interacting Heisenberg limit, SDRG yields

- Alternating weak and strong effective couplings: emergent dimerization.
- Strong couplings are all equal to each other; weak couplings form an aperiodic sequence with wandering exponent ω = ¹/₂.

Emergent dimerization Perturbatively irrelevant bond sequences: APV and Hoyos, PRB **98** 104203 (2018)

• In the interacting Heisenberg limit, SDRG yields

• Low-energy effective Hamiltonian:

$$\tilde{H} = \tilde{J}_{\text{strong}} \sum_{j=1}^{\ell/2} \vec{S}_{2j-1} \cdot \vec{S}_{2j} + \sum_{j=1}^{\ell/2-1} \tilde{J}_j \vec{S}_{2j} \cdot \vec{S}_{2j+1}.$$

• Low-energy effective Hamiltonian in the Heisenberg limit:

$$\tilde{H} = \tilde{J}_{\text{strong}} \sum_{j=1}^{\ell/2} \vec{S}_{2j-1} \cdot \vec{S}_{2j} + \sum_{j=1}^{\ell/2-1} \tilde{J}_j \vec{S}_{2j} \cdot \vec{S}_{2j+1}.$$

• If $\tilde{J}_j = 0$, the ground state and the lowest-lying excitations are

$$|\Psi_{0}\rangle = |s\rangle_{1,2} \otimes |s\rangle_{3,4} \otimes |s\rangle_{5,6} \otimes \cdots \otimes |s\rangle_{\ell-1,\ell},$$

 $|j; S^{z}\rangle = \left(\bigotimes_{i \neq j} |s\rangle_{2i-1,2i}\right) \otimes |t; S^{z}\rangle_{2j-1,2j},$

in which $|s\rangle_{2j-1,2j}$ is a singlet state between effective spins at 2j-1 and 2j, while $|t; S^z\rangle_{2j-1,2j}$ is one of the triplet states.

 For J
_j ≠ 0, perturbation theory yields an effective Hamiltonian for the lowest-energy many-body band, describing the hopping of the "triplons" over the dimers:

$$ilde{\mathcal{H}}_{1 ext{-triplon}} = -rac{1}{4}\sum_{j=1}^{\ell/2-1} ilde{J}_{j}\left(\ket{j;S^{z}}ig\langle j+1;S^{z}
ight| + \ket{j+1;S^{z}}ig\langle j;S^{z}
ight).$$

• Are single triplons localized? Participation ratio shows that they are. This remains true for 2-triplon excitations, whose effective Hamiltonian is more complicated.

Participation ratio for state
$$k=\sum_{j}\left|\psi_{k,j}
ight|^{4}$$

Inverse participation ratio of 1- and 2-triplon states vanishes for infinite system size \rightarrow localization

André P. Vieira MBL and emergent dimerization

DMRG, gap rescaled by SDRG prediction ($r_c \simeq 0.13, z \simeq 1, v \simeq 2$)

Luttinger liquid: extended; aperiodic dimer: localized at least at low energies

Conclusions

- Emergent dimerization: Novel mechanism for inducing a localized gapped phase in interacting quantum many-body systems.
- Single-particle eigenstates are extended even for very strong disorder; many-body low-energy states are localized for sufficiently strong disorder and sufficiently strong interactions.
- Transition can be studied, and critical exponents obtained. The transition is driven by both strong interactions and disorder modulation.
- In the fermion context, this is a metal-insulator transition very distinct from both the Mott and the Anderson transitions, exhibiting a spectral gap but no charge order.
- Perspectives: Thorough numerical check for $0 < \Delta < 1$; numerical investigations of the dynamics close to the transition; high-temperature behavior and connection to many-body localization.

FFT results Perturbatively relevant bonds

FFT results Perturbatively irrelevant bonds

Geometrical fluctuations Perturbatively irrelevant bonds

Geometrical fluctuations Fibonacci bonds

