

DARK ENERGY SURVEY

Galaxy cluster cosmology in the LSST Era

Tom McClintock Research Associate

BROCKHAVEN NATIONAL LABORATORY

DARK ENERGY SURVEY

abundance Galaxy cluster cosmology in the LSST Era

Tom McClintock Research Associate

BROCKHAVEN NATIONAL LABORATORY

Galaxy clusters

LSST:

Will find ~100k massive clusters

Up to ~1M galaxy groups

Complete up to z~1.2 (ish)

All clusters are identified by their **photometric properties**

Structure probes cosmology!

Lots of matter + little dark energy = more structure Lots of dark energy + little matter = less structure

More clusters = more structure

Galaxy cluster cosmology in 3 easy steps

1. Find galaxy clusters

2. Measure cluster masses

3. Model cluster abundance

Galaxy cluster cosmology in 3 easy steps

<u>1. Find galaxy clusters</u> (see Ricardo's talk)

2. Measure cluster masses

3. Model cluster abundance

Finding clusters photometrically - redMaPPer

redMaPPer redshifts

Obtain unbiased, precise redshifts.

Don't require a vast spectroscopic catalog!

Rykoff+ (2014, 2016)

Example cluster catalog

DES: 5000 sq. deg. (LSST: 18k sq. deg.)

redMaPPer cluster finder 1 **7066** clusters (76k at the group scale, ⁹⁰ with >=5 galaxies)

DES Year 1 catalog complete up to z=0.65

Halo mass function

Halo mass function

Cluster catalog vs. mass-richness relation

Cluster catalog vs. mass-richness relation

Galaxy cluster cosmology in 3 easy steps

1. Find galaxy clusters

2. Measure cluster masses (see Mariana's talk)

3. Model cluster abundance

Cluster masses from gravitational lensing

Images courtesy of NASA/ESA & DES

Weak gravitational lensing

Can detect only statistically detect *shear*. Mean tangential ellipticity of *background galaxies* is sensitive to *cluster mass*.

Abell 2218 - gravitational lensing

Cluster weak lensing in DES - stacking

Lensing signal is **noise dominated** for individual clusters.

With its large area, DES is great for a **stacked lensing analysis**.

Define groups of galaxy clusters grouped by **richness** and **redshift**, and stack their images.

Cluster weak lensing profiles

Cluster sample split by **redshift** (top to bottom) **richness** (left to right)

Black points:

- (differential) surface mass density profile
- Proportional to tangential shear

Red line:

• best fit model

See: 1805.00039

Lensing model + systematics

Lensing model:

- centered (black .-)
- miscentered (blue -)
- boost factor, shear+pz (red)
- triaxiality+proj. (not shown)

Boost factor model (not shown): - NFW 2-parameter model - *De-boosted* the model lensing profile (See: 1812.05116)

Mass--richness relation

Mass--richness relation

$\langle M \lambda,z\rangle = M_0 \left(\frac{\lambda}{\lambda_0}\right)^{lpha}$	$\left(\frac{1+z}{1+z_0}\right)^{\beta}$	WL (McClintock et al. 2018) RM+CMB (Baxter et al. 2017) WL (Melchior et al. 2017)
Stacked masses measured at the 8 Normalization constrained at the 5%	% level. $\overset{10^{15}}{\leq}$	WL (Simet et al. 2017) SZ (Saro et al. 2015)
Source of systematic	SV Amplitude u	incertainty Y1 Amplitude Uncertainty
Shear measurement	4%	1.7%
Photometric redshifts	3%	2.6%
Modeling systematics	2%	0.73%
Cluster triaxiality	2%	2.0%
Line-of-sight projections	2%	2.0%
Membership dilution + miscentering	$\leqslant 1\%$	0.78%
Total Systematics	6.1%	4.3%
Total Statistical	9.4%	2.4%
Total	11.2%	5.0%

Mass--richness relation

$\langle M \lambda,z angle = M_0\left(-\frac{1}{2} ight)$ Stacked masses measure Normalization constrained	$\frac{\lambda}{\lambda_0} \right)^{\alpha} \left(\frac{1+z}{1+z_0} \right)^{\beta}$ d at the 8% level.	WL (I RM+0 WL (I WL (S SZ (Sa	McClintock et al. 2018) CMB (Baxter et al. 2017) Melchior et al. 2017) Simet et al. 2017) aro et al. 2015)	
Source of systematic	SV Amplitude ur	certainty	Y1 Amplitude Uncertainty	
Shear measurement	4%		1.7%	
Photometric redshifts	3%		2.6%	
Modeling systematics	2%		0.73%	
Cluster triaxiality	2%		2.0%	
Line-of-sight projections	2%		2.0%	
Membership dilution + mis	scentering $\leq 1\%$		0.78%	
Total Systematics	6.1%		4.3%	100
Total Statistical	9.4%		2.4%	
Total	11.2%		5.0%	

Galaxy cluster cosmology in 3 easy steps

1. Find galaxy clusters

2. Measure cluster masses

3. Model cluster abundance

Cluster abundance

- Projection effects cause scatter in cluster richnesses
- 2) S-T or Tinker massfunctions are accurate atthe 5% level or worse!

Cluster abundance - Problems!

- 1) Projection effects cause scatter in cluster richnesses
- 2) S-T or Tinker massfunctions are accurate atthe 5% level or worse!

Projection effects

Projection effects

Need to know how many of these galaxies

Bleed into these clusters

 $\lambda_{\text{total}} = \lambda_1 + f\lambda_2$

- Successfully reproduced in mocks
- Calibrated *using* the data, meaning this effect introduces *no extra free parameters*

Cluster abundance

- Projection effects cause scatter in cluster richnesses
- 2) S-T or Tinker massfunctions are accurate atthe 5% level or worse!

Cluster abundance - Problems!

- Projection effects cause scatter in cluster richnesses
- 2) S-T or Tinker mass functions are accurate at the 5% level or worse!
- This would **dominate** the error budget in LSST!

Mass function model needed for LSST!

Cluster cosmology would be systematics limited

Solution - interpolate between simulations

Suite of simulations (40 training, 35 testing)

Spread out in a 7 dimensional cosmological parameter space

- 2 dimensions shown here

Measure cluster abundance in sims

Use machine learning techniques to interpolate between simulations.

Test simulations

Predicting abundance at arbitrary cosmology is crucial!

<u>Training simulations</u> were less accurate than the <u>testing</u> <u>simulations</u>.

Achieved ~1% accuracy for interesting mass scales.

See: 1804.05866

Enabling galaxy cluster cosmology in DES

Image courtesy of M. Costanzi

Thank you!

Brookhaven:

Erin Sheldon, Anze Slosar

UA Cosmology:

Eduardo Rozo, Youngsoo Park, Matt Kirby, Erika Wagoner, Rafael Garcia Mar, Pier Fiedorowicz, Sasha Safonova

DES working group:

Tamás N. Varga, Matteo Costanzi, Peter Melchior, Daniel Gruen, Erin Sheldon, Yuanyuan Zhang, +others

Aemulus Project:

Joe DeRose, Zhongxu Zhai, Sean McLaughlin, Risa Wechsler, Jeremy Tinker

