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Motivation 2

The scale-dependent halo bias
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Motivation 2

The scale-dependent halo bias

l SQ Seljak (2008) |
Ab(k) = 2(b = 1) [L.0e LA O A
(F) = 200 = Ve

Sensitive probe of primordial non-Gaussianity from LSS surveys

]l\?z Inflation

What kind of inflationary models can produce a
detectable amount of local non-Gaussianity?
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Slow roll inflation: background ;
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Slow roll inflation: perturbations

ADM formalism for the metric  Arnowitt, Deser & Misner (1959)
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Sub- and super-horizon modes of (

Frozen super-horizon mode Z L

N

NLFAT

\\Oscillating sub-horizon mode ZS

Horizon ~v H_l



Observables: correlation functions

The two point function
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The three point function /\
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The Maldacena’s consistency relation 7

klgiI_I)lO<Ck1 Ck2ck3> — _(27‘-)35(k1 + Kz + k3)(n8 o 1)PC(kL)PC(kS)

Maldacena (2003)

Obtained from the cubic order action for curvature perturbations
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Indicates how two short modes are modulated by the long mode

A crucial test for all single field attractor models of inflation

B = 2o 1) | COD14 floe — 08450 (68%CL)

Planck collaboration (2015)




Symmetry based derivation of the consistency relation

ds® = a®(7)[—e’Ndr? + 2N;dztdr + e dz?]

The metric is invariant under Ti — e_CLa;;

/ .
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let’s correlate two short modes
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expanding in powers of the long mode
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In Fourier space
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Symmetry based derivation of the consistency relation

Correlating with a long mode {i_(K3)

[l (K3) k(s (K1, ko)L F

The squeezed limit appear as

—[] (K3){L (kL) s — 1)Pz(Ks)

Creminelli & Zaldarriaga (2004)
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then

Bz(k1, k2, k3) = —(ns — 1) Pe (kL) P (ks)
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Ultra-slow roll inflation: V(¢) = % 0

Germani & Prokopec (2017)

Mechanism to generate Primordial Black Holes Biagetti, Franciolini, Kehagias & Riotto (2018)
Atal & Germani (2018)

The curvature perturbation satisfy the adiabaticy condition and evolves on super-horizon

scales

3 Mooij & Palma (2015)
C O< CL Romano, Mooij & Sasaki (2016)

Non-attractor solution: the background depends on the initial conditions

Almost scale invariant 71 =~ 1

Realistic? Transition between ultra-slow roll and slow roll? cai, Chen, Namjoo, Sasaki, Wang & Wang (2018)

Why the model is interesting?



Breakdown of the consistency relation

For USR

Computed a la Maldacena

Be (k1 k2, k3) = 6P (ki) Pe (ks ) Sty ™
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Again: symmetry based derivation 12

ds? = a*(7)[—e’ N dr? + 2N;dz'dr + ¢ dz?]

The metric and the cubic order action are invariant under
X; - e SL(m)xt
T - e(CL(T/)_CL(T*))T[
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if CL(7) does not evolve, then {L(T) = {.(T+) and we recover the attractor result!

correlating, expanding in time and space, go to Fourier

(B (s Ky, ko) = ¢ Ky, ka) — [CL(Ke) — ¢ (KL)]
—QitkL) (ns — 1) P (7, ks)

correlating with the long mode, one has
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The generalized consistency relation 13
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When super horizon modes freeze, we end up with the Maldacena’s standard attractor result.

If ¢L(T) grows on super horizon scales fast enough for ¢L(T0 to become subdominant

' RB, Mooij, Palma & Pradenas (2017)
i Finelli, Goon, Pajer & Santoni (2017)

Under a substantial super-horizon growth, the squeezed limit is dominated by a time
derivative of the power spectrum.

{ 1713

P, [z1°

Bz (K1, k2, k3) = 6Pz(ky)Pz(kz)



USR as an exact symmetry ¢ # 0
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In this case, one has to consider the full metric

ds® = a®(1)[—e®Ndr? 4+ 2N;dztdr + e dz?]

the change of coordinates g..L
r; — €°I;

CL —>€ Tq

C—>C+AC

leads
ds? = aZ(tY[—eN dt? + 2(N 2+ AN;)dxMdt ™4 e2¢" dx?]

AN; = —ermiD+ %xi[ﬁ(er + o f)




USR as an exact symmetry € # 0 15

The metric (and the action) will not be invariant unless AN; = 0
the difference with the original metric is of order L

this condition could be achieved independent of the size of L

AN; =0 <= Op(a *H 'f) =0
f = CHa?
the condition is possible only if CL — SC’HZQB |:€—3|L§

must be compatible with  A{ = {_

which is in agreement with the linear equation for ZL on super-horizon scales!

! (i)

The transformation of coordinates is an exact symmetry of the metric for the USR curvature
perturbation
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Conformal Fermi Coordinates 6

It is possible to construct a coordinate system in which the observers can measure
genuine observable quantities ?

{

ph(T)

e This coordinates
parametrize the local
c environment of observers
on a FLRW spacetime

900 = ap(7r) [-1 — Rokor vpa’s + O(zh)]
2
F _ 2 ko 3

] ety (r) 9; = ap(Tr) | =g Rokjt Tpry + O )]

e’ (1) | -

1
X -
Slow roll ' = (1—(p)a’ T =7

+O(X?)

Ultra-slow roll ' =2 T=(1+Q)T



Vanishing of the bispectrum
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The three point correlation function in Conformal Fermi Coordinates

(Cr(ks)(CsCs)(ki, ko)) = (2m)°6(kq + ko + k3) B (ki, ko, k)

+(27T)35(k1 -+ k2 T kg)PC(T, kg) 81?17_PC(7', k‘g)
(k)6 (ke)) {51 — ks, ™) = 1| Pe(rks)

Beorc = Boy + AB

Slow roll

t

Valid for all canonical single field models (attractor or not)
RB, Mooij, Palma & Pradenas (2017)

Tanaka & Urakawa (2011)
Pajer, Schmidt & Zaldarriaga (2013)




Symmetries! 18

The symmetries used to derive the consistency relations

X' o xW= x4+ X
T T =T1T—(T
The map between CFC and comoving coordinates
X' 5 X'=x—{ X
T->T=T1+(T

The modulation effect of the long mode is canceled by the
re-scaling of the coordinates and it is independent of the
behavior of the background!

Higher order terms

. o 1
xr' = (1 — CL)Q_?Z — :ﬁjé’chiz + 58’CLEQ +0(z3) + ...

Dilation + Special Conformal Transformation
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Conclusions
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* We have generalized the well known consistency relation for models
where the curvature perturbation evolves on super horizon scales.
For both models, attractor and non-attractor, the modulation of small
modes by long ones, in comoving gauge, can be understood as the
result of a symmetry.

* We have showed that the observable squeezed bispectrum vanishes
at leading order, for all canonical single field models of inflation.

e [f tomorrow we measure a sizable amount of local non-Gaussianity,
from where does it come from? Multi-field? Non BV vacuum models?
Non-canonical kinetic terms?



