A generalized non-Gaussian consistency relation for single field inflation

Rafael Bravo

Group of cosmology and theoretical astrophysics FCFM, Universidad de Chile

Based on: 1711.02680 & 1711.05290 (JCAP 1805 (2018) no.05, 024 & 0.25) In collaboration with Sander Mooij, Gonzalo A. Palma and Bastián Pradenas

- Motivation.
- Slow roll single field inflation & the consistency relation.
- Ultra-slow roll Inflation & breakdown of the consistency relation.
- Generalization of the consistency relation.
- An application: the vanishing of the bispectrum.
- Conclusions.

- Motivation.
- Slow roll single field inflation & the consistency relation.
- Ultra-slow roll Inflation & breakdown of the consistency relation.
- Generalization of the consistency relation.
- An application: the vanishing of the bispectrum.
- Conclusions.

Motivation

The scale-dependent halo bias

$$\Delta b(k) = 2(b-1)f_{NL}^{loc}\delta_c \frac{3\Omega_m}{2ag(a)r_H^2k^2}$$

Seljak (2008) Dalal, Doré, Huterer & Shirokov (2008) Chan, Hamaus & Biagetti (2018)

Sensitive probe of primordial non-Gaussianity from LSS surveys

$$f_{NL}^{loc}$$
 Initial conditions

Motivation

The scale-dependent halo bias

$$\Delta b(k) = 2(b-1)f_{NL}^{loc}\delta_c \frac{3\Omega_m}{2ag(a)r_H^2k^2}$$

Seljak (2008) Dalal, Doré, Huterer & Shirokov (2008) Chan, Hamaus & Biagetti (2018)

Sensitive probe of primordial non-Gaussianity from LSS surveys

What kind of inflationary models can produce a detectable amount of local non-Gaussianity?

		_	_	
_	B //	- 4.1.		
_	1\ /1	$\triangle TIV$	/OTION	٦.
_	1 \/ 1	() \	/atior	

• Slow roll single field inflation & the consistency relation.

• Ultra-slow roll Inflation & breakdown of the consistency relation.

• Generalization of the consistency relation.

• An application: the vanishing of the bispectrum.

• Conclusions.

Slow roll inflation: background

Inflation
$$\frac{d}{dt}(aH)^{-1}<0 \qquad \qquad \qquad \epsilon \equiv -\frac{H}{H^2}<1 \qquad \text{Expansion}$$

$$\eta \equiv rac{\dot{\epsilon}}{H\epsilon} < 1$$
 Duration of the expansion

$$S = \int d^4x \sqrt{-g} \left(\frac{1}{2}R - \frac{1}{2}(\partial\phi)^2 - V(\phi) \right)$$

Slow roll
$$\longrightarrow 3H\dot{\phi}_0 + \partial_{\phi_0}V(\phi) = 0$$

Attractor solution

Slow roll inflation: perturbations

ADM formalism for the metric Arnowitt, Deser & Misner (1959)

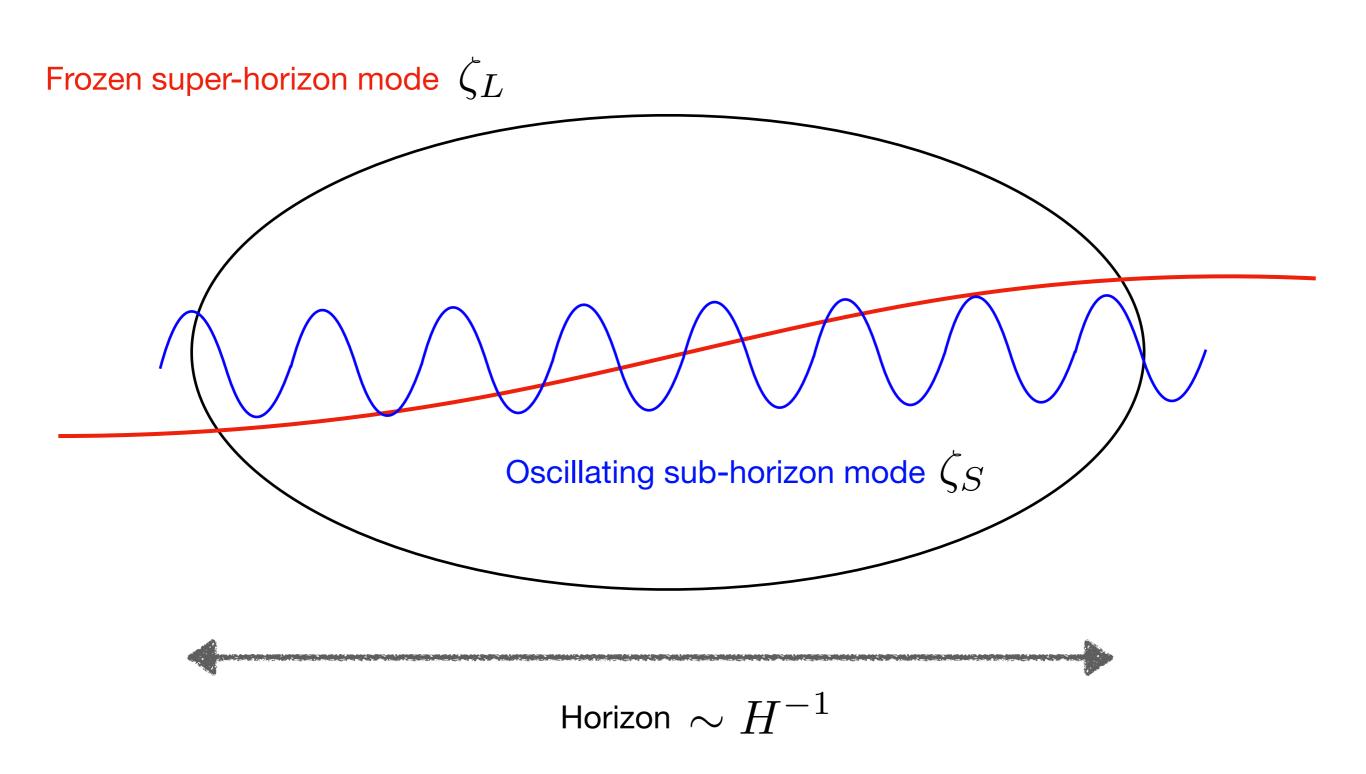
$$ds^{2} = -N^{2}dt^{2} + \gamma_{ij}(dx^{i} + N^{i}dt)(dx^{j} + N^{j}dt)$$

$$\gamma_{ij} \equiv a^2(t)(1+2\zeta(t,\mathbf{x}))\delta_{ij}$$

$$\delta N = \frac{1}{\mathcal{H}} \partial_0 \zeta \qquad \qquad N_i = -\frac{1}{\mathcal{H}} \partial_i \zeta + \epsilon \frac{\partial_i}{\partial^2} \partial_0 \zeta$$

$$S_2 = \int d\tau d^3x a^2 \epsilon((\zeta')^2 - (\partial \zeta)^2)$$

Sub- and super-horizon modes of ζ



Observables: correlation functions

The two point function

$$\langle 0|\zeta(\vec{k}_1)\zeta(\vec{k}_2)|0\rangle \equiv (2\pi)^3 \delta(\vec{k}_1 + \vec{k}_2)P_{\zeta}(k_1)$$

$$\frac{k^3}{2\pi^2}P_{\zeta}(k) = A_s \left(\frac{k}{k_0}\right)^{n_s - 1}$$

The three point function

$$\langle 0|\zeta(\vec{k}_1)\zeta(\vec{k}_2)\zeta(\vec{k}_3)|0\rangle \equiv (2\pi)^3\delta(\vec{k}_1 + \vec{k}_2 + \vec{k}_3)B_{\zeta}(k_1, k_2, k_3)$$

The squeezed limit $k_3 \to 0$ in the local configuration

$$f_{NL}^{loc} = -\frac{5}{12} \lim_{\mathbf{k}_3 \to 0} \frac{B_{\zeta}(k_1, k_2, k_3)}{P_{\zeta}(k_1) P_{\zeta}(k_3)} \qquad P_{\zeta}(\mathbf{k}) = \frac{H^2}{8\pi^2 \epsilon M_{Pl}^2}$$

The Maldacena's consistency relation

$$\lim_{\mathbf{k}_3 \to 0} \langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \zeta_{\mathbf{k}_3} \rangle = -(2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) (n_s - 1) P_{\zeta}(k_L) P_{\zeta}(k_S)$$

Maldacena (2003)

Obtained from the cubic order action for curvature perturbations

$$S_{3} = \int dt d^{3}x \left\{ a^{3} \epsilon^{2} \zeta \dot{\zeta}^{2} + a \epsilon^{2} \zeta (\partial \zeta)^{2} - 2a \epsilon \dot{\zeta} \partial \zeta \partial \chi \right.$$

$$+ \frac{a^{3} \epsilon}{2} \dot{\eta} \zeta^{2} \dot{\zeta} + \frac{\epsilon}{2a} \partial \zeta \partial \chi \partial^{2} \chi + \frac{\epsilon}{4a} \partial^{2} \zeta (\partial \chi)^{2}$$

$$+ 2f(\zeta) \left. \frac{\delta \mathcal{L}}{\delta \zeta} \right|_{1} + \mathcal{L}_{b} \right\}, \quad \partial^{2} \chi \equiv a^{2} \epsilon \dot{\zeta}$$

Indicates how two short modes are modulated by the long mode

A crucial test for all single field attractor models of inflation

$$f_{NL}^{loc} = \frac{5}{12}(n_s-1)$$
 ~ 0.014 $f_{NL}^{loc} = 0.8 \pm 5.0 \quad (68\% CL)$ Planck collaboration (2015)

$$ds^{2} = a^{2}(\tau)[-e^{\delta N}d\tau^{2} + 2N_{i}dx^{i}d\tau + e^{2\zeta}dx^{2}]$$

The metric is invariant under

der
$$x_i o e^{-\zeta_L} x_i'$$
 $au o au'$ Same solution as ζ $\zeta(au, \mathbf{x}) o \zeta'(au', \mathbf{x}') + \zeta_L$

If we split
$$\zeta(\tau, \mathbf{x}) = \zeta_S(\tau, \mathbf{x}) + \zeta_L$$
 $\zeta_S(\tau, \mathbf{x}) = \zeta'(\tau, e^{\zeta_L}\mathbf{x})$

let's correlate two short modes

$$\langle \zeta_S(\tau, \mathbf{x}) \zeta_S(\tau, \mathbf{y}) \rangle = \langle \zeta' \zeta' \rangle (\tau, e^{\zeta_L} |\mathbf{x} - \mathbf{y}|)$$

expanding in powers of the long mode

$$\langle \zeta_S(\tau, \mathbf{x}) \zeta_S(\tau, \mathbf{y}) \rangle = \langle \zeta' \zeta' \rangle (\tau, |\mathbf{x} - \mathbf{y}|) + \zeta_L \frac{d}{d \ln |\mathbf{x} - \mathbf{y}|} \langle \zeta' \zeta' \rangle (\tau, |\mathbf{x} - \mathbf{y}|) + \dots$$

in Fourier space

$$\langle \zeta_S \zeta_S \rangle (\mathbf{k}_1, \mathbf{k}_2) = \langle \zeta' \zeta' \rangle (\mathbf{k}_1, \mathbf{k}_2) - \zeta_L(\mathbf{k}_L) (n_s - 1) P_{\zeta}(k_S)$$

Correlating with a long mode $\zeta_L(\mathbf{k}_3)$

$$\langle \zeta_L(\mathbf{k}_3) \langle \zeta_S \zeta_S \rangle (\mathbf{k}_1, \mathbf{k}_2) \rangle = -\langle \zeta_L(\mathbf{k}_3) \zeta_L(\mathbf{k}_L) \rangle (n_s - 1) P_{\zeta}(k_S)$$

Creminelli & Zaldarriaga (2004)

The squeezed limit appear as

$$\lim_{\mathbf{k}_3 \to 0} (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) B_{\zeta}(k_1, k_2, k_3) = \langle \zeta_L(\mathbf{k}_3) \langle \zeta_S \zeta_S \rangle (\mathbf{k}_1, \mathbf{k}_2) \rangle$$

then

$$B_{\zeta}(k_1, k_2, k_3) = -(n_s - 1)P_{\zeta}(k_L)P_{\zeta}(k_S)$$

	_	_	
B //	- L:-	/atio	
1\ /1	OTIN	/atio	n

• Slow roll single field inflation & the consistency relation.

• Ultra-slow roll Inflation & breakdown of the consistency relation.

• Generalization of the consistency relation.

• An application: the vanishing of the bispectrum.

• Conclusions.

Ultra-slow roll inflation: $V(\phi) = V_0$

Mechanism to generate Primordial Black Holes

Germani & Prokopec (2017) Biagetti, Franciolini, Kehagias & Riotto (2018) Atal & Germani (2018)

The curvature perturbation satisfy the adiabaticy condition and evolves on super-horizon scales

$$\zeta \propto a^3$$

Mooij & Palma (2015) Romano, Mooij & Sasaki (2016)

Non-attractor solution: the background depends on the initial conditions

Almost scale invariant $n_s \simeq 1$

Realistic? Transition between ultra-slow roll and slow roll? Cai, Chen, Namjoo, Sasaki, Wang & Wang (2018)

Why the model is interesting?

Breakdown of the consistency relation

For USR

Computed a la Maldacena

$$B_\zeta(k_1,k_2,k_3) = 6P_\zeta(k_L)P_\zeta(k_S) \text{ Chen, Firouzjahi, Namjoo & Sasaki (2013)} \\ \text{Namjoo, Firouzjahi & Sasaki (2013)}$$

$$B_{\zeta}(k_1, k_2, k_3) \neq -(n_s - 1)P_{\zeta}(k_L)P_{\zeta}(k_S)$$

$$f_{NL}^{loc} = \frac{5}{2}$$

Or

$$B_{\zeta}(k_1, k_2, k_3) = -(n_s - 1)P_{\zeta}(k_L)P_{\zeta}(k_S) + ($$

Attractor

Non-attractor

	B 4	4.7	4.3	
	$\Gamma \Lambda$	\cap tiv	/atio	n
_	1 1/ 1			,, ,

• Slow roll single field inflation & the consistency relation.

• Ultra-slow roll Inflation & breakdown of the consistency relation.

• Generalization of the consistency relation.

• An application: the vanishing of the bispectrum.

• Conclusions.

Again: symmetry based derivation

$$ds^{2} = a^{2}(\tau)[-e^{\delta N}d\tau^{2} + 2N_{i}dx^{i}d\tau + e^{2\zeta}dx^{2}]$$

The metric and the cubic order action are invariant under

$$x_{i} \to e^{-\zeta_{L}(\tau_{*})} x'_{i}$$

$$\tau \to e^{(\zeta_{L}(\tau') - \zeta_{L}(\tau_{*}))} \tau'$$

$$\zeta(\tau, \mathbf{x}) \to \zeta'(\tau', \mathbf{x}') + \zeta_{L}(\tau')$$

$$+ \zeta_{L}(\tau)$$

$$+ \zeta_{L}(\tau) = \zeta'(e^{-[\zeta_{L}(\tau) - \zeta_{L}(\tau_{*})]} \tau e^{\zeta_{L}(\tau_{*})} \mathbf{x})$$

splitting
$$\zeta(\tau, \mathbf{x}) = \zeta_S(\tau, \mathbf{x}) + \zeta_L(\tau)$$
 $\zeta_S(\tau, \mathbf{x}) = \zeta'(e^{-[\zeta_L(\tau) - \zeta_L(\tau_*)]}\tau, e^{\zeta_L(\tau_*)}\mathbf{x})$

if $\zeta_L(\tau)$ does not evolve, then $\zeta_L(\tau) = \zeta_L(\tau_*)$ and we recover the attractor result!

correlating, expanding in time and space, go to Fourier

$$\langle \zeta_S \zeta_S \rangle (\mathbf{k}_1, \mathbf{k}_2) = \langle \zeta' \zeta' \rangle (\mathbf{k}_1, \mathbf{k}_2) - [\zeta_L(\mathbf{k}_L) - \zeta_L^*(\mathbf{k}_L)] \frac{d}{d \ln \tau} P_{\zeta}(\tau, k_S)$$
$$-\zeta_L^*(\mathbf{k}_L)(n_s - 1) P_{\zeta}(\tau, k_S)$$

correlating with the long mode, one has

The generalized consistency relation

$$\langle \zeta_L(\mathbf{k}_3) \langle \zeta_S \zeta_S \rangle (\mathbf{k}_1, \mathbf{k}_2) \rangle = \langle \zeta_L(\mathbf{k}_3) [\zeta_L(\mathbf{k}_L) - \zeta_L^*(\mathbf{k}_L)] \rangle \frac{d}{d \ln \tau} P_{\zeta}(\tau, k_S)$$
$$-\langle \zeta_L(\mathbf{k}_3) \zeta_L^*(\mathbf{k}_L) \rangle (n_s - 1) P_{\zeta}(\tau, k_S)$$

When super horizon modes freeze, we end up with the Maldacena's standard attractor result. If $\zeta_L(\tau)$ grows on super horizon scales fast enough for $\zeta_L(\tau_*)$ to become subdominant

$$B(k_1, k_2, k_3) = -P_{\zeta}(k_L) \frac{d}{d \ln \tau} P_{\zeta}(k_S)$$

RB, Mooij, Palma & Pradenas (2017) Finelli, Goon, Pajer & Santoni (2017)

Under a substantial super-horizon growth, the squeezed limit is dominated by a time derivative of the power spectrum.

$$\zeta \propto \tau^{-3}$$
 $P_{\zeta} \propto \tau^{-6}$

$$B_{\zeta}(k_1, k_2, k_3) = 6P_{\zeta}(k_1)P_{\zeta}(k_2)$$

USR as an exact symmetry $\epsilon \neq 0$

In this case, one has to consider the full metric

$$ds^{2} = a^{2}(\tau)[-e^{\delta N}d\tau^{2} + 2N_{i}dx^{i}d\tau + e^{2\zeta}dx^{2}]$$

the change of coordinates

$$x_i \to e^g x_i'$$

$$a(\tau) \to e^f a(\tau')$$

$$\zeta \to \zeta' + \Delta \zeta$$

leads

$$ds^{2} = a^{2}(\tau')[-e^{\delta N'}d\tau'^{2} + 2(N'_{i} + \Delta N_{i})dx'^{i}d\tau' + e^{2\zeta'}dx'^{2}]$$

$$\Delta N_i = -\epsilon \mathcal{H} f x_i' + \frac{1}{3} x_i' \epsilon (\epsilon \mathcal{H} f + \partial_0 f)$$

USR as an exact symmetry $\epsilon \neq 0$

The metric (and the action) will not be invariant unless $\Delta N_i = 0$

the difference with the original metric is of order ϵ

this condition could be achieved independent of the size of $\,\epsilon\,$

$$\Delta N_i = 0 \iff \partial_0(a^{-2}\mathcal{H}^{-1}f) = 0$$

$$f=C\mathcal{H}a^2$$
 — must be compatible with $\ \Delta\zeta=\zeta_L$

the condition is possible only if $\dot{\zeta_L}=3CH^2a^3\propto \frac{1}{\epsilon a^3}$

which is in agreement with the linear equation for ζ_L on super-horizon scales!

$$\frac{d}{dt}\left(\epsilon a^3 \dot{\zeta_L}\right) = 0$$

The transformation of coordinates is an exact symmetry of the metric for the USR curvature perturbation

	B //	1.5	/atio	
_	1\ /1		/O+10	
_	11//1	() \	/311/	г 1

• Slow roll single field inflation & the consistency relation.

• Ultra-slow roll Inflation & breakdown of the consistency relation.

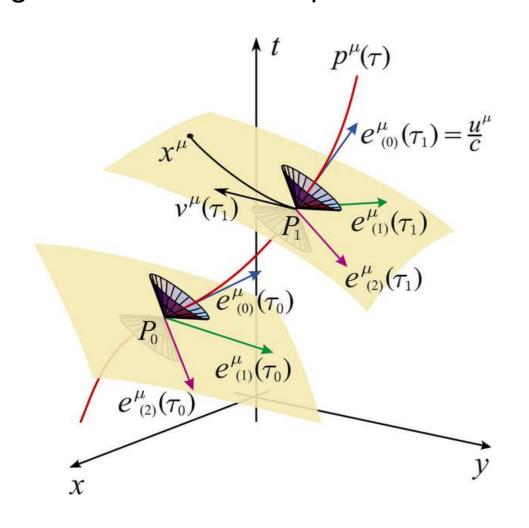
• Generalization of the consistency relation.

• An application: the vanishing of the bispectrum.

• Conclusions.

Conformal Fermi Coordinates

It is possible to construct a coordinate system in which the observers can measure genuine observable quantities?



This coordinates
 parametrize the local
 environment of observers
 on a FLRW spacetime

$$g_{00}^{F} = a_{F}^{2}(\tau_{F}) \left[-1 - R_{0k0l} \ x_{F}^{k} x_{F}^{l} + \mathcal{O}(x_{F}^{3}) \right]$$

$$g_{0j}^{F} = a_{F}^{2}(\tau_{F}) \left[-\frac{2}{3} R_{0kjl} \ x_{F}^{k} x_{F}^{l} + \mathcal{O}(x_{F}^{3}) \right]$$

$$g_{ij}^{F} = a_{F}^{2}(\tau_{F}) \left[\delta_{ij} - \frac{1}{3} R_{ikjl} \ x_{F}^{k} x_{F}^{l} + \mathcal{O}(x_{F}^{3}) \right]$$

Slow roll

$$x^i = (1 - \zeta_L)\bar{x}^i$$

$$\tau = \bar{\tau}$$

$$+\mathcal{O}(\bar{x}^2)$$

Ultra-slow roll

$$x^i = \bar{x}^i$$

$$\tau = (1 + \zeta_L)\bar{\tau}$$

Vanishing of the bispectrum

The three point correlation function in Conformal Fermi Coordinates

Valid for all canonical single field models (attractor or not)

RB, Mooij, Palma & Pradenas (2017)

$$f_{NL}^{obs} = 0 + \mathcal{O}\left(\frac{k_L}{k_S}\right)^2$$

Symmetries!

The symmetries used to derive the consistency relations

$$x^{i} \to x'^{i} = x + \zeta_{L}x$$
$$\tau \to \tau' = \tau - \zeta_{L}\tau$$

The map between CFC and comoving coordinates

$$x^i \to \bar{x}^i = x - \zeta_L x$$

 $\tau \to \bar{\tau} = \tau + \zeta_L \tau$

The modulation effect of the long mode is canceled by the re-scaling of the coordinates and it is independent of the behavior of the background!

Higher order terms

$$x^{i} = (1 - \zeta_{L})\bar{x}^{i} - \bar{x}^{j}\partial_{j}\zeta_{L}\bar{x}^{i} + \frac{1}{2}\partial^{i}\zeta_{L}\bar{x}^{2} + \mathcal{O}(\bar{x}^{3}) + \dots$$

- Motivation.
- Slow roll single field inflation & the consistency relation.
- Ultra-slow roll Inflation & breakdown of the consistency relation.
- Generalization of the consistency relation.
- An application: the vanishing of the bispectrum.
- Conclusions.

- We have generalized the well known consistency relation for models where the curvature perturbation evolves on super horizon scales.
 For both models, attractor and non-attractor, the modulation of small modes by long ones, in comoving gauge, can be understood as the result of a symmetry.
- We have showed that the observable squeezed bispectrum vanishes at leading order, for all canonical single field models of inflation.

 If tomorrow we measure a sizable amount of local non-Gaussianity, from where does it come from? Multi-field? Non BV vacuum models? Non-canonical kinetic terms?