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Abstract

The recent discovery of gravitational waves from a binary neutron star merger and its ac-
companying electromagnetic counterparts was a watershed moment in the history of physics
and astrophysics and marked the beginning of multimessenger astronomy including gravi-
tational waves. In this series of lectures, I will discuss the theoretical concepts we use to
describe such electromagnetic counterparts and to infer source properties. I will discuss both
non-thermal and thermal transients, including theory of short gamma-ray bursts and their
afterglows as well as theory of kilonovae and related aspects of r-process nucleosynthesis.
Although the field is expected to evolve rapidly, thanks to new observational discoveries
and theoretical advances, the methods discussed here will still form the foundation of our
understanding for many years to come.
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1 Kilonovae

1.1 Introduction

Kilonovae are thermal transients powered by the radioactive decay of heavy neutron-rich nu-
clei, which have been synthesized by the rapid neutron capture process (r-process; Burbidge
et al. 1957; Cameron 1957) in neutron-rich ejecta from neutron star mergers (Li & Paczyński
1998; Metzger et al. 2010). These transients typically peak on a timescale of days to a week
and represent a robust electromagnetic counterpart to the gravitational-wave signal of bi-
nary neutron star mergers; this is because the ejection of neutron rich material from binary
neutron star mergers is essentially inevitable. A fraction of black hole–neutron star mergers
will also be accompanied by kilonovae, provided the neutron star does not directly plunge
into the black hole, which depends on the angular momentum of the black hole, the mass
ratio, and the equation of state of high-density nuclear matter (Foucart 2012). Furthermore,
kilonovae are intrinsically interesting because they provide a direct probe of the r-process
and thus provide insight into the astrophysical origin of the heavy elements, which has been
a long-standing mystery for more 70 years. For a discussion of the historical background of
kilonovae and r-process nucleosynthesis from neutron star mergers, I refer to Metzger (2017).

We will start our discussion of kilonovae with a brief overview of the basic ingredients for
various types of thermal transients (Sec. 1.2), which highlights some fundamental similarities
to supernovae. We will then discuss the specific ingredients for kilonovae (Sec. 1.3) and
related microphysics.

1.2 Thermal transients

In this section, we will discuss a basic model that applies to various types of thermal tran-
sients, in particular Type I supernovae, which are powered by the radioactive decay of 56Ni
into 56Co and 56Fe, and superluminous supernovae, which require additional energy injec-
tion, e.g., from the spin-down of a magnetar. Kilonovae are conceptually similar in the sense
that the power source is replaced by radioactive decay from heavy nuclei synthesized by the
r-process. However, as we shall discuss, there are also important differences, e.g., in terms
of the microphysics related to composition, opacity, thermalization etc.

Let us assume that the material from which the thermal emission arises is to first order
spherically symmetric and in homologous expansion away from the explosion site. This is
motivated by the fact that the ejecta has to expand over many orders of magnitude in radius
from the ejection site before radiation can escape from the initially optically thick ejecta and
the kilonova or supernova emission peaks. As we shall show below, kilonova ejecta is typically
required to expand to radii rpeak ∼ 1015 cm from the initial scales r ∼ 10 km = 106 cm of the
merger site. Outflows will typically show a spread in ejection velocity and thus eventually
approach homologous expansion. Therefore, one can assume the ejecta material to have a
power law density structure

ρ(r, t) =
β

4π

Mej

Rin(t)3

(
r

Rin(t)

)−(β+3)

, r ≥ Rin(t), (1)

where Rin(t) = v0t denotes the innermost radius of the ejecta and v0 its speed. Since typically
the density profile is rather steep, most of the ejecta mass resides at radii close to Rin(t) and
thus v0 is a typical velocity for the bulk of the ejecta matter. For homologous expansion,

r(v) = rv = vt, (2)
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where v is the expansion velocity (constant in the local comoving fluid frame), and Eq. (1)
can be integrated to give

M(v) = Mv = Mej

(
v

v0

)−β
, v ≥ v0, (3)

thus eliminating the radial and time dependence by introducing the velocity coordinate; Mv

represents the total mass outside the velocity v. In practice, realistic ejecta profiles require
multiple power-law segments; however, the following analysis can easily be generalized to
accommodate such additional segments. For the time being we are agnostic about the actual
ejection mechanism (i.e., the physics of the supernova or kilonova ‘explosion’ that gave rise
to mass ejection), but rather assume some generic ejecta of the type (1), (3).

The internal energy Ev of a spherical shell of volume Vv at radius r(v) is determined by
the first law of thermodynamics,

∂Ev
∂t

= −pv
∂Vv
∂t

+ ε̇v(t)− Lv(t). (4)

Here, the first term on the right hand side,

− pv
∂Vv
∂t

= −Ev
rv

drv
dt

, (5)

represents the work done by the shell due to adiabatic homologous expansion; we assume
the material to be radiation pressure dominated, such that pv = Ev/(3Vv). In general, the
heating rate supplied to the fluid, ε̇v, can be a combination of various energy sources,

ε̇v(t) = ε̇nuc,v(t) + ε̇NS + . . . , (6)

where ε̇nuc,v(t) denotes the nuclear power supply from radioactive decays, ε̇NS is the power
supplied by a central magnetar (Kasen & Bildsten 2010; Metzger 2017; Siegel & Ciolfi 2016a),
which becomes important for superluminous supernovae, and further terms may include, e.g.,
fall-back accretion (Metzger 2017). In the following (see Sec. 1.3.1), we will concentrate on
radioactively supplied energy. The third term on the right hand side of Eq. (4) represents
the radiated luminosity Lv.

Radiation emitted by a shell at velocity v has to diffuse out of the outer layers >v for it
to become observable. The diffusion time to the outer radius Rout of the ejecta is given by

t̄d,v =
rv −Rout(t)

c
[τ(rv, t) + 1] (7)

≈ rv
c

[τ(rv, t) + 1] (8)

≡ td,v + rv/c, (9)

where rv −Rout(t) ≈ rv for homologous expansion. The light travel time has been added in
the previous equations to floor the diffusion time once the optical depth

τ(rv, t) =

∫ ∞
rv

κ(r)ρ(r, t)dr (10)

drops below unity and radiation can leak out directly; κ denotes the opacity of the ejecta
material (cross section per unit mass).

Exercise 1.1 Assuming a constant opacity κ(r) = κ = const., show that

td,v =
β

β + 2

Mvκ

4πrvc
=

β

β + 2

M
(β+1)/β
v κ

4πcv0M
1/β
ej t

. (11)
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In the optically thick regime τ(rv, t)� 1, we can use the diffusion equation, F = c
3κρ∇u,

where F is the radiative flux and u the radiation density, to write the radiative luminosity
as

Lv = 4πr2
v

c

3κvρv

∂(Ev/Vv)

∂r
≈ 4πc

3κv

Evrv
Mv

≈ Ev
td,v

, (12)

where we have used Mv ≈ ρvVv. More explicitly,

Lv(t) ≈
Evt

(βκvM
(β+1)/β
v )/(4(β + 2)πcv0M

1/β
ej )

. (13)

When evolving the equations to late times, we shall use the modified expression

Lv(t) =
Ev(t)

t̄d,v(t)
, (14)

in order to transition to the optically thin regime (cf. Eq. (7)).

General transient evolution. Dividing Eq. (4) by Ev we can write the evolution of
the internal energy in terms of timescales,

Ėv
Ev

= − 1

texp,v
+

1

theat,v
− 1

td,v
, (15)

where we have defined the expansion timescale of the ejecta,

texp,v = rv/v = t, (16)

and the heating timescale,
theat,v = Ev/ε̇v. (17)

Equation (16) shows that energy (in particular any initial energy from the ‘explosion’ itself)
injected on a timescale t will be lost on the same timescale due to adiabatic expansion.
At very early times the ejecta material is very dense and has a very high optical depth
(Eq. (10)) such that radiation cannot leak out from the interior, Lv ≈ 0, and the ejecta
material thus rapidly looses any initial energy from the explosion due to adiabatic expansion,
i.e., the initial conditions are ‘hidden’ and ‘washed out’. Therefore, the ejecta material only
generates an observable transient if the ejecta material is reheated at late times, i.e., if heat
is continuously supplied by ε̇v on timescales required for the bulk of the ejecta material
to become transparent, such that the internal energy can leak out as radiation (note that
τ ∝ t−1). As one application of this argument, it appears very unlikely that the bright early
blue emission from the recent kilonova associated with GW170817 on timescales of days was
powered by initial energy deposited in the ejecta by the interaction of the GRB jet (the
so-called cocoon heating), as proposed by several cocoon scenarios (e.g., Piro & Kollmeier
2017; Kasliwal et al. 2017). Even the first kilonova data points on a timescale of ∼11 h seem
to be unlikely due to cocoon heating unless (unphysically) high energies were injected, as the
jet interaction timescale (heating/injection timescale) is on the order of the GRB duration,
i.e., seconds.

The presence of a transient requires heating to dominate adiabatic losses overall. At
early times until the radiation peaks, Lv ≈ 0 is a good approximation due to the high optical
depth. Therefore, the present internal energy is roughly given by the integrated heating rate
(cf. Eq. (4)), and we can approximate the heating timescale by

theat,v(t) ≈

∣∣∣∣∣
∫ t
tmin

ε̇v(t
′)dt′

ε̇v(t)

∣∣∣∣∣ , (18)

where tmin is some effective minimum time at which heating sets in.
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Exercise 1.2 (i) Show that for Type I supernovae,

theat,v(t) ≈ t. (19)

Assume that the heating rate for 56Ni decay is of the form ε̇v(t) = ε0 exp(−t/τ56Ni)
(t ≥ 0), where τ56Ni ≈ 8.8 d is the decay timescale of 56Ni.

(ii) Show that for kilonovae,
theat,v(t) ≈ t/(α− 1) ∼ t. (20)

Assume that the heating rate from the radioactive elements produced by the r-process
is of the form ε̇v(t) = ε0t

−α for t ≥ tmin ∼ 1 s, where α ≈ 1.3 (Metzger et al. 2010;
Roberts et al. 2011; see Sec. (1.3.1)).

These expressions (Eqs. (19) and (20)) are only accurate for the bulk of the ejecta material
until peak light, the conditions of which we will discuss now.

Arnett’s law. Note that using Eq. (5), one can rewrite Eq. (4) as

1

t

∂(Evt)

∂t
= ε̇v(t)− Lv(t). (21)

From Eq. (13), it follows that the luminosity peaks when ∂(Evt)/∂t = 0. Equation (21) then
implies that at peak light, the radiated luminosity equals the heating rate,

Lv,peak = ε̇v(tpeak,v), (22)

which is a general version of Arnett’s law (Arnett 1979, 1982). Combining Eqs. (15) and
(21), we find that the peak time tpeak,v is determined by the condition

theat,v = td,v, (23)

which making use of Eqs. (19), (20) translates into the more familiar approximate condition

td,v(tpeak,v) ≈ tpeak,v. (24)

Employing Eq. (11) we find

tpeak,v =

(
β

β + 2

Mvκ

4πvc

)1/2

. (25)

The overall peak time and peak luminosity of the transient is determined by the innermost
mass layer at v0, where the bulk of the ejecta mass and thus radioactive power resides. For
typical parameters of kilonovae (and setting β = 3), we thus find

tpeak ≈ 1.2 d

(
Mej

10−2M�

)1/2 ( v0

0.1c

)−1/2
(

κ

1 cm2g−1

)1/2

. (26)

Varying κ = 1 − 100 cm2g−1, representative of lanthanide-free to lanthanide-rich matter
(see Sec. 1.3.2), one obtains characteristic peak timescales of kilonovae from ∼ 1 day to
∼ 1 week, which is in remarkably good agreement with the observed peak timescales of the
blue (lanthanide-poor) and red (lanthanide-rich) kilonova component of GW170817 (e.g.,
Villar et al. 2017). From Eqs. (22) and (25), (26) it also immediately follows that higher
opacities imply longer peak timescales and thus dimmer transients, as the heating rates are
typically a decreasing function of time (see above and Sec. 1.3.1).
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Thermal emission and emergent spectrum. In Eq. (4) we have assumed that
the power supplied by ε̇v(t) is completely thermalized into internal energy. The radiated
luminosity must therefore be thermal or quasi-thermal black-body emission. The local gas
temperature is (assuming, as usual, a radiation dominated gas E/V = aT 4)

Tv =

(
3Ev

4πar3
v

)1/4

, (27)

where a is the radiation constant. Note that the opacity (Eq. (12); Sec. 1.3.2) depends on
temperature and thus on v. The radius rph(t) of the photosphere inside the ejecta is set by
the condition that the optical depth (cf. Eq. (10)) becomes unity,

τ(rph(t), t) =

∫ ∞
rph(t)

κ(r)ρ(r, t)dr = 1. (28)

The effective temperature of the emission is determined by the Stefan-Boltzmann law,

Teff(t) =

(
Ltot(t)

4πσrph(t)2

)1/4

, (29)

where

Ltot(t) =

∫ ∞
R0

Lv(t)drv (30)

is the total luminosity of the ejecta material at time t and σ is the Stefan-Boltzmann constant.
Finally, the emergent flux spectrum of the transient is given by (assuming perfect black-body
emission),

Fν(t) =
2πhν3

c2
1

exp[hν/kTeff(t)]− 1

rph(t)2

D2
, (31)

where ν denotes frequency, h is Planck’s constant, and D is the distance to the source.
In conclusion, we note that the above discussion provides a very simple one-dimensional

framework to model thermal transients. Despite its simplicity, it is powerful enough to ob-
tain a qualitative understanding of various types of thermal transients and even allows for
quantitative predictions that are reasonably accurate within a factor of a few. In practice,
accurate modeling requires detailed microphysics in combination with multi-dimensional hy-
drodynamic and radiative transfer simulations.

Exercise 1.3 Using a programming language of your choice (e.g., python), implement the
model discussed here, together with the expressions for heating rates and opacities provided in
Sec. 1.3, in order to explore kilonova emission in different wavelength bands (U,V,R,I,J,K)
for various ejecta types (cf. Sec. 1.3.3) and compositions.

1.3 Kilonova microphysics

From the previous discussion on the general evolution of a thermal transient, it emerged that
in order to describe any particular transient, one needs to understand and specify the heating
source ε̇(t), and the characteristics of the ejecta, including the opacity κ (which depends on
the composition), the total ejecta mass Mej, its typical velocity v0, and the ejecta profile
characterized by the power law exponent β. We shall briefly summarize these characteristic
for kilonovae below.

1.3.1 Heating rates

In kilonovae, the ejecta material is heated by the radioactive decay of heavy nuclei synthesized
by the r-process. For the time being, we shall neglect other possible energy sources, such
as continuous heating from a magnetar via its pulsar wind nebula interior to the kilonova
ejecta. In general, the nuclear heating rate for kilonovae can then be expressed as

ε̇nuc,v(t) = ėr(t)ηth,v(t)Xr,vdmv (32)
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where ėr(t) is the specific heating rate (energy per unit time per unit mass), ηth,v is the
thermalization efficiency with which the supplied energy is thermalized in the ejecta, dmv is
the mass of a spherical shell at velocity v, and Xr,v is the mass fraction of r-process elements
within this shell.

Specific heating. In general, the outcome of the r-process depends on (see, e.g., Lip-
puner & Roberts 2015) the proton fraction1

Ye =
np

np + nn
, (33)

where np and nn denote the number densities of free protons and neutrons, respectively,
the specific entropy s and the expansion timescale τ of the matter at the onset of the r-
process (when the initial temperature of the explosion material drops below ≈5 GK, nuclear
statistical equilibrium breaks down, and neutron captures set in). The heating rate is mostly
controlled by the electron fraction (e.g., Lippuner & Roberts 2015). For sufficiently neutron-
rich (lanthanide-rich) ejecta with mean proton fraction Ye < 0.25, the specific heating rate
from the r-process can be reasonably approximated by (Korobkin et al. 2012; see also Fig. 1)

ėr(t) = ėr,0

(
1

2
− arctan[(t− t0)/σ]

π

)α
, (34)

where ėr,0 ≈ 4 × 1018 erg s−1 g−1, t0 ≈ 1.3 s, σ ≈ 0.11 s, and α ≈ 1.3. This analytic fit to
r-process heating reflects the fact that during the actual r-process itself, i.e., as long as free
neutrons are captured onto seed nuclei (which is typically a matter of t0 ∼ s), the heating
rate stays roughly constant. Thereafter, the heavy neutron-rich nuclei synthesized by the
r-process release nuclear binding energy by α-decay, β-decay, and fission, as they gradually
decay into stable isotopes at the center of the valley of β-stability. This being a statistical
ensemble of nuclei, heating from the various individual isotopes with their own characteristic
decay timescale superimpose to a power law heating rate (Metzger et al. 2010; Roberts et al.
2011; Fig. 1)

ėr(t) ∝ t−α, t > t0. (35)

Due to this statistical effect, the heating rate is largely insensitive to uncertainties in the
nuclear mass models, cross sections, and fission fragment distribution (although, e.g., over-
production of actinides with some mass models relative to others could lead to significantly
enhanced heating at late times from their α-decays that are thermalized efficiently, Barnes
et al. 2016; Rosswog et al. 2017). However, the final detailed r-process abundance pattern
will depend on these details (e.g., Eichler et al. 2015; Mumpower et al. 2016).

For higher mean electron fractions Ye & 0.25 (or for Y < 0.25 in certain combinations
with entropy and expansion timescale), the ejecta is lanthanide-poor and individual bumps
and wiggles become apparent in the heating rate due to individual nuclides dominating the
heating (Lippuner & Roberts 2015). Due to the dominance of individual isotopes, the heating
rate is also generally reduced with respect to the lanthanide-rich case.

On longer timescales of weeks to months, even in the lanthanide-rich case the decay
energy input can be dominated by a discrete number of α-decays; resulting ‘bumps’ in the
heating that translate into the bolometric lightcurve could serve as observational fingerprints
for the production of specific elements (Wu et al. 2018).

Thermalization efficiency. The amount of nuclear binding energy absorbed by the
ejecta material depends on the efficiency with which the decay products from α- and β-
decay and fission deposit their energy in the ejecta (see Metzger et al. 2010; Barnes et al.
2016; Hotokezaka et al. 2016 for more details). In summary, neutrinos are lost entirely
without depositing energy, gamma-rays (∼MeV) are only trapped at early times (.1 d) and

1For historic reasons called electron fraction, and referred to as “Ye”.
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Figure 1: Heating rates following r-process nucleosynthesis in trajectories of post-merger accre-
tion disk winds (lanthaninde-rich; from Siegel & Metzger 2017, 2018), indicating the expected
∝ t−1.3 behavior after the r-process concluded on a timescale ∼1 s.

then leak out due to the very small electron scattering cross section at high energies (Klein-
Nishina regime). On the contrary, α-particles and electrons as well as fission fragments
deposit their kinetic energy efficiently through Coulomb collision and ionization. In general,
fission fragments thermalize most efficiently, followed by α-particles, followed by β-particles,
and, finally, γ-rays. All processes combined, the overall thermalization efficiency can be
approximately parametrized by an analytic fit (Barnes et al. 2016, their Eq.(34))

ηth,v(t) = 0.36

[
exp(−avt1d) +

ln(1 + 2bvt
dv
1d)

2bvt
dv
1d

]
, (36)

where t is in units of days, and av, bv, and dv are fitting constants that, in general, depend on
the mass and velocity of the mass shell under consideration. As a rough representative fit for
the kilonova as a whole, one may employ this fit evaluated for the innermost (typical) ejecta
layer with v = v0, setting Mv = Mej. For typical kilonova values, v0 = 0.1c, Mej = 10−2M�,
one obtains av = 0.56, bv = 0.17, cv = 0.74 (Table 1 of Barnes et al. 2016).

1.3.2 Opacities

1.3.3 Origin of neutron-rich ejecta

2 Gamma-ray burst afterglows

2.1 Overview

The aim of this section is to derive a model for gamma-ray burst (GRB) afterglow emission,
arising as synchrotron emission from electrons accelerated at the shock front of a relativistic
blast wave that decelerates from the explosion site into the interstellar medium (ISM). We
will show that the synchrotron afterglow emission of gamma-ray bursts can be described
as broken power-law segments in frequency ν and time t of the type Fν ∝ νβtα. We will
first derive the underlying hydrodynamic solution that describes the relativistic outflow of
the GRB (Sec. 2.2) and then compute the synchrotron emission arising from this solution
(Sec. 2.3), following original papers (Blandford & McKee 1976; Sari et al. 1998; Granot &
Sari 2002).
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2.2 Relativistic blast waves (Blandford & McKee)

We will describe the GRB as an impulsive spherical explosion, an adiabatic spherical rela-
tivistic blast wave, that decelerates into a cold uniform circumburst medium (the ISM) with
constant particle density n. We assume an adiabatic outflow, i.e., we assume that losses due
to synchrotron radiation are negligible, such that they do not affect the hydrodynamic solu-
tion itself. Such a blast wave arises as a self-similar solution to the hydrodynamic equations
in spherical symmetry and represents the relativistic analogue of the Newtonian Sedov-Taylor
blast wave solution (Sedov 1959; Taylor 1950). We will construct the blast wave solution in
three steps: characterizing the local properties of a relativistic blast wave (relativistic shock;
Sec. 2.2.1), formulating the relevant evolution equations in spherical symmetry (Sec. 2.2.2),
and constructing a self-similar solution imposing the local properties (Sec. 2.2.3). In this
section we will set the speed of light c = 1 for convenience.

2.2.1 Relativistic shocks

A shock is a discontinuity in pressure, temperature, and density that propagates supersoni-
cally through a fluid. It is characterized by so-called jump conditions (or Rankine-Hugoniot
conditions) that relate the fluid quantities across such a discontinuity. The special-relativistic
Rankine-Hugoniot conditions (e.g., Taub 1948; Marti et al. 1994) were obtained by Taub
(1948). For it to be a solution of the hydrodynamics equations, such a shock wave must
satisfy continuity of the mass and energy-momentum flux across the discontinuity:

[ρuµ]nµ = 0, (37)

[Tµν ]nµ = 0. (38)

Here, [f ] = f2 − f1 relates the values of a fluid quantity f on one side (2), which we shall
assume to be the shocked fluid, to the other (unshocked) side (1) of the discontinuity surface
with normal vector nµ. For convenience, let us choose a local Cartesian coordinate frame
that is comoving with the unshocked fluid (1), setting nµ = (0, 1, 0, 0). Let us denote the
Lorentz factor of the shock itself as measured in this frame by Γ. Furthermore, we assume
an ideal fluid with rest-mass density ρ, particle density n, pressure p, specific internal energy
ε, energy density e = ρ(1 + ε), enthalpy w = e + p, four-velocity uµ = (γ, γu, 0, 0), where
γ = (1 − u2)−1/2, and energy-momentum tensor Tµν = ρ(1 + ε + p/ρ)uµuν + pηµν , where
ηµν = diag(−1, 1, 1, 1) is the Minkowski metric and where we have set c = 1. We assume an
ideal gas equation of state, p = (Γad − 1)ρε, where Γ denotes the adiabatic index. We are
interested in the case of a strong shock, in which p2/n2 � p1/n1. Under these assumptions,
the Rankine-Hugoniot conditions (Eqs. (37) and (38)) can be written as

e2

n2
= γ2

w1

n1
, (39)

n2

n1
=

Γad,2γ2 + 1

Γad,2 − 1
, (40)

Γ2 =
(γ2 + 1)[Γad,2(γ2 − 1) + 1]2

Γad,2(2− Γad,2)(γ2 − 1) + 2
. (41)

Exercise 2.1 Derive Eqs. (39)–(41).

Furthermore, we are interested in the ultra-relativistic case, in which Γ � 1 and Γad =
4/3, i.e., p = e/3. Retaining only terms up to order O(Γ−1), one obtains the surprisingly
simple form of the jump conditions:

p2 =
2

3
Γ2w1, (42)

n′2 = 2Γ2n1, (43)

γ2
2 =

1

2
Γ2. (44)

Here, n′2 = γ2n2 denotes the density measured in the frame of the unshocked gas.

9



Exercise 2.2 Derive the ultra-relativistic limit Eqs. (42)–(44).

2.2.2 Hydrodynamics in spherical symmetry

The blast wave solution to be constructed must satisfy the equations of baryon (particle)
number conservation and energy and momentum conservation,

∇µ(nuµ) = 0, (45)

∇µTµν = 0, (46)

which in spherical symmetry can be written as

∂n′

∂t
+

1

r2

∂

∂r
(r2n′u) = 0, (47)

∂

∂t
[γ2(e+ u2p)] +

1

r2

∂

∂r
[r2γ2u(e+ p)] = 0, (48)

∂

∂t
[γ2u(e+ p)] +

1

r2

∂

∂r
[r2γ2u2(e+ p)] = 0, (49)

where, as usual, n′ = γn denotes the particle density in the fixed lab frame with coordinates
(r, t). In the following, we will focus on the ultra-relativistic equation of state

p =
1

3
e, (50)

which is justified as long as the internal energy is dominated by radiation or relativistic
particles, such that their rest masses can be neglected. This is appropriate for gamma-ray
bursts, which we think of as an essentially baryon-free ‘fireball ’ of high entropy material
(radiation and ultra-relativistic particles). Using this relation and noting that the total time
derivative of a function y(r, t) is given by

dy

dt
=
∂y

∂t
+
∂r

∂t

∂y

∂r
=
∂y

∂t
+ u

∂y

∂r
, (51)

the so-called convective or material derivative, one can rewrite Eqs. (47)–(49) in the more
compact form

d

dt

( p

n4/3

)
= 0, (52)

d

dt
(γ4p) = γ2 ∂p

∂t
, (53)

d

dt
ln(γ4p3) = − 4

r2

∂

∂r
(r2u). (54)

For later reference, using the total energy density T 00 = (e+p)(u0)2−p = (4γ2−1)p ' 4γ2p
in the ultra-relativistic limit (γ � 1), we also note that the instantaneous total energy
contained in a volume enclosed by radii rin < rout is given by

E(t; rin, rout) =

∫ rout

rin

16πγ2pr2dr. (55)

2.2.3 Constructing a self-similar blast wave solution

In this section, we will construct a self-similar ultra-relativistic blast wave solution to the
spherical hydrodynamic equations (Eqs. (52)–(54)) knowing that at the shock front the
solution must satisfy the jump conditions Eqs. (42)–(44). We will assume an adiabatic blast
wave, i.e., that there are no significant energy losses through radiation leaking out of the
fluid.
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We will look for solutions for which the shock front propagates as a power-law in time,

Γ2 ∝ t−m, m > −1. (56)

Essentially, the motivation for this is that Γ2t3 = const. implies that the total energy of the
blast wave is conserved (as shown below, Eq. (70)). Deviating from m = 3 means that we
are also allowing solutions in which energy is supplied to the blast wave as a power-law in
time. The instantaneous radius of the shock front is then given by

R(t) =

∫ t

0

√
1− 1

Γ(t̂)2
dt̂ = t

[
1− 1

2(m+ 1)Γ2

]
(57)

where we have only retained terms up to O(Γ−2). It is reasonable to assume that a spherical
shock wave represents a self-similar solution to the hydrodynamics equations, i.e., that the
solution at each time and shock radius (i.e., on all scales) only depends on the shock properties
and the relative distance to the shock front R− r. This motivates a dimensionless similarity
variable

χ = 1 + 2(m+ 1)Γ2 (1− r/R) = 1 + 2(m+ 1)Γ2 (1− r/t) , (58)

where we have again only retained terms up to O(Γ−2). We note that χ ≥ 1, with χ = 1 at
the shock front, r = R, and χ = 1 + 2(m + 1)Γ2 ' 2(m + 1)Γ2 at the origin, r = 0. With
this definition, we have χ ' (R/t)(1 − r/R) = (R − r)/t for r 6= R. Following this line of
thought, we make the ansatz that all quantities in the shocked fluid (r ≤ R) only depend on
the shock properties and the similarity variable χ,

p(r, t) =
2

3
w1Γ2f(χ), (59)

γ2(r, t) =
1

2
Γ2g(χ), (60)

n′(r, t) = 2n1Γ2h(χ), (61)

and impose
f(1) = g(1) = h(1) = 1 (62)

to satisfy the jump conditions (42)–(44) at the shock front. In the following, we will drop the
subscript 2 as it is implicitly understood that we are only interested in the hydrodynamic
solution interior to the shock front (with the exterior solution being trivial). Changing
independent variables (r, t) → (Γ2, χ), the partial differential equations (59)–(61) translate
into a set of ordinary differential equations in the similarity variable χ,

1

g

d ln f

dχ
=

8(m− 1)− (m− 4)gχ

(m+ 1)(4− 8gχ+ g2χ2)
, (63)

1

g

d ln g

dχ
=

(7m− 4)− (m+ 2)gχ

(m+ 1)(4− 8gχ+ g2χ2)
, (64)

1

g

d lnh

dχ
=

2(9m− 8)− 2(5m− 6)gχ+ (m− 2)g2χ2

(m+ 1)(4− 8gχ+ g2χ2)(2− gχ)
, (65)

These equations have a simple solution for a blast wave with constant total energy E, i.e.,
in the case m = 3:

f = χ−17/12 (66)

g = χ−1 (67)

h = χ−7/4. (68)

This corresponds to our description of a GRB as an impulsive injection of a fixed amount
of energy E at the origin at r = t = R = 0 into an otherwise uniform cold medium. For
other solutions of blast waves with energy supply (m < 3) and or blast waves running into
an external medium with density gradient n1 ∝ r−k, see Blandford & McKee (1976).
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In order to show that Eqs. (66)–(68) indeed correspond to an impulsive injection, we
compute the total instantaneous energy of the blast wave using Eq. (55),

E =

∫ R

0

16πγ2pr2dr (69)

=
8π

17
w1Γ2t3, (70)

which shows that Γ2t3 = const. (cf. Eq. (56)) indeed implies E = const..

Exercise 2.3 Derive the result Eq. (70) by changing the integration variable r → χ and only
retaining terms up to order O(Γ−2), keeping in mind that we are interested in the instanta-
neous energy at given time t (given Γ2). Note that the transformation of the differential is
given by dr = (∂r/∂Γ2)χdΓ2 + (∂r/∂χ)Γ2dχ.

2.3 Synchrotron emission from blast waves

In this section we shall compute the broadband synchrotron emission of an impulsive rela-
tivistic blast wave (Sec. 2.2.3) as seen by a distant observer. To this end, we first discuss the
hydrodynamic blast wave as seen by a distant observer (Sec. 2.3.1), then elaborate on how
electrons accelerated at the shock front give rise to synchrotron emission (Sec. 2.3.2), and
finally construct lightcurves and spectra as seen by a distant observer (Sec. 2.3.3).

2.3.1 Blast wave as seen by a distant observer

A photon emitted from the shock front at radius R1 at t = t0 is received by a distant observer
at r = d→∞ at time t1 = t0 + (d−R1)/c, where t refers to the coordinate time of the blast
wave solution (rest frame of the unshocked fluid (ISM); Sec. 2.2.3). A photon emitted later
at R2 > R1 and t0 +(R2−R1)/v, where v denotes the velocity of the shock front, is received
by the distant observer at time t2 = t0 + (R2 −R1)/v +R2/c. The distant observer notices
a time difference

∆t12 = t2 − t1 =
R2 −R1

v
− R2 −R1

c
=
R2 −R1

c

(
1− β
β

)
, (71)

where β = v/c. In the ultra-relativistic case (Γ >> 1, β ' 1),

1

Γ2
= (1− β)(1 + β) ' 2(1− β), (72)

such that

∆t12 =
R2 −R1

2cΓ2
, (73)

Taking R1 → 0, one can associate the location of the shock front R(t) with Lorentz factor Γ
with an observer time

tobs(R) =

∫ R

0

dR

2cΓ2(R)
. (74)

For simplicity (the integration will only change the result by order unity), let us keep the
Lorentz factor Γ constant and use an approximate observer time

tobs =
R

4cγ2
, (75)

where we have already substituted the Lorentz factor of the shocked fluid at the location of
the shock front (Eq. (60)).

The evolution of the blast wave radius as seen by the distant observer can be obtained
from Eq. (70),

E =
16π

17
ρ1c

2γ2R3, (76)
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where we have assumed that the ISM (unshocked fluid) is cold and pressure-less (ε1 = p1 = 0)
and that approximately R ' ct for Γ� 1 (cf. Eq. (57)). Either replacing γ or R in Eq. (76)
with the help of Eq. (75), we obtain the scalings

R(tobs) =

(
17E

4πmpnc

)1/4

t
1/4
obs , (77)

γ(tobs) =

(
17E

1024πmpnc5

)1/8

t
−3/8
obs , (78)

where we have used the particle density n and particle (proton) mass mp of the ISM. In the
following, we will only use results scaled to the observer time and drop the subscript “obs”,
assuming that it is implicitly understood that all expressions are given in observer time.

2.3.2 Synchrotron emission

Shock energetics. Assuming a cold and pressure-less ISM with particle density n (ε1 =
p1 = 0, i.e., w1 = ρ1 = nmpc

2), the shock compresses the flow and heats up the shocked
material to thermal energies e2 = 4γ2nmpc

2 (Eqs. (42) and (44)). In order to compute the
synchrotron emission from electrons in the shocked fluid, one needs to know the detailed
energy distribution of electrons and the magnetic field, which is determined by complicated
microphysics at the shock front and difficult to estimate from first principles. For simplicity,
we will therefore parametrize these unknowns and assume that a fraction εe of the total
internal energy goes into random kinetic energy of the electrons, and another fraction εB
into (small-scale) magnetic field energy,

ee = εee2 = 4εeγ
2nmpc

2, (79)

eB =
B2

8π
= εBe2 = 4εBγ

2nmpc
2, (80)

(81)

which implies a typical magnetic field strength

B = (32πεBmpn)1/2γc. (82)

Focusing only on synchrotron losses implies the constraint εB < εe, as inverse Compton
scattering would otherwise be significant. Furthermore, we assume that the electrons are
accelerated into a power-law distribution in the Lorentz factor γe above some minimum
γe,m,

N (γe) = Cγ−pe , γe ≥ γe,m, (83)

with electron number density

ne =

∫ ∞
γe,m

N (γe)dγe =
Cγ
−(p−1)
e,m

p− 1
, p > 1 (84)

and energy density in the ultra-relativistic case

ee =

∫ ∞
γe,m

(γe − 1)mec
2N (γe)dγe =

mec
2Cγ

−(p−2)
e,m

p− 2
, p > 2. (85)

Combining Eqs. (84) and (85), we find the minimum electron Lorentz factor

γe,m =
p− 2

p− 1

ee
nemec2

= 4
p− 2

p− 1

mp

me
εeγ, (86)

where 〈γe〉 = ee/nemec
2 is the typical electron Lorentz factor, and where we have assumed

ionized hydrogen gas, i.e., ne = n/γ. From Eq. (85) one can also see that the electron
distribution must be restricted to p > 2, in order to keep the electron energy finite, although
2 > p > 1 is also allowed with an appropriate high-energy cut-off.
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Synchrotron emission from a single electron. The spontaneously emitted spec-
tral power at frequency ν of a single electron of charge e moving at Lorentz factor γe as seen
by a distant observer at rest with the ISM is given by (Rybicki & Lightman 2004; Crusius
& Schlickeiser 1986)

Pν(θ) = γ

√
3e3B

mec2
sin θ

γν

ν̃char

∫ ∞
γν/ν̃char

K 5
3
(z) dz, (87)

where θ is the angle between the magnetic field and the direction of particle motion, K 5
3

denotes the modified Bessel function of order 5/3, and ν̃char = νchar sin θ, with

νchar =
3

4π

eBγ2
e

mec
γ. (88)

Here and in the following, factors of γ represent the transformation from the rest frame of
the shocked fluid to the rest frame of the ISM (the distant observer). Assuming an isotropic
distribution of particle velocities, we can average over all possible angles for a given Lorentz
factor γe to obtain the average energy loss rate for a particle (cf. Crusius & Schlickeiser
1986):

Pν =
γ

4π

∫ 2π

0

dφ

∫ π

0

dθ sin θ Pν(θ) =

√
3e3B

mec2
γR(ν/νchar), (89)

where
R(z) =

π

2
z[W0, 43

(z)W0, 13
(z)−W 1

2 ,
5
6
(z)W− 1

2 ,
5
6
(z)]. (90)

Here, Wλ,µ(z) = e−
1
2 zz

1
2 +µU(0.5 +µ−λ, 1 + 2µ, z) is the Whittaker function and U denotes

the confluent hypergeometric function of second kind (Abramowitz & Stegun 1972, Section
13.1). Employing asymptotic expansions of the Whittaker functions one can show that
(Crusius & Schlickeiser 1986)

R(x) '
{

const.× x1/3, x� 1
π
2 exp(−x)

(
1− 99

162x
−1
)
, x� 1

, (91)

which represents an excellent approximation except for x ∼ 1, i.e., near the global maximum
of R. This means that the spectral power increases as Pν ∝ ν1/3 at small frequencies,
essentially up to a maximum around

νmax ∼
2

3
νchar =

eBγ2
e

2πmec
γ, (92)

and then exponentially decreases, Pν ∝ exp(−ν). The maximum spectral power is roughly
given by

Pν,max ≈
P

νmax
=
σTmec

2

3e
Bγ, (93)

where σT = (8π/3)(e4/m2
ec

4) is the Thomson cross section and

P =
4

3
σTcγ

2
e

B2

8π
γ2 (94)

is the total radiation power (Rybicki & Lightman 2004). Note that Pν,max is independent
of γe and only depends on the magnetic field strength; the location of the peak (Eq. (92)),
however, does depend on γe.

Electrons radiate at the expense of their kinetic energy, d(γγemec
2)/dt = −P , i.e., the

electrons cools at a rate

γ̇e = −γ σTcB
2γ2
e

6πmec2
. (95)

From Eq. (94) one can see that the total radiated power increases with the electron Lorentz
factor as ∝ γ2

e , such that for very high γe the instantaneously radiated power becomes
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comparable to the kinetic energy γγemec
2 of the electron and the expression for the spectral

power (89) is no longer accurate (as it assumes a time-independent (fixed) γe). Above a
critical γe > γe,c the electron will thus cool fast and loose most of its kinetic energy, where
γe,c is determined by equating the kinetic energy with the radiated synchrotron energy,
γγe,cmec

2 = P (γe,c)t, i.e., using Eq. (82) one finds

γe,c =
6πmec

σTB2γt
=

3me

16σTmpc

1

εBnγ3t
. (96)

Electrons with initial Lorentz factors in this fast cooling regime, γe > γe,c, rapidly cool down
to γe,c, emitting their instantaneous kinetic energy at the characteristic frequency Eq. (92),
such that in a time-integrated sense, the spectral power scales as

Pν =
γemec

2

γ̇e
∝ γ−1

e ∝ ν−1/2. (97)

Synchrotron emission from a distribution of electrons. The collective syn-
chrotron emission from a distribution of electrons N(γe) above some minimum γe > γe,m is
given by

Pν,tot =

∫ ∞
γe,m

N(γe)Pνdγe, (98)

where Pν is the spectral power of a single electron (Eq. (89)). In general, the electron distri-
bution is determined by the continuity equation (conservation of the number of electrons),

∂N

∂t
+

∂

∂γe
(γ̇eN) = N (γe). (99)

The second term on the left-hand side represents the cooling term due to synchrotron emission
and the source term on the right-hand side represents the injection of electrons as given by
Eq. (83). We will only focus on stationary particle distributions and therefore neglect the
first term on the left-hand side (∂/∂t = 0).

Suppose that N(γe) ∝ γ−qe . From Eq. (98) and (89),

Pν,tot ∝
∫ ∞
γe,m

R(ν/νchar)γ
−q
e dγe. (100)

Noting that νchar ∝ γ2
e (Eq. (88)) and changing the integration variable to x = ν/νchar ∝

ν/γ2
e , with dγ ∝ ν−1/2x3/2, we find that

Pν,tot ∝ ν−(q−1)/2

∫ 1

0

R(x)x(q−3)/2dx, ν > νm. (101)

Here, we have assumed that we are only interested in frequencies larger than

νm = νmax(γe,m), (102)

such that the integration bounds become independent of ν, as R(x) essentially vanishes
above x = 1 (cf. Eq. (91)). For frequencies ν ≤ νm (and assuming cooling is negligible)
the total spectrum is simply a superposition of the individual electron spectra at γe = γe,m
(Eqs. (89), (91)),

Pν,tot ∝ ν1/3, ν < min(νm, νc), (103)

as there are no electrons below γe,m in the absence of cooling.
For the global shape of Pν,tot there are, in general, two cases referred to as fast cooling,

defined by γe,m > γe,c, i.e., all injected electrons first need to undergo fast cooling down to
γe,c, and slow cooling, defined by γe,m < γe,c, i.e., only the high-energy tail of the electron
distribution undergoes initial fast cooling.
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Let us first concentrate on the former case of fast cooling. At low frequencies ν < νc,
where

νc = νmax(γe,c), (104)

the spectrum is given by Eq. (103), as all electrons that underwent fast cooling will ‘pile up’
at γe = γe,c. At intermediate frequencies νc < ν < νm (γe,c < γe < γe,m) there is no injection
of particles (N = 0) and we obtain from Eq. (99): N(γe) ∝ γ̇−1

e ∝ γ−2
e . Using q = 2 in

Eq. (101) we thus find
Pν,tot ∝ ν−1/2, νc < ν < νm. (105)

At high frequencies, ν > νm (γe > γe,m), Eq. (99) yields dN/dγe ∝ γ−p−2
e , and thus N(γe) ∝

γ−p−1
e . Setting q = p+ 1 in Eq. (101), we find

Pν,tot ∝ ν−p/2, ν > max(νm, νc). (106)

For slow cooling, the low-frequency part is again given by Eq. (103). At intermediate
frequencies νm < ν < νc (γe,m < γe < γe,c), N(γe) = N (γe), and setting q = p we obtain
from Eq. (101):

Pν,tot ∝ ν−(p−1)/2, νm < ν < νc. (107)

At high frequencies ν > νc (γe > γe,c), electrons cool fast and particles are injected according
to N ∝ γ−pe , such that the spectral power is given by Eq. (106).

In summary, and converting to observed total flux Fν,tot = Pν,tot/4πD, where D = d−R
is the distance to the observer (Sec. (2.3.1)), we find for fast cooling (γe,m > γe,c)

Fν,tot =


(ν/νc)1/3Fν,max, ν < νc

(ν/νc)−1/2Fν,max, νc < ν < νm

(ν/νm)−p/2(νm/νc)−1/2Fν,max, ν > νm

(108)

and for slow cooling (γe,m < γe,c)

Fν,tot =


(ν/νm)1/3Fν,max, ν < νm

(ν/νm)−(p−1)/2Fν,max, νm < ν < νc

(ν/νc)−p/2(νc/νm)−(p−1)/2Fν,max, ν > νc

. (109)

The global maximum of the spectra is determined by the electrons at γe = min(γm, νc), where
most of the electron population resides. Making use of Eqs. (93) and (82) the maximum flux
is then roughly given by

Fν,max =
1

4πD2
NePν,max =

mec
3σT

9e
(32πmp)1/2ε

1/2
B n3/2γ2R3D−2, (110)

which sets the overall normalization of the spectra. Here, Ne = 3πR3n/4π is the total
number of electrons swept up by the blast wave.

2.3.3 Constructing GRB afterglow lightcurves & spectra

In this section, we compute the total synchrotron emission of an ultrarelativistic blast wave
by combining the hydrodynamic evolution with the synchrotron spectrum that we computed
for a generic shock front in the previous section. Using the hydrodynamic blast wave solution
for γ and R as seen by the distant observer (Eqs. (77) and Eq. (78)) in Eqs. (104), (102),
and (110), we find that the synchrotron spectrum of the blast wave evolves according to

νc =
9

2
√

34

meec
1/2

mpσ2
T

ε
−3/2
B n−1E−1/2t−1/2, (111)

νm =

√
34

π

m2
pe

m3
ec

5/2

(
p− 2

p− 1

)2

ε2eε
1/2
B E1/2t−3/2, (112)

Fν,max =
17

18
√

2π

mecσT

m
1/2
p e

ε
1/2
B n1/2ED−2, (113)
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Figure 2: Illustration of the temporal behavior of the characteristic break frequencies νc and νm
as a function of time for an adiabatic ultra-relativistic blast wave, indicating a high-frequency
lighcurve scencario (νobs > ν0) and a low-frequency lighcurve scencario (νobs < ν0), as well as
the fast-cooling regime for this parameter space.

where the individual power-law segments of the spectrum are given by Eqs. (108) and (109).
For fiducial parameters typical of short GRBs (E ∼ Eγ,iso ∼ 1051erg, n ∼ 0.1, εe ∼ 0.1,
εB ∼ 0.01, p ≈ 2.4; see, e.g., Berger 2014), these scalings read

νc = 8.5× 1016 Hz ε
−3/2
B,0.01n

−1
0.1E

−1/2
51 t

−1/2
d , (114)

νm = 2.2× 1012 Hz

(
p− 2

p− 1

)2

ε2e,0.1ε
1/2
B,0.01E

1/2
51 t

−3/2
d , (115)

Fν,max = 0.35 mJy ε
1/2
B,0.01n

1/2
0.1 E51D

−2
28 . (116)

At sufficiently early times, νm > νc (cf. Eqs. (111) and (112)), i.e., the spectrum is in
the fast cooling regime. A transition to the slow cooling spectrum occurs at a time t0 when
νm = νc,

t0 =
68

9π

(
p− 2

p− 1

)2 m3
pσ

2
T

m4
ec

3
ε2Bε

2
eEn (117)

= 27 s ε2B,0.01ε
2
e,0.1E51n0.1. (118)

Let us turn to the temporal behavior of the synchrotron lightcurve. Suppose that the
observer detects the blast wave synchrotron radiation in a frequency band around νobs. The
observed lightcurve is then roughly given by L ' νobsFν,tot(νobs) and will show breaks around
characteristic times when the spectral break frequencies cross the observing band, i.e., when
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νc = νobs at

tc =
81

136

m2
ee

2c

m2
pσ

4
T

ε−3
B n−2E−1ν−2

obs (119)

= 20 yr ε−3
B,0.01n

−2
0.1E

−1
51 ν

−2
obs,15, (120)

and when νm = νobs at

tm =

(
34

π2

)1/3
m

4/3
p e2/3

m2
ec

5/3

(
p− 2

p− 1

)4/3

ε4/3e ε
1/3
B E1/3ν

−2/3
obs (121)

= 2.1 min

(
p− 2

p− 1

)4/3

ε
4/3
e,0.1ε

1/3
B,0.01E

1/3
51 ν

−2/3
obs,15. (122)

Furthermore, the transition between the fast and slow cooling regime at t0 gives rise to a
critical frequency ν0 = νc(t0) = νm(t0),

ν0 =

(
9

2

)3/2 √
π

34

m3
eec

2

m
5/2
p σ3

T

(
p− 2

p− 1

)−1

ε−1
e ε
−5/2
B E−1n−3/2 (123)

= 4.8× 1018 Hz

(
p− 2

p− 1

)−1

ε−1
e,0.1ε

−5/2
B,0.01E

−1
51 n

−3/2
0.1 . (124)

This critical frequency defines two observing scenarios, referred to as the high-frequency and
low-frequency lightcurve. If νobs > ν0, then the only possible sequence of events for this
high-frequency lightcurve is tc < tm < t0 (cf. Fig. 2). In contrast, when νobs < ν0 the
only possible sequence for the low-frequency lightcurve is t0 < tm < tc. The corresponding
power-law segments for Fν,tot(νobs) from Eqs. (108) and (109) can best be identified visually
from Fig. 2. In detail we find for the high-frequency lightcurve

L ' νobsFν,tot(νobs) ∝


ν
−1/3
c , ∝ t1/6, t < tc

ν
1/2
c , ∝ t−1/4, tc < t < tm

ν
1/2
c ν

(p−1)/2
m , ∝ t−(3p−2)/4, t > tm

, νobs > ν0, (125)

where we have used the scalings of νc and νm with time (cf. Eqs. (111) and (112)). Analo-
gously, we obtain for the low-frequency lightcurve

L ' νobsFν,tot(νobs) ∝


ν
−1/3
c , ∝ t1/6, t < t0

ν
−1/3
m , ∝ t1/2, t0 < t < tm

ν
(p−1)/2
m , ∝ t−3(p−1)/4, tm < t < tc

ν
(p−1)/2
m ν

1/2
c , ∝ t−(3p−2)/4, t > tc

, νobs < ν0. (126)

For a given wavelength band νobs, Eqs. (125) and (126) represent the expected temporal
evolution of the afterglow lightcurve.

Fitting lightcurves (and/or spectra) as given in Eqs. (125), (126), (108), and (109) to-
gether with the scalings of break frequencies and times as in Eqs. (117), (119), (121), (111)–
(113) to data of GRB afterglows allows us to infer both macroscopic and microphysical
parameters of the GRB. In essence, the free parameters of the model are E, n, εe, εB , and
p. One can thus obtain macroscopic quantities of the GRB, such as the (kinetic, isotropic-
equivalent) blast wave energy, i.e., the energy of the explosion, and the density of the circum-
burst ISM, but also microphysical quantities, such as the power-law index p of the injected
electron spectrum at the shock or the shock energetics in terms of εe and εB . We note that
the assumption of a spherical blast wave made here is adequate although the early outflow
is thought to be jetted, i.e., collimated within some jet opening angle θj. This is because for
an ultra-relativistic blast wave, Γ > 1/θj at sufficiently early times, and radiation emitted
locally is beamed into a cone of opening angle 1/Γ, causally disconnected from other regions

18



within or exterior to the outflow. This means that the outflow within the jet does not ‘know’
about its boundary and thus locally behaves like a spherical outflow. Therefore, inferring
the properties of the explosion from the afterglow within the formalism described here is
accurate.

The typical values for the break frequencies (Eqs. (111) and (112)) show that multi-
wavelength observations across the entire electromagnetic spectrum from radio to X-ray
frequencies are required in order to cover and probe the afterglow spectrum. While this
model has been successfully applied to various long GRBs (e.g., Panaitescu & Kumar 2002;
Yost et al. 2003), there is much less data on short GRB afterglows. Only very few examples
with comprehensive multi-wavelength afterglows of short GRBs exist, including GRB050724,
the first burst with detected radio afterglow (Berger et al. 2005), or GRB130603B (Fong et al.
2014), which was also the first candidate for a kilonova (Tanvir et al. 2013; Berger et al. 2013).
Afterglow data (X-ray, in particular) are sometimes not well fit by the model discussed here
at early times (. hours, and modifications are required. This is due to the initial steep
decline in X-ray flux caused by the prompt-emission, X-ray flares, and plateaus. Interested
readers are referred to, e.g., Berger (2014), Kumar & Zhang (2015), and references therein
for more details on these features.

3 Gamma-ray burst central engine

3.1 Overview

When deriving the GRB afterglow model in the previous section, we were agnostic about the
central engine, i.e., about what actually generated the explosion energy E of the blast wave
in the first place. In this section, I turn to a discussion of mechanisms that can generate such
a (initially jetted) relativistic outflow and give rise to a GRB and its afterglow as described
by the blast wave solution.

Early on GRBs (both long and short) as described by the blast wave solution were thought
of as a relativistic ‘fireball’, originating from baryon-poor high-entropy material that has been
heated up by annihilation of electron and anti-electron neutrinos in the course of a neutron
star merger or collapse of a rapidly rotating massive star (e.g., Paczynski 1986; Eichler et al.
1989; Narayan et al. 1992; Woosley 1993; MacFadyen & Woosley 1999). However, more
detailed theoretical calculations and simulations showed that the total energy available via
annihilation of neutrinos from an accretion disk surrounding the final black hole remnant in
these systems is not sufficient to explain the full range of observed (gamma-ray) energies of
GRBs (). Instead, electromagnetic extraction of rotational energy from a black hole via the
Blandford-Znajek mechanism (Blandford & Znajek 1977) is now widely believed to be one
of the most promising mechanisms for powering relativistic outflows from black holes not
just in GRBs, but also in various other astrophysical systems such as active galactic nuclei
and X-ray binaries. Although GRBs could also be generated by neutron stars (Usov 1992;
Thompson 1994; Thompson et al. 2004; Metzger et al. 2011), for the purpose of these lectures
we shall focus here on a black hole as the central engine of the GRB and discuss the energy
generation via the Blandford-Znajek process. In the future and time provided, I may add a
section on neutron stars as central engines; for now I refer the reader to, e.g., Metzger et al.
(2011). Observationally, neutron star central engines have been proposed for a subclass of
GRBs based on the discovery of long-lasting X-ray plateaus by NASA’s Swift mission in a
number of long and short GRBs (e.g., Troja et al. 2007; Lyons et al. 2010; Rowlinson et al.
2010, 2013). However, at least in the case of short GRBs, such plateaus could also result
from a black hole central engine in the ‘time-reversal’ scenario (Ciolfi & Siegel 2015; Siegel
& Ciolfi 2016a,b).

An excellent and succinct discussion of black hole electrodynamics and the Blandford-
Znajek process in a modern 3+1 split approach (but with a neat comparison to the original
work by Blandford & Znajek (1977)) can be found in Komissarov (2004, 2009). In order to
illustrate how rotational energy can be extracted from a black hole and converted into a flux
of electromagnetic energy that can potentially power a magnetically dominated relativistic
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outflow, we shall employ a relatively simple argument along the lines of Komissarov (2004,
2009).

3.2 Black hole electrodynamics

3.2.1 Kerr black hole and 3+1 split

The electrodynamics of black holes and their magnetospheres are most conveniently discussed
in the framework of a ‘3+1 split’ of spacetime (see Appendix A for a very brief overview).
This approach allows us to work with three-dimensional vector fields in very close analogy
to electrodynamics in flat spacetime, and another benefit of this approach is that results can
easily be carried over to the analysis of numerical simulations, since they are also formulated
in a 3+1 decomposition of spacetime.

In the 3+1 split, spacetime is foliated into three-dimensional spatial hypersurfaces that
are parametrized by a global time function (or coordinate) t. The general spacetime metric
in this approach reads (cf. Eq. (224))

ds2 = −(α2 − β2)dt2 + 2βidx
idt+ γijdx

idxj , (127)

where α is the lapse function, β = βi∂i is the shift vector, and γij is the three-dimensional
metric of the spatial hypersurfaces. In this foliation of spacetime there is a special observer,
namely the observer who is at rest with respect to the spatial hypersurfaces; this observer
referred to as the Eulerian observer moves with 4-velocity nν (cf. Eqs. (217) and (218))
perpendicular to the spatial hypersurfaces of constant coordinate time t.

In the following, we shall describe the spacetime of a rotating black hole with mass M
and angular momentum J in Boyer-Lindquist coordinates {(t, r, φ, θ)},

ds2 = gttdt
2 + 2gtφdtdφ+ γrrdr

2γφφdφ2 + γθθdθ
2, (128)

where (Boyer & Lindquist 1967)

gtt = (2Mr/Σ)− 1, (129)

gtφ = −2aMr sin2 θ/Σ, (130)

γrr = Σ/∆, (131)

γφφ = A sin2 θ/Σ, (132)

γθθ = Σ, (133)

and

Σ = r2 + a2 cos2 θ, (134)

∆ = r2 − 2Mr + a2, (135)

A = (r2 + a2)2 − a2∆ sin2 θ, (136)

a = J/M, −1 < a/M < +1. (137)

We note that the horizon of the black hole is located at r+, the largest root of ∆ = 0,

r± = M ±
√
M2 − a2. (138)

One can easily show (see Exercise below) that the components of the inverse metric are given
by

gtt = −A/(∆Σ), (139)

gtφ = −2aMr

Σ∆
, (140)

γrr = ∆/Σ, (141)

γφφ =
∆− a2 sin2 θ

Σ∆ sin2 θ
, (142)

γθθ = Σ−1. (143)
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Exercise 3.1 Derive Eqs. (139)–(143). Hint: Make use of the fact that only the t-φ block of
gµν needs to be inverted, as the inversion of the r-θ part is trivial. Proceed by first showing
that the determinant of the t-φ part is

g̃ = −∆ sin2 θ (144)

and then use Cramer’s rule. Conclude that

g = det(gµν) = −Σ2 sin2 θ. (145)

One can now compare Eqs. (139)–(143) to Eq. (224) and identify the lapse and shift of
the Boyer-Lindquist foliation of spacetime:

α2 = −1/gtt = ∆Σ/A, (146)

β2 = α2 + gtt = 4a2r2 sin2 θ/A, (147)

βφ = α2gtφ = −2aMr/A, βr = βθ = 0. (148)

Frame dragging. For an observer with timelike four-velocity uµ, the angular velocity is
given by

Ω ≡ dφ

dt
=

dφ
dτ
dφ
dτ

=
uφ

ut
. (149)

This shows that even zero-angular momentum observers (uφ = 0), such as the Eulerian
observer (uφ = nφ = 0, see Eq. (218)), are dragged into co-rotation by the black hole with
angular velocity Ω 6= 0.

Exercise 3.2 Show that for the Eulerian observer (zero-angular momentum observer),

ΩE = −βφ, i.e., β = −ΩE∂φ. (150)

Note that this result is more general than it might look; it holds for any metric of the type
(128). In particular, it is also valid for Kerr-Schild coordinates.

Ergosphere. Another interesting feature of the Kerr solution is the existence of an er-
gosphere. When gtt becomes positive at radii smaller than the largest root rS+ of gtt =
−α2 + β2 = 0, where

rS± = M ±
√
M2 − a2 cos2 θ, (151)

the otherwise timelike Killing vector tµ = ∂t is not timelike anymore,

gµνt
µtν = g(tµ, tν) = gtt > 0. (152)

This means that there cannot be a static observer inside this region, referred to as the
ergosphere. Any timelike observer (following a timelike world line) and even light is dragged
into rotation within the ergosphere.

3.2.2 Electrodynamics in stationary spacetimes

In this section, we briefly sketch the derivation of the foundational equations of electrody-
namics in stationary spacetimes, i.e., we shall assume that

∂tgµν = 0. (153)

While the equations to be derived here will generally apply to any stationary spacetime, they
are, in particular, valid for the case of a rotating black hole in Boyer-Lindquist coordinates
we are interested in (see previous section). If we define the electric
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Electrodynamics is governed by Maxwell’s equations, which, in general relativity, can be
expressed as

∇νF ∗µν = 0, (154)

∇νFµν = Iµ. (155)

Here, Fµν is the Maxwell tensor, F ∗µν is the Faraday tensor, and Iµ is the electric 4-current
(see below). Let us define the magnetic and electric field as seen by the Eulerian observer
(projection of the Maxwell and Faraday tensors onto the four-velocity of the observer),

Dµ = −Fµνnν , (156)

Bµ = −F ∗µνnν , (157)

as well as the auxiliary fields

Eµ = −1

2
γµνηναβγk

αF ∗βγ , (158)

Hµ = −1

2
γµνηναβγk

αF βγ , (159)

Jµ = 2I [νkµ]nν , (160)

ρq = −Iνnν . (161)

Here, kα = ∂t,

ηµνλδ =
1√
−g

εµνλδ (162)

is the Levi-Civita alternating pseudo-tensor of spacetime, and εµνλδ is the four-dimensional
Levi-Civita symbol. Note that

ηµνλδ =
√
−gεµνλδ. (163)

Exercise 3.3 Show that the fields (158)–(160) are purely spatial, i.e., that they only live in
the spatial hypersurfaces

Xµnµ = 0, Xµ = Dµ, Bµ, Eµ, Hµ, Jµ. (164)

Due to the property (164), we can think of Dµ, Bµ, Eµ, Hµ, Jµ simply as three-dimensional
vectors on the spatial hypersurfaces, D, B, D, H, J whose indices can be raised and lowered
with the spatial metric γij . Using the definitions (156)–(161), we obtain from the time and
spatial components of Eq. (154)

∇ ·B = 0 (165)

and
∂tB + ∇×E = 0, (166)

respectively. Similarly, Eq. (155) yields

∇ ·D = ρq (167)

and
− ∂tD + ∇×H = J . (168)

Exercise 3.4 Derive Eqs. (165)–(168).

In vacuum or in highly ionised plasma the electric and magnetic susceptibilities vanish and
the Faraday tensor is dual to the Maxwell tensor,

F ∗µν =
1

2
ηµναβFαβ , Fµν =

1

2
ηµναβF ∗αβ . (169)

and we can write Eqs. (158) and (159) as

E = αD + β ×B, (170)

H = αB − β ×D. (171)
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Exercise 3.5 Derive Eqs. (170)–(171). Note that ηαβγ =
√
γεαβγ is the spatial Levi-Civita

pseudo-tensor, ηαβγ = nνη
ναβγ .

Due to the stationary condition (153), we obtain from the time component of the energy-
momentum conservation equation,

∇νT νµ = −FµγIγ , (172)

the continuity equation (conservation equation) for the electromagnetic energy flux

∂te+ ∇ · S = −E · J . (173)

Here,

Tµν =
1

4π

(
FµλF νλ −

1

4
gµνFλδFλδ

)
, (174)

is the electromagnetic energy-momentum tensor and

e = nνT
ν
t =

1

2
(E ·D +B ·H) (175)

and
S = E ×H (176)

are, respectively, the energy density and flux of energy at infinity. As mentioned above, E
and H are auxiliary fields, as are e and S; they only have physical meaning at infinity, where
they represent the electric and magnetic fields as well as the energy density and energy flux.
The Eulerian observer is a locally inertial observer (at rest wrt to space) and in this observer
frame the laws of special relativity apply due to the equivalence principle. In this frame, the
physical electric and magnetic fields are D and B and thus this observer will measure the
actual physical energy density of the electromagnetic field as

eE =
1

2
(D2 +B2) (177)

and the associated energy flux as
SE = D ×B. (178)

3.3 The Blandford-Znajek mechanism

In this section, we shall show that in a

(i) stationary,

(ii) axisymmetric,

(iii) ‘force-free’

magnetosphere around a rotating black hole energy (and angular momentum) is extracted
along the poloidal magnetic field. This is known as the Blandford-Znajek mechanism. While
we shall implicitly assume Boyer-Lindquist coordinates here (Sec. (3.2.1)), the results are
also valid for any black hole metric that can be brought into the form (128) with ∂tgµν =
∂φgµν = 0; in particular, the results also apply to Kerr-Schild coordinates.

Condition (iii) means that we are interested in magnetospheres of black holes with a
highly conductive plasma with negligible inertia, i.e., we assume that that the transfer of
energy and momentum from the field to the plasma can be neglected (not because the
current is negligible, but because the energy and momentum of the electromagnetic field
is much larger than that of the plasma). This limit of electrodynamics is called ‘force-free
electrodynamics’. Note that the four-force describing this transfer of energy and momentum
is given by the right-hand side of Eq. (172); the force-free condition thus reads

FµνI
ν = 0. (179)
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Making use of Eq. (169) we find

E · J = 0, (180)

ρE + J ×B = 0. (181)

These two relations then imply
E ·B = 0 (182)

and with Eq. (170) we immediately obtain

D ·B = 0. (183)

From Eq. (180) we conclude that the energy at infinity Eq. (173) is strictly conserved and,
using condition (i), we find

∇ · S = 0. (184)

From condition (ii), we have ∂φ() = 0. Expressing the Maxwell tensor in terms of the
four-potential Aµ = (−Φ, Ai),

Fµν = ∂µAν − ∂νAµ, (185)

we find together with condition (i)

Eφ = ∂φAt − ∂tAφ = −∂φΦ− ∂tAφ = 0. (186)

For further reference, we also note the useful result that inserting Eφ = 0 in Eq. (181) yields
(J ×B)φ = 0, i.e.,

Jp ‖ Bp, (187)

where we have defined the poloidal component Xp of a vector X by

X = Xp +Xφ∂φ, (188)

with Xa = Xφ∂φ being the azimuthal component.
From Eqs. (182) and (186) we conclude that there exists a vector ω = Ω∂φ, such that

E = −ω ×B (189)

and Eq. (170) translates into

D = − 1

α
(ω + β)×B (190)

Furthermore, employing Eq. (189) in Eq. (166) together with condition (i) yields

∇× (ω ×B) = 0, (191)

which implies
B · ∇Ω = 0. (192)

The latter equation shows that Ω is constant along the magnetic field, which is thus called
angular velocity of the magnetic field lines.

Exercise 3.6 Using Eqs. (189), (190), (176), (178), (171), and (150), show that

Sp = −ΩHφBp, (193)

SE,p = − 1

α2
(Ω− ΩE)HφBp. (194)

While SE,p represents the direction of electromagnetic field flow (also called electromagnetic
wind), Sp can be interpreted as the direction of energy flow. We thus conclude from Eq. (193)
that electromagnetic energy is transported along poloidal magnetic field lines, i.e., poloidal
magnetic fields ‘extract’ rotational energy from the black hole. We shall interpret and discuss
this result in more detail below (Sec. 3.4).
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For further reference, let us finally point out a peculiarity associated with the Poynting
vectors obtained above. They are anti-parallel if

0 < Ω < ΩE. (195)

In this regime of ‘energy counter-flow’, energy flows in the opposite direction to that of the
electromagnetic fields as seen by the Eulerian observer. Furthermore, we note that using
Eqs. (189) and (190), the energy density at infinity (158) can be written as

e =
1

2α
[α2B2 +B2

p(ω2 − β2)], (196)

which is negative if
α2B2 +B2

p(ω2 − β2) < 0. (197)

This condition can be rewritten in two equivalent ways:

Ω2 < Ω2
E −

α2B2

γφφB2
p

, (198)

α2 − β2 < −
α2B2

a + ω2B2
p

B2
p

, (199)

where Ba = Bφ∂φ is the azimuthal component of B. The relation (198) shows that the
condition is more restrictive than the energy counter-flow condition (195), i.e., there can be
regions with energy counter-flow but positive energy at infinity. Additionally, the relation
(199) shows that negative energy at infinity is restricted to β2 −α2 = gtt > 0, i.e., to within
the ergosphere (cf. Eq. (152)).

3.4 The Blandford-Znajek mechanism: the electromotive force for
energy extraction

Due to the no hair theorem black holes cannot sustain their own magnetic field; any magnetic
field penetrating the ergosphere or horizon has to be generated by external currents. In
this section, we discuss why and how external currents are generated in the black hole
magnetosphere that lead to the extraction of energy and angular momentum from the black
hole as found in the previous section (Eq. (193)).

We start by noting that for a steady-state axisymmetric vacuum magnetosphere (cf. Eqs. (166),
(168)),

∇×H = ∇×E = 0. (200)

Therefore, H and E can be written as gradients of a scalar function, H = ∇Ψ, H = −∇Φ,
where Φ is the electric potential (see also Eq. (186)). Axisymmetry then implies

Hφ = Eφ = 0. (201)

From Hφ = 0 it also follows that Bφ = 0 (cf. Eq. (171)), i.e., the magnetic field is purely
poloidal. Together with Eq. (193) this shows that in vacuum (absence of charges) stationary
axisymmetric electromagnetic fields cannot extract energy from the black hole.

This seems to suggest that the critical additional ingredient in order to extract energy
from the black hole is the presence of charges that are able to drive currents in the magne-
tosphere. However, in order to to so, electric fields are required. Additionally, creating such
charges in the first place (if not present initially) may require strong electric and radiation
fields, e.g., in order to initiate a e+-e− pair cascade (Beskin et al. 1992). Such electric fields
are generated by the frame dragging effect, as one can see by combining the general equations
(166) and (170) into

∇× (αD) = −∇× (β ×B), (202)

where the shift vector conspires with the external magnetic field to provide a source for the
electric field. The Eulerian observer will therefore see both the external magnetic field B and
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the induced electric field D. This, however, raises the question of whether such an electric
field can be sustained in a stationary scenario, i.e., whether or not this electric field would
lead to a separation of charges in such a way as to establish a counter field that effectively
screens the actual electric field and thus prevents any currents from flowing and thus energy
extraction (a ‘dead’ magnetosphere). Total screening implies that there be no component of
the electric field along the magnetic field and that the magnetic field dominates,

D ·B = 0, B2 −D2 > 0. (203)

We will now show that these conditions cannot be simultaneously satisfied throughout the
entire magnetosphere. Assume that D ·B = 0. Inserting this into Eq. (170), we also find
E ·B = 0. Then from axisymmetry (Eq. (201)), it follows that Eqs. (189) and (190) hold.

Exercise 3.7 Show that squaring Eq. (190) yields

(B2 −D2)α2 = B2f(Ω, r, θ) + (ω + βφ)2
H2
φ

α2
, (204)

where
f(Ω, r, θ) = α2 − (ω + β)2. (205)

For an entirely screened (‘dead’) magnetosphere, Hφ = 0 (cf. Eqs. (193), (201), (200)), and
thus Eq. (204) reads

(B2 −D2)α2 = B2f(Ω, r, θ). (206)

From Eqs. (205) and (206) it follows that the sign of B2−D2 does not depend on B, it is only
controlled by the spacetime and the angular velocity of the magnetic field lines Ω. This is
because a stronger magnetic field generates a stronger electric field (Eq. (202)). Furthermore,
we note that far away from the black hole r → ∞, a → 1, β → 0, and thus with Eq. (132)
we obtain

f(Ω, r, θ)→ 1− ω2 = 1− Ω2γφφ = 1− Ω2r2 sin2 θ. (207)

Therefore, in order to satisfy the inequality in Eq. (203), it follows that Ω = 0. This, in turn,
implies that

f(Ω, r, θ) = α2 − β2, (208)

which is negative inside the ergosphere (gtt > 0; see Eq. (152)). This shows that because
of the existence of the ergosphere, both conditions in Eq. (203) cannot be satisfied simulta-
neously throughout the entire magnetosphere and thus the magnetosphere cannot be dead,
provided sufficient charges are present. We note that this argument makes two implicit as-
sumptions. First, it assumes that a large-scale—purely poloidal as Hφ = 0—magnetic field
exists and that it penetrates the ergosphere, which is a reasonable assumption in steady
state. Second, it assumes that Ω is constant along the magnetic field lines; this follows from
Eq. (192), which also applies here.

In conclusion, Hφ must not vanish in order for charges to be able to screen the electric
field, which is induced by the externally applied magnetic field (cf. Eq. (204)). According to
the induction equation (168), in steady-state we have

∇×H = J . (209)

Therefore, Hφ 6= 0 implies a poloidal current Jp along the poloidal magnetic field Bp

(cf. Eq. (187)) that is driven by the charges in the attempt to screen the electric field.
Since ∇ × (β ×Ba) = 0 in axisymmetry, the azimuthal magnetic field Ba induced by this
poloidal current does not amplify the electric field (cf. Eq. (202)), i.e., it solely acts to screen
it. However, in order to sustain this current, the electric field must not be screened entirely.
This shows that there will be a steady-state non-vanishing poloidal current that mediates
energy and angular momentum extraction from the black hole to infinity due to Hφ 6= 0
(cf. Eq.(193)). It is precisely this electromotive force that promotes the energy extraction
found in the previous section.
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3.5 Activation of the Blandford-Znajek mechanism in GRBs

A 3+1 decomposition of spacetime

For many applications including analytic arguments (see, e.g., Sec. 3.2) and performing
general-relativistic numerical simulations, it is convenient to foliate spacetime (M, gµν) into
non-intersecting spacelike 3-surfaces Σψ, which arise as the level sets of a scalar function
ψ : p ∈M→ ψ on the spacetimeM that can be interpreted as a global time function. This
function defines a one-form ∇µψ, which, in turn, defines a vector field (its dual), ψµ, such
that ψµ∇µψ = 1. We assume that ∇µψ is timelike, i.e., g(∇µψ,∇µψ) = gµν∇µψ∇νψ < 0.
The timelike unit normal nµ of the spatial hypersurfaces of ψ = const can then be expressed
as

nµ = − gµν∇νψ√
−gσδ∇σψ∇δψ

, (210)

and one can decompose ψµ into a component along nµ and a component in Σψ,

ψµ = αnµ + βµ, nµβ
µ = 0. (211)

The duality condition ψµ∇µψ = 1 shows that

α =
1√

−gσδ∇σψ∇δψ
. (212)

Here, the function α is called the lapse function, with αdψ being the proper time elapsed in
normal direction (Eulerian observer) between coordinate times ψ and ψ + dψ, i.e., between
the spatial slices Σψ and Σψ+dψ. The vector field βµ is called the shift vector, since βµdψ
measures the spatial shift between a path of coordinate length dψ along nµ (Eulerian ob-
server) and a path of coordinate length dψ along ψµ. Furthermore, the 4-metric gµν induces
a spatial metric γµν on the spatial hypersurfaces Σψ,

γµν = gµν + nµnν , (213)

which entirely resides on Σψ,

nµγµν = nµgµν + nµnµnν = nν − nν = 0. (214)

Now let us choose coordinates such that ψµ = ∂0, with components δµ0 = eµ0 = (1, 0, 0, 0)
in the local map. Then its dual ∇µψ has components δ0

µ = e0
µ = (1, 0, 0, 0) in this map.

One can define the other basis vector fields by completing {∂µ0 } to a set of orthonormal basis
vectors {∂µ0 , ∂

µ
i |Ψ=Ψ0} on some initial time slice Σψ=ψ0 , and then Lie-dragging those basis

vector fields along ψµ,
∂µi ≡ Lψ(∂µi |ψ=ψ0

). (215)

This method yields a local set of basis vector fields for the spacetime, since the Lie derivative
conserves orthogonality.

Since, in this map, the basis vector fields were constructed such that 0 = ∇µψ∂µi ∝ nµ∂
µ
i ,

nµ has spatial components ni = 0 in this map. From the requirement nµβ
µ = 0 we deduce

that the shift vector has components

βµ = (0, βi) (216)

in this map, and it immediately follows from Eq. (211) that the normal vector has components

nµ = (α−1,−α−1βi). (217)

Using nµnµ = −1, one finds the components of nµ,

nµ = (−α, 0, 0, 0), (218)
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which together with Eq. (213) immediately show that the spatial components of the 3-metric
are given by

γij = gij . (219)

Furthermore, we note that

gtt = ψµψ
µ = α2nµn

µ + βµβ
µ = −α2 + βkβ

k, (220)

gti = ψµ∂
µ
i = βµ∂

µ
i = βi (221)

gtt = ∇µψ∇µψ = −α−2 (222)

gti = −n0ni = α−2βi, (223)

where the last identity follows from the fact that γµ0 = 0 as implied by Eqs. (213), (214),
and (217). In summary, we find the following coordinate representation of the 4-metric and
its inverse:

gµν =

(
−α2 + βkβ

k βi
βj γij

)
, gµν =

(
−α−2 α−2βi

α−2βi γij − α−2βiβj

)
. (224)

Additionally, we find that √
−g = α

√
γ, (225)

where g ≡ det(gµν) and γ ≡ det(γij). We note that the lapse α and the three non-vanishing
components βi of the shift vector can be chosen arbitrarily. They represent four degrees of
freedom, which reflect the diffeomorphism invariance of general relativity, i.e., the freedom
to choose (local) coordinates of the spacetime.
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