

ICTP school: GRB central engine slides

Daniel M. Siegel

Center for Theoretical Physics & Columbia Astrophysics Laboratory

Columbia University

ICTP school The Sound of Space-time: The Dawn of Gravitational Wave Science, Sao Paulo, Dec 10-14, 2018

The canonical GRB picture

- What is the nature of the central engine, how is its energy tapped? Association to BNS?
- Composition of the outflow (e⁺e⁻, photons, baryons)? Collimation?
- How is the energy stored (thermal, kinetic or magnetic)?
 Where does the energy come from?
 What are the dominant emission mechanisms (synchrotron, inverse Compton, thermal)?

Daniel Siegel, AEI

Daniel Siegel

Preliminaries

What is the central engine of GRBs?

Rapidly rotating black hole?

Blandford-Znajek mechanism

Komissarov & Barkov 2009

$$E_{\rm rot} = 10^{54} f\left(\frac{a}{0.9}\right) \left(\frac{M_{\rm BH}}{4M_{\odot}}\right) \,\mathrm{erg}$$

Rapidly rotating, highly magnetized neutron stars (ms-magentars?)

Magnetar model for GRBs

$$E_{\rm rot} \approx 3 \times 10^{52} \,\mathrm{erg} \left(\frac{M_{\rm ns}}{1.4 \,\mathrm{M_{\odot}}}\right) \left(\frac{R_{\rm ns}}{12 \,\mathrm{km}}\right)^2 \left(\frac{P}{\mathrm{ms}}\right)^{-2}$$

Basic Kerr-BH anatomy

Boyer-Lindquist coordinates:

$$\mathrm{d}s^2 = g_{tt}\mathrm{d}t^2 + 2g_{t\phi}\mathrm{d}t\mathrm{d}\phi + \gamma_{rr}\mathrm{d}r^2\gamma_{\phi\phi}\mathrm{d}\phi^2 + \gamma_{\theta\theta}\mathrm{d}\theta^2$$

$$g_{tt} = (2Mr/\Sigma) - 1,$$

$$g_{t\phi} = -2aMr\sin^{2}\theta/\Sigma,$$

$$\gamma_{rr} = \Sigma/\Delta,$$

$$\gamma_{\phi\phi} = A\sin^{2}\theta/\Sigma,$$

$$\Sigma = r^{2} + a^{2}\cos^{2}\theta,$$

$$\Delta = r^{2} - 2Mr + a^{2},$$

$$A = (r^{2} + a^{2})^{2} - a^{2}\Delta\sin^{2}\theta,$$

$$a = J/M, -1 < a/M < +1.$$

Writing as a 3+1 split (remember from NR lecture):

$$ds^{2} = -(\alpha^{2} - \beta^{2})dt^{2} + 2\beta_{i}dx^{i}dt + \gamma_{ij}dx^{i}dx^{j}$$

$$\alpha^{2} = -1/g^{tt} = \Delta\Sigma/A,$$

$$\beta^{2} = \alpha^{2} + g_{tt} = 4a^{2}r^{2}\sin^{2}\theta/A,$$

$$\beta^{\phi} = \alpha^{2}g^{t\phi} = -2aMr/A, \quad \beta^{r} = \beta^{\theta} = 0.$$

Identify using general form of metric components:

$$g_{\mu\nu} = \begin{pmatrix} -\alpha^2 + \beta_k \beta^k & \beta_i \\ \beta_j & \gamma_{ij} \end{pmatrix}, \quad g^{\mu\nu} = \begin{pmatrix} -\alpha^{-2} & \alpha^{-2}\beta^i \\ \alpha^{-2}\beta^i & \gamma^{ij} - \alpha^{-2}\beta^i\beta^j \end{pmatrix}$$

Horizon location: $\Delta = 0$

$$r_{\pm} = M \pm \sqrt{M^2 - a^2}.$$

Ergosphere: $g_{tt} = \beta^2 - \alpha^2 = 0$

$$r_{S^{\pm}} = M \pm \sqrt{M^2 - a^2 \cos^2 \theta}$$

Inside, the killing vector $t^{\alpha} = \partial_t$ not timeline anymore:

$$g_{\mu\nu}t^{\mu}t^{\nu} = g(t^{\mu}, t^{\nu}) = g_{tt} > 0$$

Black hole electrodynamics

Covariant Maxwell equations:

Faraday tensor

$$\nabla_{\nu}F^{*\mu\nu} = 0,$$

$$\nabla_{\nu}F^{\mu\nu} = I^{\mu}$$
Maxwell tensor

Define electric and magnetic field as seen by normal (Eulerian) observer in 3+1 split:

 $D^{\mu} = -F^{\mu\nu}n_{\nu},$ $B^{\mu} = -F^{*\mu\nu}n_{\nu}$

Define auxiliary fields (only physical meaning at infinity):

$$E^{\mu} = -\frac{1}{2}\gamma^{\mu\nu}\eta_{\nu\alpha\beta\gamma}k^{\alpha}F^{*\beta\gamma},$$

$$H^{\mu} = -\frac{1}{2}\gamma^{\mu\nu}\eta_{\nu\alpha\beta\gamma}k^{\alpha}F^{\beta\gamma},$$

electric current $\longrightarrow J^{\mu} = 2I^{[\nu}k^{\mu]}n_{\nu},$
electric charge $\swarrow \rho_q = -I^{\nu}n_{\nu}.$

Exercise: all these fields are purely spatial: $X^{\mu}n_{\mu} = 0$

(i.e., they live on the spatial hyper-surfaces of the 3+1 split)

Activation of the BZ mechanism

Long GRBs: collapsars

MacFadyen & Woosley 1999

BH-accretion disk from collapse of *rapidly* rotating massive stars ($M > 20 M_{sun}$)

jet punches through infalling material, generates GRB

core collapse

Long GRBs: collapsars

- Initial conditions: free-fall material with angular momentum, roughly approximating collapse of massive, rapidly rotating star
- Initial dipole B-field superimposed on infalling material
- Find that accretion onto BH predominantly occurs through accretion disk
- Find activation of BZ mechanism if

$$\beta_{\rho} = \frac{4\pi\rho c^2}{B^2} < 1$$

develops in polar region near BH horizon

Komissarov & Barkov 2009

Short GRBs: binary neutron star mergers

Fig.: Magnetic funnel ("incipient jet") emerging from a BH-torus system (BNS merger)

Ruiz+ 2016 Paschalidis et al. 2015

- jet formation in NS mergers not understood yet
- successful case only for prompt collapse

Fig.: Magnetic configuration from the highest resolution BNS simulations: no jet Kiuch

Kiuchi+ 2017

Baryon pollution in BNS mergers

How to avoid baryon pollution?

Time-reversal scenario Ciolfi & Siegel 2015a,b

