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Qutline

2 Cold dark matter with and without a
cosmological constant: GR vs. MoG.

2GR, f(R) and nDGP simulations

2 Equal clustering and CMB for all models.

2Marked correlation functions and weak
lensing around voids: probes of gravity for LSST

ey

1N

2 Signatures from different screening
mechanisms




General Relativity
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How about Modifying Gravity?
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MoG: no dark energy
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MoG

2 Modified gravity (MoG) models can explain the
accelerating expansion without a cosmological constant.

2 Scalar field coupled to matter or extra term in Einstein- Petmaf?‘?.;
Hilbert action trigger extra fifth force that enhances
gravity.

2 Screening mechanism (Chameleon in f(R),Vainshtefi¥iy
nDGP) that suppresses fifth force in high density r glon_ is
needed to make observationally viable theory.

2 Fifth force is screened in early universe (CMB is

2 Empty regions in space would be the place t
for the fifth force.
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Density map of
z~0 Universe is
highly non-linear.

It shows galaxies,
not mass.

We have a good
idea of how
galaxies populate
the dark matter
field, but there is
still freedom.
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f(R) MOG

Replace cosmological constant by f(R) in the action:

s = /dm\/_[ MPI(R—|~f(R))—I—£]

where g is the determinant of the metric tensor, R is the Ricci scalar, Mp; is the reduced
Planck mass.

When the curvature is high f(R) approaches a constant (and behaves as a cosmological
constant).

Other regimes: complicated dynamics and rich phenomenology with eq. of motion from
trace of the modified Einstein equation (obtained by varying the Action):

Py, = %[R— frR+2f(R) +87Gpm]  fr = df(R)/dR

In the limit fr 70, f(R) — 2A so that R = —87Gpm+4A , the first condition for viable f(R)

In order to pass Solar System checks: fr — 0 when p,, — o0

The Hu & Sawicky model satisfies this condition and f(R) is constant in the background
throughout cosmic history.
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f(R) MOG

1

pm) + =a” [R(fr) - R]

6

a® [R(fz) — R + 871G (pm — )]

(-R/M°)"

Modified Poisson Equation: V*® = 16§Ga2 (pm —
1
Vifr = —3

Hu-Sawicky f(R) model: f(R) = —-M? e

Ci 1 QA ol i
where 5 = @[3 (1 e 4Q_>]
2 m

and the characteristic mass M satisfies

C2 (—R/M2)n +1

M? = 87Gpmo/3 = HiOm

Cluster abundance data constrain:

| fro| < 107°

This is the chameleon parameter.

Also with other observables: Jennings et al. (2012), Hellwing et al. (201 3)

for n=1 (Schmidt et al. 2009).
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&, f(R) predictions using
spherical top-hat model

/

Haloes and the fifth 2 Positive fifth force outside
haloes acting in addition to
force newtonian.

2 Effect present at low
0 masses.
“out

F 2 At high masses effect
\N increases for high fifth
Fs force strength parameter.
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R f (R) predictions using
spherical top-hat model

2 Clampitt et al. 2013 calculate the fifth and newtonian forces for a
top-hat empty region (voids).

0.5

Pout 0.0 Pout =P+ 2=1
Negative fifth force e it S
inside voids acting _1.0/«‘ (ST
in opposite direct- < .o different, non-zero
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| —2.0F in
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. . gL —  p;,=0.90 p,,
internal density, and e T
Fg for small voids. T — pu=010p,
-3.5 — Pin :U(J5 pm
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- nDGP gravity

o Normal branch of the 5D Dvali-Gabadadze-Porrati
(Dvali+2000)

; R 4 R
S = d’ —q(5) / d _
bulk ! % 167TG(5) " brane ! d

© Modified gravity with Vainshtein screening
mechanism (k-mouflage,Vainshtein 1972)
© Additional dark energy component pro-
vides accelerated expansion (not needed
in sDGP)

© Gravity felt by massive particles includes
5-th force mediated by scalar field

)
© Extra parameter: ,, — %GG
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- nDGP gravity

© Modified Poisson equation

1
v2<1>=4c;2<1+ )5
e 38(a) ) °*

where the strength of the fifth force is given by

Bla) = 1+ 2Hr. (1 + 3%)

Qmoa > + QAo] /2 Qinoa ™
Qe

_ 1+[

Spherical solution provides estimate of Vainshtein
screening radius,

8rirs _ 4G M
982 — 9B82HZQ,.

Q. = 1/(4Hgr?)

3
Ty
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. nDGP predictions using
spherical model

Haloes and the fifth force

Vainshtein 2 Positive fifth force outside
radius Vainshtein radius acting in
Dot addition to newtonian.
F=0 F 2 Effect present at all
>~ \ Di masses.
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&, nDGP predictions using
~spherical model

2|n voids,Vainshtein radius removes the fifth-force around void haloes.
Different phenomenology is expected.

Negative fifth force
inside voids acting
in opposite direct-
ion to newtonian
away from haloes.
Stronger for lower
internal density, and
for small voids.
~Null inside
Vainshtein radius.

Pin &\ 0
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Screening types differ
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< Fully non-linear solution for different
screening types, with equal galaxy clustering.
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\ MoG simulations: chameleon model (f(R))

Modified Poisson equation and equation for f R (Jennings et al. 2012):

161G 1 T
™ 22 (b — B) + =@ [R(fz) — R]

1 _
V2 fr = =30 [R(fe) = R+81G (on — pw)] V2O = — e

3

Simulations from Zhao, Li & Koyama, 2012: ECOSMOG code (Li et al.2012)
based on RAMSES (Teyssier 2002)

GR and f(R) models start from the same initial conditions.
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\ MoG simulations: chameleon model (f(R))

WMAP7 cosmology:
{Qm, Qa,ns, h = Ho/(100km/s/Mpc),0s} = {0.24,0.76,0.961,0.73,0.80}
Models Liox (h : Gpc)  Particles Domain meshes  Finest meshes  Convergence criterion  Realizations
ACDM, F6, F5, F4 1.0 10243 10243 65536° le| < 10-12/10-8 1
ACDM, F6, F5, F4 1.5 10243 10243 65536° le] < 10127108 6

| Gpc”3 volume

F6:it |- 10° Full-Ch
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s f(R) predictions using
toy mode|

Haloes and the fifth 2 Positive fifth force outside
haloes acting in addition to
force newtonian.

2 Effect present at low
0 masses.
“out

F 2 At high masses effect
\N increases for high fifth
Fs force strength parameter.
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Full f(R) simulations

Mass functions:
Zhao, Li & Koyama, 2012
7=1 z=(
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Full f(R) simulations

Power spectra:

Zhao, Li & Koyama, 2012

02+
0.1}

0.0 -
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£ = 10‘_
= 10°
IE =167
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z=1 1

creening |

difference wrt GR

Clustering of mass is different; sigma_8 is higher in f(R).



: Rel. diff. to ACDM
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Full Vainshtein screening simulations
(nDGP): different mass functions, different

mass P(k)
Diff. with GR: Mass Function

0.20+
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0.10+

nDGP full

09O nDGP trunc. h, <0.03 [Mpc/h]

0.00+
nDGP trunc. h, <0.24 [Mpc/h

—0.05

nDGP trunc. h, <0.12 [Mpc/h]

Diff. with GR: P(k)

n(>M): Rel. diff. to ACDM

10" 10°
k [hMpc"l ]

10!

| ACDM
"nDGP full
- nDGP trunc. h, <0.03 [Mpc/h]
| nDGP trunc. h, <0.12 [Mpc/h|
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1612 1(513 1614

My [J\Ik;,/hl

Clustering of mass is different; sigma_8 is higher in nDGP.
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What can we do about galaxy clustering?




What is the Halo Occupation Distribution?
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Galaxies instead of mass.
SHED I: Cautun+2018

Mass distribution is [CMASS-FIXED-n; 4,
different in f(R) with
respect to GR, but we
must reproduce observed

10?

( N(M) )

(i) galaxy abundance,
(ii)galaxy clustering,

(iii) CMB. l ,
= 1.0 :
i 0.8 3
Optimization of halo o DD il il sl
occupation model = W= 10= 10* 10%° 101
M M, h™Y]
arameters until
lustering is i Cautun et al. 1710.01730

Implementation of gas and stellar components on ECOSMOG ongoing:
Cataldi et al. in prep
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® GR,f(R) and nDGP with the same CMB
initial conditions

® GR,f(R) and nDGP with the same galaxy
clustering.

What could be different between MoG and GR?
*Low density regions

*Mass density around tracers
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N TWO P ro P ose d tests

® Marked correlation functions involving
density and host halo mass

® Weak lensing profiles around voids
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® Marked correlation functions involving
density and host halo mass

® Weak lensing profiles around voids
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Even though galaxies show the same clustering,
the distributions of local densities (Voronoi)
and host halo masses differ.

1.0

Figure 2. Distribution of galaxy local densities estimated using a Voronoi
tessellation method. Only the range of below the mean density is shown for

better illustration.
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30000-
< 20000
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10000 1

1633 1614 1615
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Figure 1. The distribution of the host halo mass M sampled by the HOD
galaxies for different models as labelled in the legend. The dashed line in-
dicates mean value for GR.

Armijo et al. |801.08975
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=

rMarked Correlations

1
Mr)= —— Y mym;, m; = M
() n(r)ng 1'"%] l 7 !

_ J

' , — — F6
= iy z=0.> —% For the case of

S solidp=0.l Mi=density, there is little
* dashed p=-0. difference.

M(r)=1, on average the
product of marks IS

1 2 5 10 20 50
r [Mpc h~1]

Figure 3. The marked correlation function M(r) using the local density p
as the mark. This plot shows the examples for M = pP, with p = £0.5
in solid (-0.5) and dashed lines (0.5). The lower panel shows the ratios
of marked correlation functions between f(R) and GR. The shaded re-
gions correspond to the errors on the mean corresponding to a volume of

~ 1(h"'Gpc)® estimated using the Jackknife method. The dark and light oo
shaded regions are for the case of p = —0.5 and p = 0.5 respectively. Arm Il O Et al o I 80 I .08975
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Mark=host halo mass
Armijo et al. 1801.08975

F5 shows significant differences in all cases
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® Marked correlation functions involving
density and host halo mass

® Weak lensing profiles around voids
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% SHED I: chameleon Cautun+18
SHED Il: chameleon vs.Vainshtein
Paillas+19

/ Different void finders, 4 3D finders, 3 void finders in 2D

50 100 150 200
z [h~! Mpc]

Cautun et al. 1710.01730 Paillas+1810.02864
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Void finder list:

® Spherical void finder (NP+06)

® WWatershed void finder (Platen+07)

o ZOBOV finder (Neyrinck 08)

® Watershed walls (Cautun+16)

® Spherical 2D void finder (Cautun+18)

3D

® 2D Tunnels, regions with no gals (Cautun+18) 2D

® Troughs, fixed radius, 2gals (Gruen+16)
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2D vs. 3D finders

LINE-OF-SIGHT
—

Paillas+1810.02864



% Recap: f(R) predictions using
spherical top-hat model

2 Clampitt et al. 2013 calculate the fifth and newtonian forces for a
top-hat empty region (voids).

0.5 T
Pout 0.0 Pot =P » =1
Negative fifth force s /ﬂ!f’
inside voids acting Ll g
in opposite direct- < .o different, non-zero
lIon to newtonian. S p;
| —2.0F in
Stronger for lower  _
. . sgsl —  £;,=0.90p,
internal density,and ~ *° T
F5 for small voids. = — pu=010p,
=35 —  $u=005p,
— Pin =0.03 P
“%5 20 40 60 80 10

r [Mpe/h|
void radius



mPO5 void
abundances in the
mass in f(R)
simulations and GR.

25% difference
between F6 and GR
(highly significant),
and up to x3 factor
for F4.

Practical difficulties
to measure.

Cai, Padilla, Li, arXiv:1410.1510, see also Zivick et al.,

N. Padilla, ICTP Workshop 2018
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NaVoid abundances
(GALAXIES) ot [ S -
Spherical and Watershed :

void abundances in f(R) and
nDGP simulations and GR,
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Differences are simply not
there (no more info than in
correlation function).

Cautun etal. 710.01730  shFleic a7
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% Testing gravity with cosmic

VOI d S Cai, Taylor, Peacock,
80 —<v> 1 'NP, 2016, MNRAS,
462, 2465

[(km/s)]

f(R)-GR

10 15 20 25 3.0

r/ T voia
Voids expand ~10-50km/s faster in f(R) (test done with | Gpc/h a side volume)
SHED |, see also Li et al. 2016, Song et al. 2016, Chaung et al. 2016
Paillas et al. (2016): effects of baryons ~5km/s
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* Stacked void profiles

I . . X - 1 . . . ' 15 y ¥ v ’ 1 v . v ’ I v ¥ ! L | ' ¢
[ [WVF
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D_(ﬁ 2
= D=
_ S S
i) <
S-D 0.5
C 0
O
E o :
A + 513
g 1.0
~; 0.9
2 0.

r / '[{lfff r / ‘Rtf[

Because galaxy clustering is the same, the
stacked profiles only show mild differences in f(R) (also nDGP)

Cautunetal. 1710.01730
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Stacked void profiles

n |
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0.
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DM profiles confirm emptier voids in f(R) models even D)
if galaxy clustering, void abundances and galaxy profles are the same.

Similar results for nDGP (Paillas+I 9)
Cautun et al. 1710.01730
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““Weak Iensmg shear profles

100 T T | T T T T T T T T
E| — SVF —t LSST survey
[| — SVF. 2D -1+ 4 x LSST volume ]
" —  tunnels «t 4 x LSST source galaxies |4
troughs i

......
.........
.............

\S/ N quoted

at Reff

S/N (<r)

Especially with 2D finders 4
Cautun et al. 1710.01730



Paillas et al. 2018: host haloes of tunnels are
different in chameleon and Vainshtein sims for equal
galaxy clustering
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Paillas et al. 2018: host haloes of tunnels are
different in chameleon and Vainshtein sims for equal

galaxy clustering
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Errors on 3D voids makes it better to compare different

2D void finders.

Chameleon is way farther away from GR than Vainshtein for 2D voids
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Conclusions -~

(CMASS-FIXED-n, 5,
— 100 |=.
> Voids found using galaxies: abundances T
and galaxy density profiles 2% ]
indistinguishable. -
GR, nDGP and f(R) galaxies with equal N
clustering would have different halo
masses and mass density. prof‘lé?around Fu
| d void N 3
galaxies, and voids. \ -
el r [Mpc h_l]
Marked correlat|oﬁ functlons can
enhance dlfferences seen in |-point Cai, NP Li 2015, MNRAS, 451, 1036
functions in a sz:atlstlcal way. Cai, Taylor, Peacock, NP, 2016, MNRAS, 462,
2465
RSD tests can help_ detect departures Armijo, Cai, NP, Li, 1801.08975
from GR (DESI). Cautun et al., 2018, MNRAS, 476, 3195

Paillas et al. 1810.02864
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Comparison of difference between WL )
around different types of 2D voids wrt

GR exposes screenlng mechanisms with
LSST. _J




