
3. Hyperbolic systems of PDEs 



• For a given PDE, do any solutions exist?


• Consider an initial value problem for the wave equation as an example:


• wave equation:


• set initial data at t=t0:


• Initial data & wave equ. tell us about first and second time 
derivatives, differentiating the wave equ. in time we can construct all 
higher time derivatives:


• Does this formal power series converge? Yes, for analytic initial 
data! - Theorem of Cauchy-Kowalevskaya!

Existence of analytic solutions
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• Let t, x1, ..., xn-1 be coordinates of Rn . 
 
Consider a system of m PDEs for m unknowns Φi(t, xμ), i=1,...,m, where each 
RHS function Fi is an analytic function of its variables:


• Let fi(xμ) and gi(xμ) be analytic functions.


• => ∃ open neighbourhood O of the hypersurface t=t0 : 
   within O ∃! analytic solution of the PDE system with initial    
   data Φi(t0, xj) = fi,   ∂tΦi(t0, xj) = gi.


• CK-theorem shows that: 
• the wave equation and similar equations have an initial value 

formulation for analytic initial data. 
• There is a large class of solutions (as many as there are pairs of 

analytic functions of the spatial coordinates xμ).

Theorem of Cauchy-Kowalevskaya
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Non-analytic equations: 
example of Lewy

Even linear PDEs with non-analytic coefficients do not in general have 
solutions!

http://en.wikipedia.org/wiki/
Lewy's_example

http://en.wikipedia.org/wiki/Lewy's_example
http://en.wikipedia.org/wiki/Lewy's_example


• For analytic solutions, any finite neighbourhood determines 
the whole solution - makes no sense for relativistic theories, 
where information propagates at finite speed.


• We can only require Ck, or C∞ (smooth is sufficient for us).


• C-K does not distinguish between wave and Laplace 
equations:


• Let’s see the difference between wave and Laplace 
equations in an example ...

Analytic solutions are not enough!



• Functions Un satisfy wave equation, Vn satisfy Laplace eq.:


• At t=0 we have


• The Cauchy data converge to 0 as n-> ∞. For wave eq.,  
solutions converge to 0, For the Laplace eq. the Vn blow up for any t>0.


• Key idea of ‘hyperbolic’ eqs: have stable solutions for the initial value 
problem.

Example (Hadamard)
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1
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• Klein-Gordon equation in flat spacetime:


• energy momentum tensor divergence free: 
 
 
 

Outline of well-posedness 
proof for KG (Wald)
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satisfies dominant energy condition: if     is a future directed 
timelike vector, then               is a future directed timelike or null 
vector (mass energy can not be observed to flow faster than 
light) 

Using the Gauss law we can rewrite as:



• There can at most be 1 solution in D+(S0) with given initial data (Φ, ∂tΦ) on 
S0:  
If Φ1, Φ2 are both C2 solutions with the same initial data, then 
ψ = Φ1 - Φ2 would be a solution with vanishing initial data (using linearity!).  
The RHS of the above inequality thus vanishes, implying ψ=0 at S1, S1 was 
arbitrary, so ψ vanishes on D+(S0) and D-(S0).


• -> A variation of the initial data outside of S0 can not affect the solution 
within D+(S0) and D-(S0).


• Solutions depend continuously on initial data in the above “energy norm”.


• Other norms (Sobolev) can be constructed to bound the solution and its 
partial derivatives directly, see e.g. Wald, GR, p. 249).

Well-posedness proof for KG - II
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• Smooth functions can be approximated (with uniform convergence) by 
analytical functions. 


• By C-K theorem, these give rise to analytical solutions of the KG 
equation. Using the energy norm (and derived Sobolev norms) one can 
show that these analytical solutions have to converge to a solution of KG.


• As seen before, the limiting solution has to be unique.


• Unlike C-K, this proof uses specific properties of the wave equation: 
linearity, conserved Tab, dominant energy condition, “wave equation 
character” - proof would not work for Laplace equation!


• Can we obtain a proof of well-posedness for a general class of 
equations?

Well-posedness proof for KG - III
Outline of existence proof for smooth solutions Φ for 

arbitrary initial data Φi(t0, xj),  ∂tΦi(t0, xj) on Σ0



• Non-linear PDEs in general have to be discussed on a case-by-
case basis.


• Quasi-linear: linear in highest derivatives (principal part), 
coefficients depend on the independent variables and their lower 
order derivatives.


• Quasi-linear PDEs allow statements on well-posedness based on 
properties of the principal part, EEs are quasi-linear.


• Classes of systems of hyperbolic equations which admit a well-
posed intial value problem:


• generalized wave equations (gab a smooth Lorentz metric)


• strongly hyperbolic systems -> investigate in more detail ...

Nonlinear PDEs

gab(x,�j ,rc�)rarb�i = Fi(x,�j ,rc�)



example: advection equation

• Construct general solution via Fourier transform in space:


• Solution moves with speed       without changing profile:


• Fourier method works for general constant coefficient PDEs!


• Norm remains constant -> equation is well posed!


• Key idea: can solve constant coeff. case explicitly .


• Exercise: well-posedness for heat/wave/Schrödinger eq.
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Constant coefficient hyperbolic systems
• First order differential systems:


• Choose direction n:


• Compute matrix exponential by transforming A to Jordan form:
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A  diagonalizable & real eigenvalues: each component of u in the diagonal 
basis is advected with speed corresponding to (-)eigenvalue of A. 


P.u are called “characteristic variables”. 


Fourier domain solution is oscillatory and preserves norm. 


Lower order terms (ut = A ∂u + Bu + C) can result in exponential growth 
(frequency independent), propagation speeds and WP only depend on A 
(principal part = highest derivatives).



Constant coefficient hyperbolic systems
• First order differential systems:


• Choose direction n:


• Compute matrix exponential by transforming A to Jordan form:
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ak tûa
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Jordan blocks (N≠0) cause frequency (k) dependent polynomial growth - 
obstruction to WP!


complex eigenvalues -> exponential growth (in future or past) -> WP.
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classification of hyperbolic systems
• weakly hyperbolic: Speeds (eigenvalues of A) all real (well posed in 

absence of l.o.t. in appropriate norm)


• strongly hyperbolic: weakly hyperbolic with complete set of 
eigenvectors (characteristic variables span solution space),    
well posed initial value problem 

• symmetric/symmetrizable hyperbolic: strongly hyperbolic, and A 
can be diagonalized with the same similarity transformation P for all 
space-directions. 


• strongly hyperbolic implies symm. hyperbolic in 1D


• admits a conserved energy: can be used to prove well-posed initial 
boundary value problem with appropriate BCs 


• strictly hyperbolic: all eigenvalues are distinct



hyperbolic systems: remarks
• Quasi-linear = nonlinearities only lower order terms (e.g. Einstein 

equations): well-posedness carries over from equations linearized 
around some background solution.


• Solutions may become singular in finite time -> well-posedness 
only guarantees existence of solution for some small time


• local/global in time existence problem.


• first order in time system was convenient for solution procedure in 
Fourier domain - what happens with higher differential order 
systems, e.g. wave equation? -> next lecture


• Clarification of hyperbolicity of ADM, BSSN etc. has taken until  
1999 -2006 [Frittelli, Reula, Sarbach, Beyer, Tiglio, Calabrese, 
Gundlach, Martín-García, ...]



Example: wave equation in 1D
Start with 2nd order form:


Can obtain a mixed first/second order form:


or complete first order reduction:


where  ϕ,x = ψ now plays the role of a constraint which is 
preserved by the evolution equations:


The evolution equation for ϕ decouples, and we may focus on 

the system of equations for ψ and π, which has the form


A has eigenvalues ±c, and eigenvectors (-1,1) & (1,1), 
correspondingly the characteristic variables are u± = ψ ± π 
and satisfy advection equations ∂tu± = ±c ∂xu±


Solution preserves norm -> WP, as seen before. �16
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Example: weakly hyperbolic system
Consider the following simple system in 1D:


In our matrix notation this becomes:


A has only 1 proper eigenvector (1,0), with eigenvalue 1 (and 
“trivial” eigenvector 0), thus no complete set of eigenvectors and 
the system is only weakly hyperbolic. 


Explicit solution with frequency ω, U = (u,v):


Compute L2 norm for data with u(0) = 0 and frequency ω
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example: York-ADM in 1D
York-ADM, gij = gij(x,t)  - plane wave traveling in x-direction


gauge condition: densitized lapse: 


linearized around flat space:


Jordan normal form of first order reduction: all characteristic 
speeds real, but 2 Jordan blocks
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Some simple incarnations of the 
scalar wave equation

Scalar WEQ defined with metric gab, may consider fixed 
metric, or couple scalar field to Einstein equations:


e.g. WEQ on Minkowski space. 1+1 dimensional 
problems are obtained by considering plane waves


or spherically symmetric waves


Scaling of variables can do miracles:
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Scalar field energy in flat space
Energy density ρ gives rise to a conserved energy E:


For plane waves we get


Because of energy conservation, for plane waves 
the field strength can’t decay.


In spherical symmetry we expect decay with 1/r 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Boundary conditions

Can consider 3 distinct cases:


finite grid without boundaries, use periodic 
boundary conditions = identify end points, DONE


finite grid with boundaries, need to impose 
boundary conditions (reflecting, incoming signal, 
outgoing=no incoming signal)


infinite grid. need to “pull in” infinity with a 
coordinate transformation, will lead to singular 
equations -> investigate tomorrow

�21



Wave equation + moving coordinates

Restrict to plane waves in 1 space dimension:  

redefine x coordinate using shift (vector)


The metric becomes  
 

Rewrite the WEQ using e.g.  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Shifted wave equation

Suggests definition of new variables:  

Evolution equations:  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characteristic variables
matrix formulation:


A is diagonalizable with eigenvalues = characteristic 
speeds λ1=-β+α, λ2=-β-α, and eigenvectors


characteristic variables, propagating with characteristic 
speeds:  
 

Plot the characteristic variables in your code!  
Observe that these quantities propagate as expected.  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Boundary conditions
Putting boundary conditions on outgoing characteristic 
fields is not logically consistent - initial boundary value 
problem will not be well-posed.


Can only put boundary conditions on incoming 
characteristic fields!


Examples: 


reflecting boundary conditions  

outgoing boundary conditions: incoming signal set to 
zero, e.g. at left boundary:  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Scalar field coupled to gravity
Simple form of the metric in spherical symmetry, with 
zero shift 
 

Definitions:  

Einstein equations:  
 

Scalar field equations:  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smooth and 
distributional solutions

More generally: characteristics can cross, typically signifies physical 
breakdown of underlying PDE, like in fluid dynamics.

Unless a PDE is linearly degenerate (speeds independent of solution), 
shocks can form from smooth data in a finite time.

Vacuum EE: can be written in linearly degenerate form, do not expect 
physical shocks, but shocks can form due to bad gauge conditions.

Numerical methods for fluid dynamics are dominated by methods that  
deal with shocks - e.g. propagate shocks at correct physical speed.

Solutions of vacuum GR are smooth except due to bad gauges or 
physical singularities, high order FD or spectral ideal!

�27

  Burger’s equation: ut = u ux. 


  Characteristic speeds depend on u, 
peak velocity overtakes rest of the wave 
after some time.



4. Numerics: Finite Differences

�28



discretization example: wave equation
Discretize wave equation 
straightforwardly to 2nd order accuracy.


Use periodic boundaries for simplicity 
(all points equal!)
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discretization example: wave equation II
Superpose solution of Fourier modes ei ω j Δx -> u = qn ei ω j Δx


wave number/frequency , |ω Δx| ≤ pi

call q amplification factor, q > 1 => unstable algorithm
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for a smooth solution, the “signal” is concentrated at small ξ = ω Δx


insert ansatz into discretization


-> obtain quadratic equation:

amplification factors for wave eq.

0.0

0.5

1.0

l

0

1

2

3

f

1

2

3

g

amplification factors for advection eq.

0.0

0.5

1.0
l

0

1

2

3

f

0.8

1.0

1.2

1.4

g



Courant-Friedrichs-Lewy condition
Explicit time stepping schemes impose limits on Δt.


Geometric interpretation: the numerical domain of dependence 
should include the physical domain of dependence. If the 
physical DoD is larger, we can’t converge to the correct solution, 
since relevant physical information is neglected. Lax => unstable


necessary but not sufficient


parabolic: const. Δt < Δx2  -> use implicit methods �31



Of grids and frequencies 
consider equispaced grid in d dimensions, tensor product of 1-D grids xj = j 
h, j = 0,1,...,N-1


inner product (u,v)h = Σ uj vj hd, ||v||h = (v,v)1/2


Stability: ∃ K, α: ||vn||h ≤ K eα tn ||v0||h ∀ n: tn = n k = n Δt, ∀ v0


can represent frequencies ωj = -N/2 +1, ..., N/2, ξj = ωj h = -π + 2π/N, -π + 
4π/N, ..., π (N even, highest frequency represented)


grid function v at time step n:


when smooth functions are represented and well resolved (many gridpoints 
per wavelength) on the grid, “signal” is concentrated at low frequencies. 
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Deriving finite difference stencils
Taylor expansions, or approximating polynomials.


Example: derive second order centered finite difference stencils.


-> need to approximate solution by second order polynomial.


3 coefficients ai -> need 3 gridpoints to define their values.


Consider grid X = {-h, 0, h} -> equations:  

solution:  
 
 

Take derivatives of f to obtain stencil coefficients, and set x=0:  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• Equispaced grids: one-liner in Mathematica:  
 
CoefficientList[Normal[Series[x^s Log[x]^m, {x, 1, n}]/h^m], x] 
 
https://amath.colorado.edu/faculty/fornberg/Docs/sirev_cl.pdf


• General (non-uniform) grids: Recursive formula 

• https://reference.wolfram.com/language/tutorial/
NDSolveMethodOfLines.html


• http://web.media.mit.edu/~crtaylor/calculator.html


General algorithms to compute finite 
difference stencils

B. Fornberg (1988)

https://amath.colorado.edu/faculty/fornberg/Docs/sirev_cl.pdf
https://reference.wolfram.com/language/tutorial/NDSolveMethodOfLines.html
https://reference.wolfram.com/language/tutorial/NDSolveMethodOfLines.html
http://web.media.mit.edu/~crtaylor/calculator.html


Method of Lines
Direct space-time discretizations are hard to generalize to higher 
order, and stability has to be analyzed case by case.


Convert PDEs to coupled ODEs, discretize space and time separately. 
Example:


Integrate ODEs with any stable ODE integrator.


explicit: subject to time step conditions, e.g. RK3, RK4, ...


implicit: no or negligible time step restriction for stability


Easy to plug in different time integrators, space discretizations, 
boundary conditions, ... Flexibility and robustness are key virtues in 
scientific computing!


First order constant coefficient hyperbolic systems are stable 
with centered finite differencing and simple time step restriction.
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Finite difference stencils in Fourier space

Example: second order centered finite difference stencils. 

apply them to a wave of frequency ω:  
 
 

Apply finite difference operator to function: 
 

Simplify expression  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Numerical stability for first order hyperbolic systems
P : linear constant coefficient differential operator


WP is equivalent to                     -> need    diagonalizable


discretize, e.g. 2nd order centered:                    (exercise!) 


n-th order Runge Kutta:


Fourier: 


now we can solve: 


amplification matrix     diagonalizable if    is!


stability if eigenvalues satisfy: |qµ| ≤ 1, qµ = p(∆t pµ) 


PDE does not explicitly depend on direction or dimension d
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nonlinear systems and dissipation 
Numerical schemes for quasi-linear hyperbolic PDEs: can use the 
same numerical methods, but need to dissipate high frequency 
modes to achieve numerical stability.


Standard procedure: add Kreiss-Oliger dissipation for 2r-2 
accurate scheme, dissipation strength σ > 0:


does not degrade convergence order!


Adding too much dissipation decreases time-step limit (makes 
equations behave more and more like heat equation).


Artificial dissipation in fluid dynamics has traditionally been used 
to smear out shocks, superseded by “High resolution shock 
capturing” methods.
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Second order in space systems: motivation

Can we discuss well-posedness for second order in space 
systems like YADM and g-harmonic without first order 
reduction?


Reduction to first order in time -> new evolution equations


Reduction to first order in space -> new evolution & constraint 
equations.


enlarges solution space, new unphysical d.o.f. may give rise 
to instabilities (remember EM on curved background).


General theory for WP of 2nd order in space only > 2004


How about accuracy of 1st vs. 2nd order in space?


generalized wave equations: WP
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example: mixed order wave equation
Time domain:


Frequency domain, t -> ω:


Introduce new variable λ as the square root of h,xx:


Characteristic speeds are -1,1,0; problem is symmetric hyperbolic and 
well posed in the norm (L2 does not always work!):


In the Fourier domain this system could be treated in analogy with 
first order in space systems, using a “pseudo-differential reduction” - 
but variables play different roles depending on how often they are 
differentiated.

In the discrete case, we will have to choose an appropriate 
discretization for the derivative in the norm!�40
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h,t = k, k,t = h,xx

⇤t

0

@
h
k
�

1

A = A

0

@
h
k
�

1

A , A =

0

@
0 0 0
0 �i⇥ 0
0 0 i⇥

1

A

||u||2 =

Z �
|h|2 + |k|2 + |�xh|2

�
dx

ĥ,t = k̂, k̂,t = ��2ĥ



second order in space hyperbolic systems
normal form: P takes second derivatives of u, but not v.


Second order principal symbol


Analyze WP & numerical stability by pseudo-differential 
reduction (first order reduction in Fourier space).


WP reduces to diagonalizability of 


Discrete stability is not implied by WP + centered FD + small ∆t


∂xx = ∂x∂x does not carry over from continuum, e.g.  


discrete norm:
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comparison 1st vs 2nd order in space
λ(ξ) eigenval. of


phase velocity 


group vel.
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advection eq.

wave eq.

- - 2nd order

--- 4th order

P̂ (�)
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�
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d⇥

-3 -2 -1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

x

v

phase speed

-3 -2 -1 0 1 2 3

-1.5

-1.0

-0.5

0.0

0.5

1.0

x
v

group speed

modes with speeds of the wrong sign will come out of BHs!

second order in space systems have high frequency damping built in!


