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Model the GW signal for astrophysical plausible parameter space of 
coalescing BH, NS, ?  -  in general relativity + for alternative theories. 
 
  No hair theorem: black holes are simple (masses, spin vectors): 
    binary described by 9 dimensionless parameters:  
    mass ratio (1), spins (6), eccentricity (2) + scaled by total mass. 

The Challenge
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Requirements:
• Accuracy: Keep up with detector sensitivity! 
• Fast evaluation for Bayesian inference  

 need ~ 107 evaluations 
• How accurately can we  

 measure different quantities?
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2-Step LIGO/Virgo Compact binary workflow
• Searches -> detection: what is the statistical evidence of seeing a signal 

above background, fixed template bank. 

• Search pipelines: matched filter [PyCBC, GstLAL], time-frequency excess 
power [cWB]. 

• Bayesian parameter estimation: vary templates with random walks in 
parameter space, using MCMC etc.

LIGO+Virgo, PRL2016

LIGO+Virgo, PRX2016
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Data Analysis methods for transients
• time frequency pattern 

recognition for un-modeled 
searches 
(tuned to waveform models)  

•matched filter: optimal 
analysis using accurate 
waveform models as signal 
templates 
 
method of choice to identify 
the sources

Identification of sources is 
limited by detector 
sensitivity + accuracy of 
waveform models. �4
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The Chirp - first step beyond Newton
Simplest approximation of the signal: 
Newtonian point particles + energy loss from quadrupole formula: 
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The Chirp - first step beyond Newton
Simplest approximation of the signal: 
Newtonian point particles + energy loss from quadrupole formula: 

Degeneracy: 
      only measure Mc, not both component masses.  
      Good for searches - bad for parameter estimation!

LSC+Virgo, PRL 119 161101 (2017)
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Quadrupole wave pattern

Only intrinsic source parameter:  
chirp mass Mc. 



GW170608: lightest binary so far The Astrophysical Journal Letters 851 (2017) 
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Detector signal for non-precessing 
binaries seen ~ face-on/off  
or  l=2,m=2-spherical harmonic.

M ≥ 12M⊙ requires NR for 
construction of detection templates. 

(linear) black hole perturbation theory

“QNM” ringdown:

Describe signal in terms of damped 
sinusoids with frequencies + damping 
times known in terms of black hole spin:

Post-Newtonian expansion
Hamiltonian = HN + O(v/c) + … 

Similar for radiated energy, , …

State of the art: mostly (v/c)7

GW anatomy & the need for numerical relativity
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“holy grail” problem: numerically evolve BHs!

• First orbit + GWs:  
Frans Pretorius 2005

• Surprise breakthrough 
after 4 decades of 
unstable formulations.

• => Gold-rush of improved 
methods and results.

Choose coordinates for spacetime =>  
~ 10 coupled nonlinear wave eqs., complex sources. 

GR is a gauge theory like E&M, Yang-Mills. 
 
Preserving constraints numerically well understood  
for E&M, not GR.

 8

-— starting 1950’s -—>   



Singularities and Black Holes

BHs are quintessential objects of GW physics:  
coalescence, end product of neutron star 
mergers or supernovae.

�9

• Need to avoid simulating singular BH interior!


• Excision technique: don’t evolve 
 values inside a pure outflow boundary 
(“apparent” horizon) 
 
Control systems keep excision  
surface (hole in domain) in place. 
SpEC code / SXS collaboration 

• Singularity avoiding slicings:  
Choose time coordinate to never 
 reach physical singularity  
=> no holes in computational domain. 
Several finite difference codes.



Visualizacion: SXS collaboration
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Visualización: Rafel Jaume Amengual, UIB

During the inspiral phase and after the merger, the geometry 
presents several approximate symmetries,  
a successful numerical scheme must be based on the coordinates 
that make these symmetries manifest..
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• Solutions are smooth without matter: high order finite 
differencing or spectral methods. 

• Several length & time scales:  
• individual compact objects 
• orbital scale 
• wave frequency increases ~ factor of 10 
• causally isolate boundaries

�12

Numerics, Scales & mesh refinement

• Need spatial and temporal mesh refinement,  

• Simulations ~ 105 - 106 core hours, ~ 109 core hours in total so far 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• Extending NR to low frequencies is very expensive! 
 
 
 

• -> hybridise (glue) with post-Newtonian waveforms: input date to calibrate 
waveform models.
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m1/m2=8, 
M=100 Msun

Subdominant spherical harmonics
• Data analysis used to only use l=|m|=2. 


• Several efforts to incorporate harmonics into 
data analysis for O3 -> poster by C. García.


• [London+, PRL 2018, Cotesta+, PRD 2018]

Varma+Ajith, Phys. Rev. D 96, 124024 (2017), Varma+, Phys. Rev. D 90, 124004 (2014).
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m1/m2=8, 
M=100 Msun

Subdominant spherical harmonics
• Data analysis used to only use l=|m|=2. 


• Several efforts to incorporate harmonics into 
data analysis for O3 -> poster by C. García.


• [London+, PRL 2018, Cotesta+, PRD 2018]

asymmetric emission -> recoil
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Spins & the BBH parameter space

HSO = 2
�Se� · �L
r3

Ṡ = �2
�Se� ⇥ �L

r3

• Leading order PN spin effect: spin-orbit 
 

• Spins orthogonal to orbital plane: plane preserved. 

• 3-dimensional parameter space:  dominant “average” spin 
 

• subdominant: spin difference 
 

• Spin components in orbital plane: precession 
   7 dimensions (9 with eccentricity) 

• Dominant precession effective spin [Hannam+ PRL 2013, Schmidt+ PRD2014] 
    

measure ok

measure poorly

not yet
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GW170608: lightest binary so far The Astrophysical Journal Letters 851 (2017) 
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Shortcuts toward precession & subdominant harmonics

• orbital time scale << precession scale: 
Co-rotating frame: phasing and radiated 
energy essentially unaffected by precession  
[Schmidt+ PRD 2011] 

• -> approximate map from non-precessing 
to precessing: 
“twist up”  non-precessing model with 
“post-Newtonian” Euler angles. 
[Schmidt+ PRD 2012, Hannam+ PRL 2013] 

• Missing: north/south asymmetry 
responsible for large recoil 
[Brügmann+PRD 2008] 

• [London+2018]  
Use perturbation theory arguments for 
approximate map from 22-mode to other 
spherical harmonic modes.
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Waveform Modelling strategies I
• Model simple functions:  

e.g. split waveform into amplitude & phase.  

• Frequency or time domain: 

• TD naturally suited for modelling dynamics 

• FD often more efficient for data analysis. 

• Discretize functions:  
reduce to coefficients in some phenomenological ansatz, grid 
up, construct basis functions from waveforms. 

• Example: 

• ~ 30 frequency points grid for amplitude and phase 

• polynomial interpolation in parameter space  

• reconstruct WF as spline

• Avoid underfitting + overfitting to noise & systematic errors. 19



• Currently 3 main strategies with different emphasis: 

• effective one body (EOB) - push perturbative methods as far as possible 

• model the energy and flux of a particle inspiral in an effective metric, then integrate 
ODEs numerically. 

• Slow - need a fast model of the phenomenological EOB model. 

• phenomenological (frequency domain) models - phenomenological understanding 

• piecewise closed form expressions - fast 

• “Surrogate models:” ROM for numerical data - algorithms to interpolate large 
parameter spaces 

• No intermediate phenomenological model, can use the same methods as for fast 
evaluation of EOB. 

• Phenomenological + EOB: Make a physically motivated ansatz in terms of suitable 
parameters, fit to each waveform, then fit coefficients across parameter space.

Waveform Modelling strategies II

�20



• Start with l=|m|=2 spherical harmonic mode (1 harmonic), no spins 
                                                        -  1D physical parameter space  

• Non-precessing spins: single effective spin  - 1 harmonic,  2D 

• Leading precession effects via PN              - 5 harmonics, ≧ 3D   

• Non-precessing spins                                   -  1 harmonic, 3D 

• Non-precessing spins higher modes: handful of harmonics, 3D 

• Extend to matter (incorporate some neutron star tidal effects) 

• Eccentricity: non-spinning 22 mode - 2D 

• NR calibration of leading precession effects - 7 D 

• Generic black holes - 9 D

Hierarchical Strategy to conquer parameter space
Model directions in parameter space in order of importance.

�21
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Phenomenological waveforms program

• Collaboration of UIB, Cardiff U, MPI Hannover, ICTS 
Bangalore, U of Zurich. 

• Numerical simulations based on MareNostrum 
machines during last decade. 

• PhenomD / PhenomP: UIB contribution to compact 
binary discoveries.  

• @UIB: X. Jiménez Forteza, David Keitel, Geraint 
Pratten, Marta Colleoni, Leila Haegel, Cecilio 
García, Toni Ramos, Hector Estellés, SH. 

• Recent work:  

• PhenomX  ~ 100 accuracy improvement 

• Calibrate subdominant harmonics to NR

PhenX
PhenD
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��-�
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Mismatch in part due to NR inaccuracy - need 
more accurate input waveforms    ———> �22



Phenom*: Modelling the dominant spherical harmonic 
mode from non-precessing binaries

• Split waveform into amplitude + phase, 
model simple non-oscillatory functions. 

• Simplicity of modelling increases with the 
number of frequency-regions. 

• Actual: ~ 10 parameters per function. 

• Our choice: - 3 regions, ~ 3 params. each 

• inspiral (use PN intuition) 

• merger 

• ringdown (use perturbative intuition)

Divide and conquer:

�23



Hierarchical modelling: Final spin example
• Proceed to find fitting ansatz in 

hierarchical way: 1D. 2D, 3D 

• Work with residuals after subtracting 
previous step,  

• Always work on 1D or 2D problems only. 

• Combine data from different NR codes , 
with different numerical artefacts.

 24
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Hierarchical modelling: Final spin example
• Proceed to find fitting ansatz in 

hierarchical way: 1D. 2D, 3D 

• Work with residuals after subtracting 
previous step,  

• Always work on 1D or 2D problems only. 

• Combine data from different NR codes , 
with different numerical artefacts.

NR data quality control major part of work!

Subdominant modes: calibrate ~100 coefficients 
across 300 - 900 waveforms. 24



Are models good enough for current detectors?
• Detailed study for G: inject NR waveforms into noise - contain physics that is not yet 

(well) modelled [Effects of wf. model systematics on the interpretation of GW150914, 
LIGO+Virgo, PRD2017]: 

• higher modes, precession, eccentricity. 

• Redo Bayesian parameter estimation, 
determine parameter bias. 

• Models good enough for first detection(s)  
- need to improve for O3 and beyond.
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Bias in recovering effective spin: Kumar+, PRD2016

Kumar+ paper

Second generation Third generation

Fourth generation in progress …�26



•

•

•

•

GRB 170817A y GW170817: 
The beginning of multi messenger astrophysics. 

  
 

!27

Observation of GWs from the fusion of two neutron stars, 
short gamma ray burst and a kilonova.
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• On December 1st LIGO + Virgo have released their compact binary 

coalescences catalogue for the O1 + O2 observation runs: GWTC-1.

• Previously:  5 BBH GW events, 1 BBH LVT, 1 BNS
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coalescences catalogue for the O1 + O2 observation runs: GWTC-1.

• Previously:  5 BBH GW events, 1 BBH LVT, 1 BNS

• Now we go to 11: 10 BBH mergers (LVT-> GW, 4 new), 1 BNS.

• Open data + tutorials @ https://www.gw-openscience.org/catalog

LIGO-Virgo | Frank Elavsky | Northwestern
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O2 Sensitivity

 33

O1: September 12 2015 - January 19 2016,
O2: November 30 2016 - August  25 2017  [Advanced Virgo joined Aug 1 2017]  

O2 data were recalibrated and cleaned to increase sensitivity



Distance + Inclination
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Degenerate!


Luminosity distance and chirp mass are positively correlated,  
as expected for un-lensed BBH observations. 




Masses + Final State
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Mass Ratio and Spins

 36



Rates

 37

Approximately one GW detection per 15 days of data searched.


O3 run will start in April 2019,  
last ~ 1 calendar year - expect to  see many more events.


We have determined merger rates of 

• BNS: [110, 3840] Gpc-3 y-1


• BBH: [9.7, 101] Gpc-3 y-1 


• NSBH merger rate 90% upper limit of 610 (580) Gpc-3 y-1



•

•

•

• The Future

!38

• Einstein Telescope:  
Third generation detector 
planned in Europe, similar  
projects to form international 
third generation network. 

•LISA: ESA space mission ~ 2034 
•3 spacecraft, low frequency.
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Until now we have seen black hole mergers up to about redshift 
z~0.5. 
 
LISA and ET will allow to see black hole mergers back in the dark 
ages of the universe, and hopefully gravitational waves created in 
the first moments of the universe.  
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Much before: the third observation run O3,  
will start in April 2019. Stay tuned for new discoveries ….


