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1. (a) Use the symmetries of the Riemann tensor to show that∇µRµαβγ = 0
if Rαβγδ is the Riemann tensor of a vacuum metric.

(b) Show that if δRαβ [h] = 0 and Gαβ [g] = 0, then δGαβ [h] = 0.

(c) Use the above two results, along with the expression

δRαβ [h] = −1

2
�hαβ −

1

2
∇α∇β(gµνhµν) +∇µ∇(αhβ)µ,

to show that δGαβ [h] always identically vanishes for a gauge pertur-
bation hαβ = 2∇(αξβ), where ξµ is an arbitrary (smooth) vector field.
This shows that δGµν [h] = δGµν [h′] if hµν and h′µν are related by a
gauge transformation.

2. The Killing tensor of Kerr, given by Kαβ = 2Σ`(αnβ) + r2gαβ , satisfies
∇(αKβγ) = 0, where the parentheses denote symmetrization over all three

indices. Show that the Carter constant C = Kαβu
αuβ is constant along a

geodesic, where uα is the geodesic’s four-velocity.

3. In this question we’ll use a simple scalar toy model to examine the qua-
sicircular inspiral of a small object into a Schwarzschild black hole at
leading, adiabatic order. As discussed in the lectures, at adiabatic order
we can approximate the motion as a smooth sequence of geodesics, which
in this case are circular orbits described (in Schwarzschild coordinates) by

zµ = (t, r0, π/2,Ω0t), where Ω0 =
√

M
r3
0

. The geodesics’ four-velocity is

uµ = ut(1, 0, 0,Ω0), where ut = 1/
√

1− 3M/r0.

(a) Show that the point-particle stress-energy tensor,

Tµν = µ

∫
uµuν

δ4(xγ − zγ(τ))√
−g

dτ,

can be written as

Tµν =
µuµuν

utr2
0

δ(r − r0)
∑
lm

Y ∗lm(π/2,Ω0t)Ylm(θ, φ).
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Here µ is the particle’s mass. As a toy model, we will consider instead
the scalar charge distribution

ρ =
q

utr2
0

δ(r − r0)
∑
lm

Y ∗lm(π/2,Ω0t)Ylm(θ, φ).

(b) Assume that both r (the radius at which the field hµν is evaluated)
and r0 are large compared to M , such that the spacetime is approx-
imately flat. The linearized EFE in the Lorenz gauge then reads

ηµν∂µ∂ν h̄
αβ = −16πTαβ ,

where ηµν is the Minkowski metric and we work in Cartesian coor-
dinates (t, xa) (related to r, θ, φ in the usual, flat-space way). In our
toy model, we’ll consider the analogous equation for a scalar field,

ηµν∂µ∂νϕ = −4πρ.

Based on the form of the source, motivate the ansatz

ϕ =
∑
lm

Rlm(r)e−imΩ0tYlm(θ, φ).

Use this ansatz to write the field equation as an ordinary differential
equation for Rlm(r).

(c) Solve your differential equation subject to the following boundary
conditions:

� when r � r0, Rlm ∼ eimΩ0r

r . This is the form of an outgoing

wave, since it implies Rlme
−imΩ0t ∼ e−imΩ0(t−r)

r .

� at r = 0, Rlm is regular. The physical boundary condition for the
original problem (prior to approximating Eαβ [h̄] as ηµν∂µ∂ν h̄αβ)
is that waves are down-going at the horizon. But since the wave-
length is very large, with λ ∼ r0 �M , the black hole has a very
small effect on the wave propagation.

(Hint: for m 6= 0 you should find that the homogeneous solutions to
your ODE are spherical Bessel functions.)

(d) The gravitational wave fluxes to infinity are

Ė∞ = − lim
r→∞

∫
TGWtr r2dΩ,

L̇∞ = lim
r→∞

∫
TGWrφ r2dΩ,

where TGWαβ is the effective stress-energy tensor given in lecture,

which in this situation reduces to TGWαβ = 1
32π 〈h

µν
;αhµν;β− 1

2h,αh,β〉;
here the angular parentheses denote an average over one period,

2



Ω0

2π

∫ 2π/Ω0

0
dt. In our toy model, we’ll replace this with TGWαβ =

1
32π 〈ϕ,αϕ,β〉. Use this to calculate Ė∞ and L̇∞, and verify that

Ė∞ = Ω0L̇∞. (This relationship holds true in general for circular
orbits; it doesn’t depend on the details of our toy model.) Hint:
use the leading-order (for r � r0) expansion of Rlm to simplify the
calculations.

(e) The particle’s energy is E0 = −µut. Use this and the energy balance
law Ė0 = −Ė∞ to obtain dr0

dt , keeping only the dominant term in a
large-r0 expansion. (Here we neglect the fluxes down the BH horizon,
as they are very small in this scenario.)

(f) Use your result for dr0
dt to calculate the coordinate time ∆t it takes

for r0 to decrease from 100M to 50M . How many orbital cycles does
the particle complete in this time? Express both results in terms of
the parameter ε = q2/(µM); in the toy model, this plays the same
role that the mass ratio µ/M plays in the actual problem.

4. Consider a unit vector ni = xi/r, where xi = (x, y, z) are Cartesian coor-

dinates and r =
√
δabxaxb. Prove the identities ∂ir = ni, n

i∂in̂
L = 0, and

∂in
i = 2/r, where ni = xi

r and indices are raised and lowered with the Eu-
clidean metric δij . Use these identities, along with the eigenvalue equation

∂i∂in̂
L = − l(l+1)

r2 n̂L, to prove ∂i∂i(r
pn̂L) = rp−2[p(p+ 1)− l(l + 1)]n̂L.

5. Consider a point mass µ in Minkowski space. If we approximate its world-
line γ as a geodesic, then in Fermi normal coordinates centered on γ, the
first-order singular field of the particle is

h̄Sαβ =
4µδtαδ

t
β

r
,

where r is the spatial distance to the particle. Since a geodesic of Minkowski
is imply a straight line, we can adopt a new inertial Cartesian coordinate
system (t, xa) in which the particle sits at a constant spatial position xap,
such that

h̄Sαβ =
4µδtαδ

t
β

|xa − xap|
.

(a) The physical field satisfies ηαβ∂α∂βh̄µν = 0 for xa 6= xap. In this

problem we can take the puncture h̄Pµν to be precisely h̄Sµν . Show

that the residual field h̄Rµν = h̄µν − h̄Pµν satisfies ηαβ∂α∂βh̄
R
µν = 0 for

all xa. If we impose static boundary conditions (i.e., ∂thµν = 0),
what is the force exerted by hRµν on the point mass? What if our
only boundary condition is regularity at xa = 0?

(b) The physical field also satisfies ηαβ∂α∂βh̄µν = −16πTµν , where Tµν
is the stress-energy tensor of the point mass µ. Show that the general
solution to this equation is h̄µν = h̄Sµν + h̄Rµν , where hRµν is a smooth
homogeneous solution.
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(c) Show that (independent of the choice of boundary conditions) hRµν can

be calculated on the particle using the mode-sum formula h̄Rµν(t, xap) =∑
l[h̄

l
µν(t, xap)−Bµν ], where h̄lµν(t, xap) =

∑l
m=−l h̄

lm
µν (t, xap)Ylm(θp, φp),

and the regularization parameter isBµν = 4µ
rp
δtµδ

t
ν , with rp =

√
δijxipx

j
p.
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