The Sound of Space-Time: exercises on EMRI modelling

Adam Pound

December 5, 2018

- 1. (a) Use the symmetries of the Riemann tensor to show that $\nabla_{\mu}R^{\mu}{}_{\alpha\beta\gamma} = 0$ if $R_{\alpha\beta\gamma\delta}$ is the Riemann tensor of a vacuum metric.
 - (b) Show that if $\delta R_{\alpha\beta}[h] = 0$ and $G_{\alpha\beta}[g] = 0$, then $\delta G_{\alpha\beta}[h] = 0$.
 - (c) Use the above two results, along with the expression

$$\delta R_{\alpha\beta}[h] = -\frac{1}{2}\Box h_{\alpha\beta} - \frac{1}{2}\nabla_{\alpha}\nabla_{\beta}(g^{\mu\nu}h_{\mu\nu}) + \nabla^{\mu}\nabla_{(\alpha}h_{\beta)\mu}$$

to show that $\delta G_{\alpha\beta}[h]$ always identically vanishes for a gauge perturbation $h_{\alpha\beta} = 2\nabla_{(\alpha}\xi_{\beta)}$, where ξ^{μ} is an arbitrary (smooth) vector field. This shows that $\delta G_{\mu\nu}[h] = \delta G_{\mu\nu}[h']$ if $h_{\mu\nu}$ and $h'_{\mu\nu}$ are related by a gauge transformation.

- 2. The Killing tensor of Kerr, given by $K_{\alpha\beta} = 2\Sigma \ell_{(\alpha} n_{\beta)} + r^2 g_{\alpha\beta}$, satisfies $\nabla_{(\alpha} K_{\beta\gamma)} = 0$, where the parentheses denote symmetrization over all three indices. Show that the Carter constant $C = K_{\alpha\beta} u^{\alpha} u^{\beta}$ is constant along a geodesic, where u^{α} is the geodesic's four-velocity.
- 3. In this question we'll use a simple scalar toy model to examine the quasicircular inspiral of a small object into a Schwarzschild black hole at leading, adiabatic order. As discussed in the lectures, at adiabatic order we can approximate the motion as a smooth sequence of geodesics, which in this case are circular orbits described (in Schwarzschild coordinates) by $z^{\mu} = (t, r_0, \pi/2, \Omega_0 t)$, where $\Omega_0 = \sqrt{\frac{M}{r_0^3}}$. The geodesics' four-velocity is $u^{\mu} = u^t(1, 0, 0, \Omega_0)$, where $u^t = 1/\sqrt{1 3M/r_0}$.
 - (a) Show that the point-particle stress-energy tensor,

$$T^{\mu\nu} = \mu \int u^{\mu} u^{\nu} \frac{\delta^4 (x^{\gamma} - z^{\gamma}(\tau))}{\sqrt{-g}} d\tau,$$

can be written as

$$T^{\mu\nu} = \frac{\mu u^{\mu} u^{\nu}}{u^t r_0^2} \delta(r - r_0) \sum_{lm} Y_{lm}^*(\pi/2, \Omega_0 t) Y_{lm}(\theta, \phi).$$

Here μ is the particle's mass. As a toy model, we will consider instead the scalar charge distribution

$$\rho = \frac{q}{u^t r_0^2} \delta(r - r_0) \sum_{lm} Y_{lm}^*(\pi/2, \Omega_0 t) Y_{lm}(\theta, \phi)$$

(b) Assume that both r (the radius at which the field $h_{\mu\nu}$ is evaluated) and r_0 are large compared to M, such that the spacetime is approximately flat. The linearized EFE in the Lorenz gauge then reads

$$\eta^{\mu\nu}\partial_{\mu}\partial_{\nu}\bar{h}^{\alpha\beta} = -16\pi T^{\alpha\beta}$$

where $\eta_{\mu\nu}$ is the Minkowski metric and we work in Cartesian coordinates (t, x^a) (related to r, θ, ϕ in the usual, flat-space way). In our toy model, we'll consider the analogous equation for a scalar field,

$$\eta^{\mu\nu}\partial_{\mu}\partial_{\nu}\varphi = -4\pi\rho.$$

Based on the form of the source, motivate the ansatz

$$\varphi = \sum_{lm} R_{lm}(r) e^{-im\Omega_0 t} Y_{lm}(\theta, \phi).$$

Use this ansatz to write the field equation as an ordinary differential equation for $R_{lm}(r)$.

- (c) Solve your differential equation subject to the following boundary conditions:
 - when $r \gg r_0$, $R_{lm} \sim \frac{e^{im\Omega_0 r}}{r}$. This is the form of an outgoing wave, since it implies $R_{lm}e^{-im\Omega_0 t} \sim \frac{e^{-im\Omega_0(t-r)}}{r}$.
 - at r = 0, R_{lm} is regular. The physical boundary condition for the original problem (prior to approximating $E_{\alpha\beta}[\bar{h}]$ as $\eta^{\mu\nu}\partial_{\mu}\partial_{\nu}\bar{h}_{\alpha\beta}$) is that waves are down-going at the horizon. But since the wavelength is very large, with $\lambda \sim r_0 \gg M$, the black hole has a very small effect on the wave propagation.

(Hint: for $m \neq 0$ you should find that the homogeneous solutions to your ODE are spherical Bessel functions.)

(d) The gravitational wave fluxes to infinity are

$$\begin{split} \dot{E}_{\infty} &= -\lim_{r \to \infty} \int T^{GW}_{tr} r^2 d\Omega, \\ \dot{L}_{\infty} &= \lim_{r \to \infty} \int T^{GW}_{r\phi} r^2 d\Omega, \end{split}$$

where $T^{GW}_{\alpha\beta}$ is the effective stress-energy tensor given in lecture, which in this situation reduces to $T^{GW}_{\alpha\beta} = \frac{1}{32\pi} \langle h^{\mu\nu}{}_{;\alpha}h_{\mu\nu;\beta} - \frac{1}{2}h_{,\alpha}h_{,\beta} \rangle$; here the angular parentheses denote an average over one period, $\frac{\Omega_0}{2\pi} \int_0^{2\pi/\Omega_0} dt$. In our toy model, we'll replace this with $T_{\alpha\beta}^{GW} = \frac{1}{32\pi} \langle \varphi_{,\alpha} \varphi_{,\beta} \rangle$. Use this to calculate \dot{E}_{∞} and \dot{L}_{∞} , and verify that $\dot{E}_{\infty} = \Omega_0 \dot{L}_{\infty}$. (This relationship holds true in general for circular orbits; it doesn't depend on the details of our toy model.) Hint: use the leading-order (for $r \gg r_0$) expansion of R_{lm} to simplify the calculations.

- (e) The particle's energy is $E_0 = -\mu u_t$. Use this and the energy balance law $\dot{E}_0 = -\dot{E}_{\infty}$ to obtain $\frac{dr_0}{dt}$, keeping only the dominant term in a large- r_0 expansion. (Here we neglect the fluxes down the BH horizon, as they are very small in this scenario.)
- (f) Use your result for $\frac{dr_0}{dt}$ to calculate the coordinate time Δt it takes for r_0 to decrease from 100*M* to 50*M*. How many orbital cycles does the particle complete in this time? Express both results in terms of the parameter $\epsilon = q^2/(\mu M)$; in the toy model, this plays the same role that the mass ratio μ/M plays in the actual problem.
- 4. Consider a unit vector $n^i = x^i/r$, where $x^i = (x, y, z)$ are Cartesian coordinates and $r = \sqrt{\delta_{ab} x^a x^b}$. Prove the identities $\partial_i r = n_i$, $n^i \partial_i \hat{n}^L = 0$, and $\partial_i n^i = 2/r$, where $n^i = \frac{x^i}{r}$ and indices are raised and lowered with the Euclidean metric δ_{ij} . Use these identities, along with the eigenvalue equation $\partial^i \partial_i \hat{n}^L = -\frac{l(l+1)}{r^2} \hat{n}^L$, to prove $\partial^i \partial_i (r^p \hat{n}_L) = r^{p-2} [p(p+1) l(l+1)] \hat{n}^L$.
- 5. Consider a point mass μ in Minkowski space. If we approximate its worldline γ as a geodesic, then in Fermi normal coordinates centered on γ , the first-order singular field of the particle is

$$\bar{h}^S_{\alpha\beta} = \frac{4\mu\delta^t_\alpha\delta^t_\beta}{r},$$

where r is the spatial distance to the particle. Since a geodesic of Minkowski is imply a straight line, we can adopt a new inertial Cartesian coordinate system (t, x^a) in which the particle sits at a constant spatial position x_p^a , such that

$$\bar{h}_{\alpha\beta}^{S} = \frac{4\mu\delta_{\alpha}^{\iota}\delta_{\beta}^{\iota}}{|x^{a} - x_{p}^{a}|}$$

- (a) The physical field satisfies $\eta^{\alpha\beta}\partial_{\alpha}\partial_{\beta}\bar{h}_{\mu\nu} = 0$ for $x^a \neq x_p^a$. In this problem we can take the puncture $\bar{h}_{\mu\nu}^P$ to be precisely $\bar{h}_{\mu\nu}^S$. Show that the residual field $\bar{h}_{\mu\nu}^{\mathcal{R}} = \bar{h}_{\mu\nu} \bar{h}_{\mu\nu}^P$ satisfies $\eta^{\alpha\beta}\partial_{\alpha}\partial_{\beta}\bar{h}_{\mu\nu}^{\mathcal{R}} = 0$ for all x^a . If we impose static boundary conditions (i.e., $\partial_t h_{\mu\nu} = 0$), what is the force exerted by $h_{\mu\nu}^{\mathcal{R}}$ on the point mass? What if our only boundary condition is regularity at $x^a = 0$?
- (b) The physical field also satisfies $\eta^{\alpha\beta}\partial_{\alpha}\partial_{\beta}\bar{h}_{\mu\nu} = -16\pi T_{\mu\nu}$, where $T_{\mu\nu}$ is the stress-energy tensor of the point mass μ . Show that the general solution to this equation is $\bar{h}_{\mu\nu} = \bar{h}^S_{\mu\nu} + \bar{h}^R_{\mu\nu}$, where $h^R_{\mu\nu}$ is a smooth homogeneous solution.

(c) Show that (independent of the choice of boundary conditions) $h^R_{\mu\nu}$ can be calculated on the particle using the mode-sum formula $\bar{h}^R_{\mu\nu}(t, x^a_p) = \sum_l [\bar{h}^l_{\mu\nu}(t, x^a_p) - B_{\mu\nu}]$, where $\bar{h}^l_{\mu\nu}(t, x^a_p) = \sum_{m=-l}^l \bar{h}^{lm}_{\mu\nu}(t, x^a_p) Y_{lm}(\theta_p, \phi_p)$, and the regularization parameter is $B_{\mu\nu} = \frac{4\mu}{r_p} \delta^t_{\mu} \delta^t_{\nu}$, with $r_p = \sqrt{\delta_{ij} x^i_p x^j_p}$.