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1. (a) Usethe symmetries of the Riemann tensor to show that V,R* .3, = 0
if Rogys is the Riemann tensor of a vacuum metric.

(b) Show that if 6R,g[h]| = 0 and G.g[g] = 0, then 6Gqg[h] = 0.

(c) Use the above two results, along with the expression
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to show that 0G,a[h] always identically vanishes for a gauge pertur-
bation has = 2V (4€g), where {# is an arbitrary (smooth) vector field.
This shows that 6G ., [h] = 6G ., [h'] if by, and Ry, are related by a
gauge transformation.
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2. The Killing tensor of Kerr, given by K.z = 2X{(,ng) + 72 gaps, satisfies
V(aKp+) = 0, where the parentheses denote symmetrization over all three
indices. Show that the Carter constant C' = K,gu®u” is constant along a
geodesic, where u® is the geodesic’s four-velocity.

3. In this question we’ll use a simple scalar toy model to examine the qua-
sicircular inspiral of a small object into a Schwarzschild black hole at
leading, adiabatic order. As discussed in the lectures, at adiabatic order
we can approximate the motion as a smooth sequence of geodesics, which
in this case are circular orbits described (in Schwarzschild coordinates) by

2H = (t,ro,7/2,Q0t), where Qo = % The geodesics’ four-velocity is
0
u* = ut(1,0,0,Q0), where u = 1/4/1 — 3M/ry.

(a) Show that the point-particle stress-energy tensor,
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can be written as
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Here p is the particle’s mass. As a toy model, we will consider instead
the scalar charge distribution
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Assume that both r (the radius at which the field h,, is evaluated)
and rg are large compared to M, such that the spacetime is approx-
imately flat. The linearized EFE in the Lorenz gauge then reads

" 9,0,h*? = —167T",

where 7, is the Minkowski metric and we work in Cartesian coor-
dinates (t,2%) (related to r, 0, ¢ in the usual, flat-space way). In our
toy model, we’ll consider the analogous equation for a scalar field,

N 0,0, = —4mp.

Based on the form of the source, motivate the ansatz

= Rim(r)e” ™Y, (0, ).
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Use this ansatz to write the field equation as an ordinary differential
equation for Ry, (r).

Solve your differential equation subject to the following boundary
conditions:
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. This is the form of an outgoing
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e when r > ro, Ry ~ <

wave, since it implies Ry, e~

e at r =0, Ry, is regular. The physical boundary condltlon for the
original problem (prior to approximating E,gs[h] as n*V9,0,has)
is that waves are down-going at the horizon. But since the wave-
length is very large, with A ~ ro > M, the black hole has a very
small effect on the wave propagation.

(Hint: for m # 0 you should find that the homogeneous solutions to
your ODE are spherical Bessel functions.)
The gravitational wave fluxes to infinity are
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where TSBW is the effective stress-energy tensor given in lecture,
which in this situation reduces to TS}V = 53— (b .o by — 5h.ah g);
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here the angular parentheses denote an average over one period,
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w%(go,agoﬁ). Use this to calculate E., and Lo, and verify that

In our toy model, we’ll replace this with TO%W =

Fo = QL. (This relationship holds true in general for circular
orbits; it doesn’t depend on the details of our toy model.) Hint:
use the leading-order (for r >> ry) expansion of Ry, to simplify the

calculations.
(e) The particle’s energy is Ey = —pu¢. Use this and the energy balance
law Fy = —FE to obtain dsto, keeping only the dominant term in a

large-ro expansion. (Here we neglect the fluxes down the BH horizon,
as they are very small in this scenario.)

(f) Use your result for dd%" to calculate the coordinate time At it takes
for ry to decrease from 100M to 50M. How many orbital cycles does
the particle complete in this time? Express both results in terms of
the parameter € = ¢?/(uM); in the toy model, this plays the same

role that the mass ratio p/M plays in the actual problem.

4. Consider a unit vector n’ = x'/r, where z° = (x,y, z) are Cartesian coor-
dinates and r = \/8,52%2?. Prove the identities 0;r = n;, n0;n” = 0, and
oint = 2/r, where n = ””71 and indices are raised and lowered with the Eu-
clidean metric §;;. Use these identities, along with the eigenvalue equation

'Ot = —l(lr%l)ﬁL, to prove 9°0;(rPay) = r?~2[p(p + 1) — I(L + 1)]aL.

5. Consider a point mass p in Minkowski space. If we approximate its world-
line v as a geodesic, then in Fermi normal coordinates centered on =, the
first-order singular field of the particle is
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where r is the spatial distance to the particle. Since a geodesic of Minkowski
is imply a straight line, we can adopt a new inertial Cartesian coordinate
system (t,2?) in which the particle sits at a constant spatial position z,
such that -
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(a) The physical field satisfies n“ﬂﬁaaﬁﬁw = 0 for z* # zp- In this
problem we can take the puncture hfy to be precisely hﬁy. Show

that the residual field 715,, = hy — hfjl, satisfies n%? aaa,@i}]fy =0 for
all . If we impose static boundary conditions (i.e., dih,, = 0),
what is the force exerted by h%, on the point mass? What if our

n%

only boundary condition is regularity at =% = 07

(b) The physical field also satisfies naﬁaaaﬁﬁw = —1671),,, where T},
is the stress-energy tensor of the point mass p. Show that the general
solution to this equation is hy,, = hﬁ,, + hffl,, where hffl, is a smooth
homogeneous solution.



(c) Show that (independent of the choice of boundary conditions) Af, can
be calculated on the particle using the mode-sum formula Bﬁu (t,xp) =
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and the regularization parameter is By, = 2£6° 5%, with r, = |/d;;71,7).
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