Lecture ||




NR...why

If we think hard enough we won’t need a computer

With the right resources we can simulate situations we can't even begin to think
through, and thereby provide us with completely new and unexpected things to

think about [Choptuik]

Solve G, = kT, through simulations
nonlinear PDE system

‘evolution’

Initial and boundary data

Sinoularities

Coordinate issues

Non-vacuum...
Fluid?, shocks, microphysics...

Initial and boundary data

(too?) Many options!
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* [tisn’t a matter of “analytics” vs “brute force numerics”
— (there is ‘brute force analytics’ and ‘elegant numerics’ as well)

* No need to lower standards: There is a control parameter. Richardson
extrapolation = continuum limit can be obtained. Further, for smooth
solutions, nothing magic about a technique (FD,FV,FE,Spectral) all can get
the job done (some more easily than others)

Definition 16 (IDIOT) Anyone who publishes a calculation without
checking it against an identical computation with smaller N OR without
evaluating the residual of the pseudospectral approximation via finite
differences is an IDIOT.

J.P. Boyd: “"Chebyshev and Fourier Spectral Methods” The author
apologizes to those who are annoyed at being told the obvious. However, |
have spent an amazing amount of time persuading students to avoid the
sins in this definition.

“A computation is a temptation that should be resisted as
long as possible.”— J. P. Boyd, paraphrasing T. S. Eliot




* Some reminders: consider the equation ¢ ¢+ = @ ,x
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Finite-volume numerical methods

The integral form of the equation:

namely:

suggests that we should study numerical methods in the form:

or, in more compact form,

where

Different numerical schemes differ in the prescription for computing the flux
function F.

[a few slides from Baiotti]




Discontinuities and numerical schemes

Since the occurrence of discontinuities is a fundamental property of the

hydrodynamical equations, any numerical scheme must be able to handle
them in a satisfactory way.

Possible solutions to the discontinuity problem:

= generally fine, but very inaccurate across discontinuities (excessive

diffusion); e.g. Lax-Friedrichs method

Upwind at t=1 Upwind att=5

Discontinuities and numerical schemes




Discontinuities and numerical schemes

= more accurate, but generally introduce oscillations across
discontinuities and are dispersive even on smooth data

(especially for steep gradients), causing waves to move with a

wrong group velocity (e.g. Lax-Wendroff method)

Lax—Wendroff att =1 Lax—Wendroffatt =5
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Discontinuities and numerical schemes

= mimic Nature, but problem-dependent and inaccurate for

ultrarelativistic flows

= discontinuities are not eliminated, rather they are exploited
= based on the solution of Riemann problems

= approximately second-order schemes can be derived

= state of the art in relativistic hydrodynamics




Riemann problem

Definition: in general, for a hyperbolic system of
equations, a Riemann problem is an initial-value
problem with initial condition given by:

where U, and Uy are two constant vectors representing
the left and right state.

For hydrodynamics, a (physical) Riemann problem is the
evolution of a fluid initially composed of two states with
different and constant values of velocity, pressure and density.




Back to Burger’s equation. q; + % (qx)*=0

Asssume q(0,x)>0 = pulse moves to right, right?
Riemann problem q(0,x<0) = gL ; gq(0,x>0) = gR

IF, gL>qgR, ‘left’ state moves onto ‘right’ state.
Shock . Multivalued solution at x = st = (qL+gR)/2

If, gL < gR, left state moves slower than right
state. ‘rarefraction’ wave.




shock

1/256 (514)

0.00

(-1.5e+00 , -1.2e-01)

(1.5e+00 , 1.2e+00)

Riem shock: X & Roe




rarefraction

1/257 (514) (1.5e+00 , 1.2e+00)

0.00
Riem fan: X & Roe

(-1.5e+00 , -1.2e-01)




Gaussian profile. Upwind-non
conservative
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Gaussian profile. Upwind,
conservative, 15t order
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Gaussian profile, upwind, 2" order

1/257 (514) (1.5e+00 , 1.3e+00)
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High resolution shock capturing
methods

Solve full problem as a series of Riemann
problems between cells

Enforce total variation diminishing, or ‘essentially

non-oscillatory’ property from a step to the next
- remove spurious under/overshoots

Exploit characteristic structure

Lots of options... check Leveque’s book!




