Lecture II

NR...why

If we think hard enough we won't need a computer

With the right resources we can simulate situations we can't even begin to think through, and thereby provide us with **completely new and unexpected** things to think about [Choptuik]

(too?) Many options!

- It isn't a matter of "analytics" vs "brute force numerics"
 (there is 'brute force analytics' and 'elegant numerics' as well)
- No need to lower standards: There is a control parameter. Richardson extrapolation → continuum limit can be obtained. Further, for smooth solutions, nothing magic about a technique (FD,FV,FE,Spectral) all can get the job done (some more easily than others)
- **Definition 16 (IDIOT)** Anyone who publishes a calculation without checking it against an identical computation with smaller N OR without evaluating the residual of the pseudospectral approximation via finite differences is an IDIOT.

J.P. Boyd: ``Chebyshev and Fourier Spectral Methods'' The author apologizes to those who are annoyed at being told the obvious. However, I have spent an amazing amount of time persuading students to avoid the sins in this definition.

"A computation is a temptation that should be resisted as long as possible." — J. P. Boyd, paraphrasing T. S. Eliot

• Some reminders: consider the equation $\phi_{,tt} = \phi_{,xx}$

-> Instructure
$$g = \Phi_{i+1}$$
; $f = \Phi_{i+1}$
-> System is now $\Phi_{i+1} = g$; $i \in \begin{pmatrix} \phi \\ f \\ g \end{pmatrix}_{i+1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ g \end{pmatrix}_{i+1} \begin{pmatrix} \phi \\ f \\ g \end{pmatrix}_{i+1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0$

With (i) +(ii): -> strong platform for numerical implementation! a) At least locally a soln exists which is unique (with constant ID!) b) Not voverly sensitive on initial data upon small changes. c) "Bounded" eigenvalues? ->> good for "timestepping" requirements d) Not depending on solu itself -> good for smoothness of soln - D discretization strackey is simple !!

Note If our system to given by
$$U = \begin{pmatrix} u_1 \\ u_n \end{pmatrix}_{t} = M^{i} \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}_{t}$$

+ undifferentiated parts and:

i) Eigenvalues are real (~ Needed This!) 1"i) Complete set of eigenvectors

U, + - MU, say IT s. + T'MT=D C. e. U,+= TT'MTT' U,x T' U, = TT (T'MT) T' U, $(T^{-1}U)_{,t} - (T')_{,t}U = D[(T'U)_{,x} - (T')_{,x}U]_{,x}$ fine VETU ~ Vit = DVix + Rest

Further general solution
$$\mathcal{G}$$
 $\mathcal{U}_{t} = \lambda \mathcal{V}_{x}$ as $f(\lambda t+x)$!
 \Rightarrow sign of λ implies direction of motion of perturbations
 \Rightarrow tell us where \Rightarrow pot boundary conditions a hear!
 $\mathcal{E}_{xourple}: \phi_{itt} = \phi_{ixx} \Rightarrow \begin{pmatrix} \phi \\ f \\ g \end{pmatrix}_{it} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \phi \\ f \\ g \end{pmatrix}_{ix}$
 $\lambda = 0 \quad e_{0} = (\lambda, 0, 0) \Rightarrow \phi$ "doesn't propagat"
 $\lambda_{+} = \lambda \quad e_{+} = (0, 1, 1) \Rightarrow (f+g) \quad propagates to left$
 $\lambda_{-} = -1 \quad e_{-} = (0, 1, -1) \Rightarrow (f-g)$ " " right

- What if $\lambda = \lambda(q)$? Eq. $q_{it} = q q_{ix}$ (Boger's equ)
 - Consider a "background" Solution q(+,x)=q°(+,x) Perturbations of it? q=q+5q
 - $\int \mathcal{F}_{t} = \mathcal{F}_{0} \int \mathcal{F}_{x} \longrightarrow \operatorname{sdu} \int \mathcal{F}_{1}(x,t) = h(\mathcal{F}_{0}t+x) \operatorname{point} \operatorname{point}$

Characteristics will closs! - Truly non linear egel!

6

- post This poort what a the value of solotion?

Approach? - Counder weaks distrions in
$$\iint \phi(q_{it} + \partial_x f_0) d_{it+2}$$

 $\int \int \phi(q_{it} + \partial_x f_0) d_{it+2} + \int \partial_x \phi d_x d_t = \int \phi(x_0) g(x_0) d_t$

Unque solution picked through entropy Considerations -> Rankine-Hugonist conditions

- Integration strategy? "Finite volvine"

Xente

T

$$\vec{q}_{i} = 1$$

 $\vec{q}_{i} = V \text{dome speek}; \quad \int q(x, t_{n}) dx = 1 \int q(x, t_{n}) dx$
 $\sum_{i=1/2}^{N_{i}} \sum_{i=1/2}^{N_{i}} \frac{1}{\sqrt{1-1/2}} \frac$

off each time step, update is obtained through (approximations to) The flux through cell boundaries

Finite-volume numerical methods

The integral form of the equation:

$$\partial_t \mathbf{u} + \partial_x \mathbf{f}(\mathbf{u}) = 0$$

namely:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{x_{i-1/2}}^{x_{i+1/2}} u(x,t) \mathrm{d}x = f[u(x_{i-1/2},t)] - f[u(x_{i+1/2},t)]$$

suggests that we should study numerical methods in the form:

$$\frac{1}{\Delta x} \int_{x_{t-1/2}}^{x_{t+1/2}} u(x,t_{n+1}) dx = \frac{1}{\Delta x} \int_{x_{t-1/2}}^{x_{t+1/2}} u(x,t_n) dx + \frac{1}{\Delta x} \left(\int_{t_n}^{t_{n+1}} f[u(x_{t-1/2},t)] dt - \int_{t_n}^{t_{n+1}} f[u(x_{t+1/2},t)] dt \right)$$

or, in more compact form,

$$\overline{u}_{i}^{n+1} = \overline{u}_{i}^{n} - \frac{\Delta t}{\Delta x} \left(F_{i+1/2} - F_{i-1/2} \right) \quad \text{where} \quad F_{i-1/2} \approx \frac{1}{\Delta t} \int_{t_{n}}^{t_{n+1}} f[u(x_{i-1/2}, t)] dt$$

Different numerical schemes differ in the prescription for computing the flux function *F*.

[a few slides from Baiotti]

Discontinuities and numerical schemes

Since the occurrence of discontinuities is a fundamental property of the hydrodynamical equations, any numerical scheme must be able to handle them in a satisfactory way.

Possible solutions to the discontinuity problem:

1st order accurate schemes

generally fine, but very inaccurate across discontinuities (excessive)

diffusion); e.g. Lax-Friedrichs method \overline{u}

$$\overline{u}_{i}^{n+1} = \frac{1}{2} (\overline{u}_{i+1}^{n} + \overline{u}_{i-1}^{n}) - \frac{\Delta t}{2\Lambda r} (F_{i+1} - \frac{\Delta t}{2\Lambda r})$$

 F_{i-1}

Discontinuities and numerical schemes

Discontinuities and numerical schemes

2nd order accurate schemes

 more accurate, but generally introduce oscillations across discontinuities and are dispersive even on smooth data (especially for steep gradients), causing waves to move with a wrong group velocity (e.g. Lax-Wendroff method)

Discontinuities and numerical schemes

 mimic Nature, but problem-dependent and inaccurate for ultrarelativistic flows

Godunov methods

- discontinuities are not eliminated, rather they are exploited
- based on the solution of Riemann problems
- approximately second-order schemes can be derived
- state of the art in relativistic hydrodynamics

Riemann problem

<u>Definition</u>: in general, for a hyperbolic system of equations, a Riemann problem is an initial-value problem with initial condition given by:

$$U(x,0) = \begin{cases} U_L & \text{if } x < 0\\ U_R & \text{if } x > 0 \end{cases}$$

where U_L and U_R are two constant vectors representing the left and right state.

For hydrodynamics, a (physical) Riemann problem is the evolution of a fluid initially composed of two states with different and constant values of velocity, pressure and density.

- Back to Burger's equation. $q_{t} + \frac{1}{2}(q_{x})^2 = 0$
- Asssume $q(0,x)>0 \rightarrow$ pulse moves to right, right?
- Riemann problem q(0,x<0) = qL; q(0,x>0) = qR
- IF, qL>qR, 'left' state moves onto 'right' state.
 Shock . Multivalued solution at x = st = (qL+qR)/2
- If, qL < qR, left state moves slower than right state. 'rarefraction' wave.

shock

rarefraction

Gaussian profile. Upwind-non conservative

Gaussian profile. Upwind, conservative, 1st order

Gaussian profile, upwind, 2nd order

High resolution shock capturing methods

- Solve full problem as a series of Riemann problems between cells
- Enforce total variation diminishing, or 'essentially non-oscillatory' property from a step to the next → remove spurious under/overshoots
- Exploit characteristic structure
- Lots of options... check Leveque's book!