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Matter fluctuations
Power spectrum

a=:
  CMB temperature
  CMB polarisation
  Galaxy density
  Galaxy shapes
  Lya absorption
  21cm flux
...

Object catalogues
Intensity maps
Spectra

Instrumental noise
Inst. systematics
Selection effects

Astrophysical 
uncertainties

Theoretical 
uncertainties

Parameters (Un)observables Observables Observations

How will we go about it?



  

Outstanding numbers:
● World's largest imager

8.4 m, 9.6 sq-deg FOV
● Wide: 20K sq-deg
● Deep: r~27
● Fast: ~100 visits per year
● Big data: ~15 TB per day

Dark Energy Science 
Collaboration:
● Supernovae
● Cluster science
● Strong lensing
● Weak lensing
● Large-scale structure

LSST

LSST Coll. et al. 0912.0201

Example: the LSST



  

Ideal analysis pipeline

Magic

DESC SRD 1809.01669
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Ideal analysis pipeline

● Cosmological model
 - modelling uncertainties

● Structure formation model
 - non-linearities
 - baryonic effects

● Astrophysical model
 - galaxy biasing
 - intrinsic alignment
 - mass-observable relation

● Instrument/noise model
 - photo-z
 - depth variations
 - shape measurement
 - ...

BORG:
Porqueres et al. 1812.05113
Kodi Ramanah et al. 1808.07496
Jasche & Lavaux 1806.11117
Lavaux & Jasche 1509.05040
Jasche & Wandelt 1306.1821



  

Simplified 2-point pipeline

● Idea: reduce the dimensionality of your data vector by using only two-point 
correlations, including all tracer cross-correlations.

 - Disregard information in higher-order moments, but...

+ … if the observables are close to Gaussian, all the information is in the 
one- and two-point cumulants.

+ Two-point functions are averages over equivalent but independent 
modes → Gaussian statistics may be a good approximation (CLT).

+ Lower number of data vector elements.

● Model everything at the summary statistic level

 -  Arguably less optimal systematics marginalization

+ Fewer effective nuisance parameter.

+ Possibly less sensitive to modelling uncertainties.



  

Example: tomographic analysis

● Photo-zs are complicated.
● Bunch galaxies up into photo-z bins and 

project onto the sphere.

DES Y1 data



  

Example: tomographic analysis

● Photo-zs are complicated.
● Bunch galaxies up into photo-z bins and 

project onto the sphere.
● Compute all possible two-point cross-

correlations (different bins, different 
observables).

● Model them and use them (all or some) 
to get cosmological parameters.

HSC Y1 data



  

Example: tomographic analysis

Sample selection
(lenses, sources, 
tomographic bins)

Photo-z estimation

Survey geometry 
(mask), depth maps, 
sky systematics

Estimate two-point 
functions Cij(l), xij(q)

Estimate covariance matrix

Estimate redshift distributions

-2 log P(d|q) = (d-t(q))T C-1 (d-t(q)) + L0

Gaussian likelihood

Vector of cross-correlations Theory prediction
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(mask), depth maps, 
sky systematics

Estimate two-point 
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Estimate covariance matrix

Estimate redshift distributions

-2 log P(d|q) = (d-t(q))T C-1 (d-t(q)) + L0

Gaussian likelihood

Vector of cross-correlations Theory prediction



  

Estimating power spectra

A unified pseudo-Cl  estimator

DA, F.J. Sanchez, A. Slosar
arXiv:1809.09603

https://arxiv.org/abs/1809.09603


  

Why power spectra? 

● Power spectrum cleanly separates theoretically well-understood 
large-scales from small, non-linear scales:
 k-cuts have clear interpretation
 No Hankel transforms, no hand-waving about linear biasing

● Covariance matrix of power spectrum measurements is much more 
diagonal that correlation function
 Can do c2 by eye
 Arguably need fewer MC samples if calculating/checking 

covariance from mocks

● Better scaling performance:
 Scales ~N3/2 with good prefactor after coupling matrix has been 

calculated
 Naive pair-counting scales as N2 (can be improved to ~N for tree-

codes, but not in all cases)



  

Power spectrum estimation

Optimal quadratic estimation (Bj below):

In the simplest scenario (full sky, homogeneous/no noise) this corresponds simply to:

However, in any realistic scenario, this estimator implies inverting Npix x Npix matrices, 
which can be horribly slow for high-resolutions (even using smart methods).



  

The pseudo-Cl estimator

The PCL estimator attempts to use the simplest scenario (“SHT, square and 
sum”) in a real-world one:

1.Mask your field.

Minimally, this mask “v” includes knowledge about which regions you have 
observed (v=1) and which ones you haven’t (v=0).

More generally, the mask can be thought of as a local inverse-variance 
weight v 1/∝ s2 (e.g. infinite noise if you haven’t observed a given pixel).
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The pseudo-Cl estimator

The PCL estimator attempts to use the simplest scenario (“SHT, square and 
sum”) in a real-world one:

1.Mask your field.

Minimally, this mask “v” includes knowledge about which regions you have 
observed (v=1) and which ones you haven’t (v=0).

More generally, the mask can be thought of as a local inverse-variance 
weight v 1/∝ s2 (e.g. infinite noise if you haven’t observed a given pixel).

2.Fourier/Harmonic-transform the masked field, square and average over m.

3.Figure out mode coupling induced by masking.This can be done analytically!

The PCL is then significantly faster, with an N∝ pix
3/2 (l3max) scaling.



  

The pseudo-Cl estimator

The PCL estimator can be thought of in two ways:

● It is what one would intuitively do:
 Fourier transform, square
 Correct for the fact that you shouldn’t be doing that

● It is an approximation to the maximum likelihood solution that approximates 
the covariance matrix as diagonal for the purpose of weighting:

This will work, when this is a good approximation:
 Full sky data
 Flat underlying power-spectrum 
 Noise domination (e.g. shot noise is perfectly flat)

Leistedt et al. 1306.0005



  

A unified pseudo-Cl code

Code: https://github.com/LSSTDESC/NaMaster
Docs: https://namaster.readthedocs.io/en/latest/index.html

https://github.com/LSSTDESC/NaMaster
https://namaster.readthedocs.io/en/latest/index.html


  

A unified pseudo-Cl code

Code: https://github.com/LSSTDESC/NaMaster
Docs: https://namaster.readthedocs.io/en/latest/index.html

https://github.com/LSSTDESC/NaMaster
https://namaster.readthedocs.io/en/latest/index.html


  

Why another code?

There are many public codes to measure power spectra, e.g.:
● Xpol (https://gitlab.in2p3.fr/tristram/Xpol)
● PolSpice (http://www2.iap.fr/users/hivon/software/PolSpice/)
● Xpure (https://gitlab.in2p3.fr/tristram/Xpure)
● Many more. Sorry if you don’t see yours here!

All of them have some features that we need, none of them has all the features.
We needed code we understand and can become a standard toolkit:
● Have a wide range of convenience features (next slide)
● Validated
● Documented
● Continuously supported
● Easy to install and use 

Code: https://github.com/LSSTDESC/NaMaster
Docs: https://namaster.readthedocs.io/en/latest/index.html

https://gitlab.in2p3.fr/tristram/Xpol
http://www2.iap.fr/users/hivon/software/PolSpice/
https://gitlab.in2p3.fr/tristram/Xpure
https://github.com/LSSTDESC/NaMaster
https://namaster.readthedocs.io/en/latest/index.html


  

Why another code?

What features does it implement?

● Calculate PCL power spectra (including coupling matrix, etc.)

● Capable of doing both:
 Full spherical case using spherical transforms
 Flat-sky patches using 2D FFT

● Capable of doing both:
 Spin-0 fields (density, CMB temperature)
 Spin-2 fields (shear, CMB polarization)
 Cross-correlations

● Bells and whistles:
 Mode deprojection
 E/B mode purification

Code: https://github.com/LSSTDESC/NaMaster
Docs: https://namaster.readthedocs.io/en/latest/index.html

https://github.com/LSSTDESC/NaMaster
https://namaster.readthedocs.io/en/latest/index.html
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Mode deprojection

A. Slosar: “The greatest thing since sliced bread”

● Masking: if I have a bad pixel, I make sure it doesn’t get used.
● Mode deprojection is the extension of this idea into an arbitrary linear 

combination of pixels.
Imagine contaminating your data field as

A proper analysis would marginalize over a.

True map

Contaminant template 
(e.g. dust map)

Observed
map

Leistedt et al. 1306.0005
Elsner et al. 1609.03577



  

Mode deprojection

A. Slosar: “The greatest thing since sliced bread”

● Masking: if I have a bad pixel, I make sure it doesn’t get used.
● Mode deprojection is the extension of this idea into an arbitrary linear 

combination of pixels.
Imagine contaminating your data field as

A proper analysis would marginalize over a.

If you do the maths, in PCL this amounts to:
● Finding the best fit value of a.
● Subtracting a contaminant map from the data using this a
● Calculate the PCL estimates and correct for the bias this subtraction has 

produced
● Multiply by the inverse of the mode-coupling matrix

True map

Contaminant template 
(e.g. dust map)

Observed
map

Leistedt et al. 1306.0005
Elsner et al. 1609.03577



  

E/B purification

● A sky mask mixes E and B modes. Effectively, it generates ambiguous modes.
● A standard pseudo-Cl algorithm, by construction will give you an unbiased estimate 

of the power spectrum. It will separate E and B at the level of the power spectrum.
● However, if E>>B, the contamination of E in the B map leaks into the variance of the 

estimator, making it very suboptimal.
● E/B purification consists of projecting out all ambiguous E or B modes at the map 

level. Effectively we lose a bit of signal, but it pays off in terms of estimator signal-to-
noise.

Louis et al. 1306.6692



  

E/B purification

● A sky mask mixes E and B modes. Effectively, it generates ambiguous modes.
● A standard pseudo-Cl algorithm, by construction will give you an unbiased estimate 

of the power spectrum. It will separate E and B at the level of the power spectrum.
● However, if E>>B, the contamination of E in the B map leaks into the variance of the 

estimator, making it very suboptimal.
● E/B purification consists of projecting out all ambiguous E or B modes at the map 

level. Effectively we lose a bit of signal, but it pays off in terms of estimator signal-to-
noise.

● This is vital for CMB B-mode searches. But it’s also useful to quantify lensing 
systematics.



  

Code validation

2 validation suites:
● LSS: galaxy clustering and 

lensing with a large set of 
contaminants.

● CMB: B-mode and lensing 
experiments with foreground 
contamination.

1000 Gaussian simulations
● w./w.o. contaminant 

deprojection
● w./w.o. E/B purification.
● curved and flat skies.



  

Code validation

Input power spectra recovered.

Deprojection is important!

Residuals are as expected.



  

Code validation



  

NaMaster

Code: https://github.com/LSSTDESC/NaMaster
Docs: https://namaster.readthedocs.io/en/latest/index.html

CMB B-modes

CMB-k x QSOs

DES Y1 clustering

CFHTLens lensing

HSC Y1 clustering

1808.07445
1712.02738

Bellini, DA in prep.

1807.10163

Bellini, DA in prep.

DESC LSS et al. in prep.

https://github.com/LSSTDESC/NaMaster
https://namaster.readthedocs.io/en/latest/index.html


  

Covariance matrices and data compression

Science-driven 3D data compression
DA, arXiv:1707.08950

Cosmic shear with 2 modes
E. Bellini, DA
in preparation

https://arxiv.org/abs/1707.08950


  

Covariance matrices and data compression

A tomographic two-point function analysis already compresses the initial 
data vector significantly:

Catalogue with ~billions of objects and >5 quantities per object

A number of cross-correlations between sub-samples of these

What is the actual number of cross correlations?



  

Covariance matrices and data compression

A tomographic two-point function analysis already compresses the initial 
data vector significantly:

Catalogue with ~billions of objects and >5 quantities per object

A number of cross-correlations between sub-samples of these

What is the actual number of cross correlations?

Let’s take an ideal LSST as an example:
10 redshift bins for lensing. 10 bins for clustering. 15 angular bins.

Nd = Nq Nbin (Nbin+1) / 2 = 3150

Compression factor: ~3x106 → pretty good!

Achieved by:
  - Selecting only the most informative summary statistic.
  - Averaging over equivalent modes (e.g. using statistical isotropy).

However, now we need to compute the data covariance matrix.



  

Computing the covariance matrix

Different methods:

● Jackknife/bootstrap: use sub-samples of your own data.

Alam et al. 1709.07855



  

Computing the covariance matrix

Different methods:

● Jackknife/bootstrap: use sub-samples of your own data.

● Mock catalogues: based on N-body sims or fast methods (Gaussian, 
FLASK, 2LPT, COLA, PINOCHIO, PTHALOS, QuickPM …)

For both of these, rule of thumb is Nsamples > 10 x (size of data vector).
Then, O(3x104) mocks/JKs are needed (covering the same volume as LSST).

Tassev et al. 1301.0322



  

Computing the covariance matrix

Different methods:

● Jackknife/bootstrap: use sub-samples of your own data.

● Mock catalogues: based on N-body sims or fast methods (Gaussian, 
lognormal, 2LPT, COLA, PINOCHIO, PTHALOS, QuickPM …)

● Analytical covariance matrix:
Gaussian connected part:

SSC

Relevant connected parts

+ double Hankel transform if you work in real space
+ probably worry about survey geometry (mode coupling)

Computation scales very bad: O(Nq
2 Nbin

4)

Krause & Eifler 1601.05779



  

Computing the covariance matrix

Different methods:

● Jackknife/bootstrap: use sub-samples of your own data.

● Mock catalogues: based on N-body sims or fast methods (Gaussian, 
lognormal, 2LPT, COLA, PINOCHIO, PTHALOS, QuickPM …)

● Analytical covariance matrix:
Gaussian connected part:

SSC

Relevant connected parts

+ double Hankel transform if you work in real space
+ probably worry about survey geometry (mode coupling)

Computation scales very bad: O(Nq
2 Nbin

4)

NaMaster can do this. 
Stay tuned!

Krause & Eifler 1601.05779



  

Computing the covariance matrix

Different methods:

● Jackknife/bootstrap: use sub-samples of your own data.

● Mock catalogues: based on N-body sims or fast methods (Gaussian, 
lognormal, 2LPT, COLA, PINOCHIO, PTHALOS, QuickPM …)

● Analytical covariance matrix:

All of these cases would benefit massively from
 reducing the size of the data vector.

Can we compress further?



  

Data compression

Example: cosmic shear



  

Data compression

Example: cosmic shear

Different bins are very correlated.
Correlation → you have fewer d.o.f.s than you think.

You can compress further!



  

The Karhunen-Loeve transform

Idea: find the linear combinations of your data that contain most of the 
information about a given parameter q.

Data: x → maps/alms of a given set of tomographic observables

        (e.g. galaxy overdensity or shear in a set of redshift bins).

The linear coefficients e can be found as the eigenvectors of a generalized 
eigenvalue equation:

One generic parameter we could optimize for is the overall S/N amplitude.
Maximizing this should provide us with most of the information about any 
parameter in most cases.

In this case, the eigenvalue equation reads:

Resulting modes yp are uncorrelated and contain the maximum amount of 
information (info(y0) > info(y1) > …).

Covariance of x

Noise covariance
Signal covariance



  

The Karhunen-Loeve transform

Example: galaxy clustering with spectroscopic redshifts.

x → galaxy overdensity in an infinitesimal redshift bin.

C → all possible cross-power spectra between bins (noise + signal)
N → flat, diagonal shot-noise power spectrum

The solution to the generalized eigenvalue equation (KL modes) is

i.e. KL transform in this case is the harmonic-Bessel transform.

The covariance of the resulting KL modes is

i.e. in this case the KL transform tells you to just compute the Fourier 
transform and estimate the 3D power spectrum (as expected!).



  

The KL transform: cosmic shear

● Idealized LSST-like survey (ngal = 27 arcmin-2)
● First three modes contain all of the signal
● They are also able to recover the full constraining power.
● Formally speaking, this is the P(k) equivalent of tomographic shear 

analyses.

Signal-
dominated

Noise-
dominated



  

The KL transform: application to CFHTLens

● Latest analysis (Joudaki et al. 2016) uses 7 tomographic bins in 
real space.
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The KL transform: application to CFHTLens

● Latest analysis (Joudaki et al. 2016) uses 7 tomographic bins in 
real space.

● Size of data vector: 2 x 5 x (7x8)/2 = 280 elements.
● Eigenvectors close to scale-independent.

Think of them as redshift-dependent galaxy weights.



  

The KL transform: application to CFHTLens

● Latest analysis (Joudaki et al. 2016) uses 7 tomographic bins in 
real space.

● Size of data vector: 2 x 5 x (7x8)/2 = 280 elements.
● Eigenvectors close to scale-independent.

Think of them as redshift-dependent galaxy weights.
● The first 2 modes are able to recover the full constraining power.

Compression factor ~19-30!

PRELIMINARY

Black → Fiducial constraints
Blue → 2 principal KL modes
Green → 2 modes,
                only auto-corr



  

Data compression

Other uses of the KL transform:
● Large-scale effects: optimize fNL constraints.
● Systematics: remove modes that are most sensitive to e.g. intrinsic alignments, 

magnification …
(basically put everything you don’t like in the noise component)

● Foreground removal in 21cm experiments

Extreme data compression:
● Alsing & Wandelt 1712.00012, Alsing et al. 1801.01497.
● One summary statistic per free parameter.
● Can be made robust to systematics.
● Potentially more sensitive to modeling errors. Missing systematics may be more 

difficult to detect (KL at least gives you maps to inspect).



  

Robust theory predictions 

Core Cosmology Library: precision 
cosmological predictions for LSST
Chisari E., DA, E. Krause +27,

arXiv:1812.05995

https://arxiv.org/abs/1812.05995


  

Robust theory predictions 

-2 log P(d|q) = (d-t(q))T C-1 (d-t(q)) + L0

Having accurate models for t(q) is vital.
The accuracy must be significantly higher than the statistical power.
LSST’s statistical power will be awesome.

Requirements for LSST:
● Accuracy (errors well below statistical uncertainties)
● Robustness (thorough code validation and comparison)
● Flexibility (many observables, many cosmological models, ability to 

vary models and absorb systematics)
● Numerical performance (reasonable MCMC-ing time)



  

The Core Cosmology Library

Code: https://github.com/LSSTDESC/CCL
Docs: https://ccl.readthedocs.io/en/latest/
Latest release: https://github.com/LSSTDESC/CCL/releases/tag/v1.0.0

https://github.com/LSSTDESC/CCL
https://ccl.readthedocs.io/en/latest/
https://github.com/LSSTDESC/CCL/releases/tag/v1.0.0


  

The Core Cosmology Library

Code: https://github.com/LSSTDESC/CCL
Docs: https://ccl.readthedocs.io/en/latest/
Latest release: https://github.com/LSSTDESC/CCL/releases/tag/v1.0.0

https://github.com/LSSTDESC/CCL
https://ccl.readthedocs.io/en/latest/
https://github.com/LSSTDESC/CCL/releases/tag/v1.0.0


  

Code validation

● All calculations are performed with at least one different independent code.

● Agreement must be found within well-motivated/crazy stringent 
requirements.

● Alternative calculations are kept as benchmarks.

● CCL is automatically compared against benchmarks whenever a new 
addition is made to the code.

● Unit tests for other types of functionality (error passing etc.) are also in 
place.

Strict code validation requirements



  

Code validation



  

Code validation

Currently implemented:
● Background quantities and linear growth.
● Matter power spectrum

Links to CLASS, CosmicEmu, fast approximations (E&H, BBKS).
● Halo quantities:

Mass function
Bias
Concentrations
Profiles
Halo model power spectra

● Angular power spectra
Galaxy clustering, cosmic shear, CMB lensing

● Angular correlations functions
● 3D correlation functions

Latest release: https://github.com/LSSTDESC/CCL/releases/tag/v1.0.0

https://github.com/LSSTDESC/CCL/releases/tag/v1.0.0


  

Code validation

Currently implemented:
● Background quantities and linear growth.
● Matter power spectrum

Links to CLASS, CosmicEmu, fast approximations (E&H, BBKS).
● Halo quantities:

Mass function
Bias
Concentrations
Profiles
Halo model power spectra

● Angular power spectra
Galaxy clustering, cosmic shear, CMB lensing

● Angular correlations functions
● 3D correlation functions

Ongoing/future work:
● Flexibility: generalized input power spectra and radial kernels.
● Other observables: CMB observables (SZ, ISW), generalized halo models.
● Speed optimization.
● Integration into downstream pipelines.

Latest release: https://github.com/LSSTDESC/CCL/releases/tag/v1.0.0

https://github.com/LSSTDESC/CCL/releases/tag/v1.0.0


  

Theory predictions and covariance matrices

The effect on cosmological parameter 
estimation of a parameter-dependent 

covariance matrix
Kodwani D., DA, P. Ferreira

arXiv:1811.11584

https://arxiv.org/abs/1811.11584


  

-2 log P(d|q) = (d-t(q))T C-1 (d-t(q)) + L0

Theory predictions and covariance matrices



  

-2 log P(d|q) = (d-t(q))T C-1(q) (d-t(q)) + L0 ?
-2 log P(d|q) = (d-t(q))T Cfid

-1 (d-t(q)) + L0 ?

Theory predictions and covariance matrices

● Do we have to take into account the parameter dependence of the 
covariance matrix?

● I.e. do we need to compute a new covariance at every point in an 
MCMC chain?



  

-2 log P(d|q) = (d-t(q))T C-1(q) (d-t(q)) + L0 ?
-2 log P(d|q) = (d-t(q))T Cfid

-1 (d-t(q)) + L0 ?

Theory predictions and covariance matrices

● Do we have to take into account the parameter dependence of the 
covariance matrix?

● I.e. do we need to compute a new covariance at every point in an 
MCMC chain?

● Carron 2016: for Gaussian fields it’s not only unnecessary, it’s 
incorrect.

● The galaxy overdensity and cosmic shear aren’t Gaussian, so do 
we need to worry about this at all?



  

The math

The information content of the covariance matrix can be quantified 
approximating the likelihood as Gaussian around the maximum (i.e. a la 
Fisher).

● Effect on parameter uncertainties:

● Effect on parameter bias:



  

The math

The information content of the covariance matrix can be quantified 
approximating the likelihood as Gaussian around the maximum (i.e. a la 
Fisher).

● Effect on parameter uncertainties:

● Effect on parameter bias:

Let’s examine the dependence on fsky.

Roughly:

Then:                                         ,

In general, the effects of a parameter-dependent covariance shrink with 
the number of modes in the analysis (same also with lmax).



  

Parameter-dependent covariances

Results: parameter uncertainties



  

Parameter-dependent covariances

Results: parameter uncertainties

The parameter dependence of the covariance is irrelevant in all cases.



  

Summary

● Two computational tools for future large-scale structure experiments developed by 
the LSST DESC:
 Compute power spectra with NaMaster:

Arbitrary-spin quantities.
Systematics deprojection.
E/B purification.
More work in progress.

 Compute theory predictions with CCL:
Background quantities.
Halo-model quantities.
Power spectra.
Correlation functions.
More work in progress.

● Data compression can help mitigate problems with covariance estimation (among 
other things).
 Particularly true for cosmic shear due to strong inter-bin correlations.
 Proof of concept: application to CFHTLens data (full constraints recovered with 2 

modes).

● There is no need to account for parameter dependence of the covariance matrix 
in two-point analyses.



  

Summary

● Two computational tools for future large-scale structure experiments developed by 
the LSST DESC:
 Compute power spectra with NaMaster:

Arbitrary-spin quantities.
Systematics deprojection.
E/B purification.
More work in progress.

 Compute theory predictions with CCL:
Background quantities.
Halo-model quantities.
Power spectra.
Correlation functions.
More work in progress.

● Data compression can help mitigate problems with covariance estimation (among 
other things).
 Particularly true for cosmic shear due to strong inter-bin correlations.
 Proof of concept: application to CFHTLens data (full constraints recovered with 2 

modes).

● There is no need to account for parameter dependence of the covariance matrix 
in two-point analyses.

Obrigado!
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