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Example: the LSST

r |

Outstanding numbers:
. u * World's largest imager
OB 8.4m, 9.6 sq-deg FOV
Wide: 20K sqg-deg
Deep: r~27
Fast: ~100 visits per year
Big data: ~15 TB per day

Dark Energy Science
Collaboration:

* Supernovae

Cluster science
Strong lensing

Weak lensing
Large-scale structure

LSST Coll. et al. 0912.0201



Ideal analysis pipeline
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Ideal analysis pipeline

DEC

120° 907 16017 1307110711330
RA

p(w]Ag

obs

\ Clusters Y10
Stage IT1

SN Y10
3x2pt Y10

o Cosmological model o LSST all+Stage ITI
* Structure formation model _
* Astrophysical model 5 ot-1- e -

Instrument/noise model




Ideal analysis pipeline

BORG:
Porqueres et al. 1812.056113
Kodi Ramanah et al. 1808.07496
Jasche & Lavaux 1806.11117
Lavaux & Jasche 1509.05040
Jasche & Wandelt 1306.1821
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Cosmological model

- modelling uncertainties
Structure formation model
- non-linearities

- baryonic effects =
Astrophysical model )

- galaxy biasing a
- intrinsic alignment
- mass-observable relation o
Instrument/noise model
- photo-z 9
- depth variations .
- shape measurement i

Clusters Y10

Stage III

SN Y10

3x2pt Y10
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Simplified 2-point pipeline

* |dea: reduce the dimensionality of your data vector by using only two-point
correlations, including all tracer cross-correlations.

= Disregard information in higher-order moments, but...

+ ... if the observables are close to Gaussian, all the information is in the
one- and two-point cumulants.

+ Two-point functions are averages over equivalent but independent
modes — Gaussian statistics may be a good approximation (CLT).

+ Lower number of data vector elements.

* Model everything at the summary statistic level
= Arguably less optimal systematics marginalization
+ Fewer effective nuisance parameter.
+ Possibly less sensitive to modelling uncertainties.



Example: tomographic analysis

* Photo-zs are complicated.

* Bunch galaxies up into photo-z bins and
project onto the sphere.

Normalized counts

Normalized counts
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Example: tomographic analysis
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* Photo-zs are complicated.

* Bunch galaxies up into photo-z bins and
project onto the sphere.

1(1+1)CEE /27 [ 10-4]
;|
X}

* Compute all possible two-point cross-

. . . . . 1000
correlations (different bins, different 1L 1
observables). :
0.1 »
* Model them and use them (all or some) , o ¥
. 0.01 " — § No tomography
to get cosmological parameters. Wy T
YR 1000 = 'F 3
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HSC Y1 data



Example: tomographic analysis

Photo-z estimation

Sample selection
(lenses, sources,
tomographic bins) \. photomey

Survey geometry ’
TXSysMapMaker

(mask), depth maps,
sky systematics

WLShearMeasureme anipc

fidueial _cosmology

PZEstimationPipe

photoz_pdfs

/

diagnostic_maps hc ar_catalog

Estimate two-point __
funCtlonS CIJ(K), glj(e) TXRandoms

TXSelector

lens_catalog

. . . . . Y
EStI m ate redSh Ift d IStrI bUtlonS / random_catalog tomography_catalog

TXTwol¢ TXSourceSummarizer

Estimate covariance matrix

source_summary_data

Gaussian likelihood

twopoint_data TXCov
—

TR
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Estimating power spectra

A unified pseudo-C, estimator

DA, F.J. Sanchez, A. Slosar
arXiv:1809.09603



https://arxiv.org/abs/1809.09603

Why power spectra?

* Power spectrum cleanly separates theoretically well-understood
large-scales from small, non-linear scales:
= k-cuts have clear interpretation
= No Hankel transforms, no hand-waving about linear biasing

e Covariance matrix of power spectrum measurements is much more
diagonal that correlation function
= Can do 2 by eye
= Arguably need fewer MC samples if calculating/checking
covariance from mocks

 Better scaling performance:
= Scales ~N3/2 with good prefactor after coupling matrix has been

calculated
= Naive pair-counting scales as N2 (can be improved to ~N for tree-

codes, but not in all cases)



Power spectrum estimation

Optimal quadratic estimation (B; below):

4 Mcde-cou;l_ing v Inve:rli.;e-variance-weightdata
~—1 ~—1 pr—Lipy. o —1
FiB; = §aTC P;,C "a— §T1' [C PiC N}
Fourier-transform and square \ Noise bias

In the simplest scenario (full sky, homogeneous/no noise) this corresponds simply to:

1 ¥
Cy = E m .
. 20 + 1 —r |a£ ‘

However, in any realistic scenario, this estimator implies inverting N;, X Ny,
which can be horribly slow for high-resolutions (even using smart methods).

matrices,



The pseudo-C,estimator

The PCL estimator attempts to use the simplest scenario (“SHT, square and
sum”) in a real-world one:

1.Mask your field. a° = v(8)a(0)

Minimally, this mask “v” includes knowledge about which regions you have
observed (v=1) and which ones you haven'’t (v=0).

More generally, the mask can be thought of as a local inverse-variance
weight ve1/62 (e.g. infinite noise if you haven’t observed a given pixel).
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The pseudo-C,estimator

The PCL estimator attempts to use the simplest scenario (“SHT, square and
sum”) in a real-world one:

1.Mask your field. a° = v(8)a(0)

Ky 0

Minimally, this mask “v” includes knowledge about which regions you have
observed (v=1) and which ones you haven'’t (v=0).

More generally, the mask can be thought of as a local inverse-variance
weight ve1/62 (e.g. infinite noise if you haven’t observed a given pixel).

2. Fourier/Harmonic-transform the masked field, square and average over m.

214 216 218 220 222



The pseudo-C,estimator

The PCL estimator attempts to use the simplest scenario (“SHT, square and
sum”) in a real-world one:

1.Mask your field. a° = v(8)a(0)

Ky 0

Minimally, this mask “v” includes knowledge about which regions you have
observed (v=1) and which ones you haven'’t (v=0).

More generally, the mask can be thought of as a local inverse-variance
weight ve1/62 (e.g. infinite noise if you haven’t observed a given pixel).

2. Fourier/Harmonic-transform the masked field, square and average over m.

3. Figure out mode coupling induced by masking.This can be done analytically!

The PCL is then significantly faster, with an <N, 32 (&, ,,) scaling.
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The pseudo-C,estimator

The PCL estimator can be thought of in two ways:

* It is what one would intuitively do:
= Fourier transform, square
= Correct for the fact that you shouldn’t be doing that

* It is an approximation to the maximum likelihood solution that approximates
the covariance matrix as diagonal for the purpose of weighting:
This will work, when this is a good approximation:
= Full sky data
= Flat underlying power-spectrum

= Noise domination (e.g. shot noise is perfectly flat)
Leistedt et al. 1306.0005
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A unified pseudo-C,code

[l LSSTDESC / NaMaster @Unwatch~ 9  Star 9  YFork 5

¢» Code lssues 9 Pull requests 3 Projects 0 Wiki Insights Settings

A unified pseudo-Cl framework Edit

# pymaster

Docs » Welcome to pymaster's documentation! ) Edit on GitHub

Welcome to pymaster’'s documentation!

pymaster is the python implementation of the NaMaster library. The main purpose of this library is

Python APl documentation
to provide support to compute the angular power spectrum of fields defined on a limited region of

Example 1: simple pseudo-Cl

computation the sphere using the so-called pseudo-CL formalism.

Example 2: Bandpowers

Code: https://github.com/LSSTDESC/NaMaster
Docs: https://namaster.readthedocs.io/en/latest/index.html


https://github.com/LSSTDESC/NaMaster
https://namaster.readthedocs.io/en/latest/index.html

A unified pseudo-C,code

L] LSSTDESC /

<> Code

A unified pseudc

Python APl documer

Example 1: simple ps
computation

Example 2: Bandpow

Example 5: Using workspaces

This sample script showcases the use of the NmtWorkspace class to speed up the computation of
multiple power spectra with the same mask. This is the most general example in this suite, showing
also the correct way to compare the results of the MASTER estimator with the theory power
spectrum.

import numpy as np

import healpy as hp

import matplotlib.pyplot as plt
import pymaster as nmt

#This script showcases the use of NmtWorkspace objects to speed up the
#computation of power spectra for many pairs of fields with the same masks.

#HEALPix map resolution
nside=256

#We start by creating some synthetic masks and maps with contaminants.

#Here we will focus on the cross-correlation of a spin-2 and a spin-1 field.
#a) Read and apodize mask

mask=nmt .mask_apodization(hp.read_map("mask.fits", verbose=False), 1., apotype="5Smooth")
#b) Read maps
mp_t,mp_qg,mp_u=hp.read_map("maps.fits", field=[0, 1, 2], verbose=False)

#c) Read contaminants maps

tm_t,tm_g, tm_u=hp.read_map("temp.fits", field=[0,1, 2], verbose=False)

#d) Create contaminated fields

# Spin-@

fO=nmt . NmtField(mask, [mp_t+tm_t], templates=[[tm_t]])

# Spin-2
f2=nmt.NmtField(mask, [mp_g+tm_g, mp_u+tm_u], templates=[[tm_g, tm_ul])

#e) Create binning scheme. We will wuse 20 multipoles per bandpower.

b=nmt .NmtBin({nside, n1b=20)

Code: https://github.com/LSSTDESC/NaMaster
Docs: https://namaster.readthedocs.io/en/latest/index.html

Star 9 ¥ Fork

() Edit on GitHub

ise of this library is
a limited region of


https://github.com/LSSTDESC/NaMaster
https://namaster.readthedocs.io/en/latest/index.html

Why another code?

There are many public codes to measure power spectra, e.g.:
* Xpol (https://gitlab.in2p3.fr/tristram/Xpol)

* PolSpice (http://www?2.iap.fr/users/hivon/software/PolSpice/)
* Xpure (https://gitlab.in2p3.fr/tristram/Xpure)
 Many more. Sorry if you don’t see yours here!

All of them have some features that we need, none of them has all the features.
We needed code we understand and can become a standard toolkit:

Have a wide range of convenience features (next slide)

Validated

Documented

Continuously supported

Easy to install and use

LSSTDESC / NaMaster @ Unwatch~ 9 W Star 9 YFork 5
¢» Code lssues 9 Pull requests 3 Projects 0 Wiki Insights Settings
A unified pseudo-CI framework Edit

Code: https://github.com/LSSTDESC/NaMaster
Docs: https://namaster.readthedocs.io/en/latest/index.html


https://gitlab.in2p3.fr/tristram/Xpol
http://www2.iap.fr/users/hivon/software/PolSpice/
https://gitlab.in2p3.fr/tristram/Xpure
https://github.com/LSSTDESC/NaMaster
https://namaster.readthedocs.io/en/latest/index.html

Why another code?

What features does it implement?
* Calculate PCL power spectra (including coupling matrix, etc.)

* Capable of doing both:
= Full spherical case using spherical transforms
= Flat-sky patches using 2D FFT

* Capable of doing both:
= Spin-0 fields (density, CMB temperature)
= Spin-2 fields (shear, CMB polarization)
= Cross-correlations

* Bells and whistles:
= Mode deprojection
= E/B mode puirification

LSSTDESC / NaMaster @® Unwatch~ 9 %Star 9  YFork 5
¢» Code lssues 9 Pull requests 3 Projects 0 Wiki Insights Settings
A unified pseudo-Cl framework Edit

Code: https://github.com/LSSTDESC/NaMaster
Docs: https://namaster.readthedocs.io/en/latest/index.html
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Docs: https://namaster.readthedocs.io/en/latest/index.html


https://github.com/LSSTDESC/NaMaster
https://namaster.readthedocs.io/en/latest/index.html

Mode deprojection

A. Slosar: “The greatest thing since sliced bread”

* Masking: if | have a bad pixel, | make sure it doesn’t get used.

* Mode deprojection is the extension of this idea into an arbitrary linear
combination of pixels.
Imagine contaminating your data field as

/True map

Observed
map —— ™ 56 — 5’& —|— am?, < Contaminant template
[/ (e.g. dust map)

A proper analysis would marginalize over c.

L eistedt et al. 1306.0005
Elsner et al. 1609.03577



Mode deprojection

A. Slosar: “The greatest thing since sliced bread”

* Masking: if | have a bad pixel, | make sure it doesn’t get used.

* Mode deprojection is the extension of this idea into an arbitrary linear
combination of pixels.
Imagine contaminating your data field as

/True map

Observed

map /56 — 5,3 —|— amiFContaminanttemplate
[/ (e.g. dust map)

A proper analysis would marginalize over c.

If you do the maths, in PCL this amounts to:

* Finding the best fit value of a.

* Subtracting a contaminant map from the data using this o

* Calculate the PCL estimates and correct for the bias this subtraction has
produced

* Multiply by the inverse of the mode-coupling matrix

L eistedt et al. 1306.0005
Elsner et al. 1609.03577



E/B purification

* A sky mask mixes E and B modes. Effectively, it generates ambiguous modes.

* A standard pseudo-ClI algorithm, by construction will give you an unbiased estimate
of the power spectrum. It will separate E and B at the level of the power spectrum.

* However, if E>>B, the contamination of E in the B map leaks into the variance of the
estimator, making it very suboptimal.

* E/B purification consists of projecting out all ambiguous E or B modes at the map
level. Effectively we lose a bit of signal, but it pays off in terms of estimator signal-to-

noise.

Window
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E/B purification

A sky mask mixes E and B modes. Effectively, it generates ambiguous modes.

A standard pseudo-Cl algorithm, by construction will give you an unbiased estimate
of the power spectrum. It will separate E and B at the level of the power spectrum.

However, if E>>B, the contamination of E in the B map leaks into the variance of the
estimator, making it very suboptimal.

E/B purification consists of projecting out all ambiguous E or B modes at the map
level. Effectively we lose a bit of signal, but it pays off in terms of estimator signal-to-
noise.

This is vital for CMB B-mode searches. But it's also useful to quantify lensing
systematics.

1{]—'3-: NS — BB —  Standard PCL
] N
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Mask )

2 validation suites:
* LSS: galaxy clustering and

* w./w.o. E/B purification.
e curved and flat skies.

lensing with a large set of =

contaminants.
« CMB: B-mode and lensing

experiments with foreground

contamination.
1000 Gaussian simulations - i
* w./w.0. contaminant

deprojection

PSF

Small-scale
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Deprojection is important!

Residuals are as expected.
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Code validation
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Covariance matrices and data compression

Science-driven 3D data compression
DA, arXiv:1707.08950

Cosmic shear with 2 modes

E. Bellini, DA
In preparation



https://arxiv.org/abs/1707.08950

Covariance matrices and data compression

A tomographic two-point function analysis already compresses the initial
data vector significantly:
Catalogue with ~billions of objects and >5 quantities per object

A number of cross-correlations between sub-samples of these

What is the actual number of cross correlations?



Covariance matrices and data compression

A tomographic two-point function analysis already compresses the initial
data vector significantly:

Catalogue with ~billions of objects and >5 quantities per object

A number of cross-correlations between sub-samples of these

What is the actual number of cross correlations?

Let's take an ideal LSST as an example:
10 redshift bins for lensing. 10 bins for clustering. 15 angular bins.

Ng = Ng Ny, (Np+1) /2 = 3150

Compression factor: ~3x106 — pretty good!

Achieved by:
- Selecting only the most informative summary statistic.
- Averaging over equivalent modes (e.g. using statistical isotropy).

However, now we need to compute the data covariance matrix.



Computing the covariance matrix

Different methods:

» Jackknife/bootstrap: use sub-samples of your own data.

75°

'MASS—DRI2"

...................

Alam et al. 1709.07855

—-75 ©



Computing the covariance matrix

Different methods:

» Jackknife/bootstrap: use sub-samples of your own data.

* Mock catalogues: based on N-body sims or fast methods (Gaussian,
FLASK, 2LPT, COLA, PINOCHIO, PTHALOS, QuickPM ...)

2LPT _". SRR COLA - Gadget : T
~i3 tlmesteps i | -10; tlmesteps e _.'.? e 2000 tlmesteps
e i s
I b R e B s
% A % it
' b ! W e ; R T
b s
i ';& ‘. .!"..'l'.'f?:\..q '@ g Af i . Wi

Tassev et al. 1301.0322

For both of these, rule of thumb is Ng,mpes > 10 X (size of data vector).
Then, O(3x104) mocks/JKs are needed (covering the same volume as LSST).



Computing the covariance matrix

Different methods:

» Jackknife/bootstrap: use sub-samples of your own data.

* Mock catalogues: based on N-body sims or fast methods (Gaussian,
lognormal, 2LPT, COLA, PINOCHIO, PTHALQOS, QuickPM ...)

* Analytical covariance matrix:

GaUSSIandcc_)nnected part: Krause & Eifler 1601.05779
T

(20 + 1AL

CovO (€Y. Co (1)) = ((Cit-t) +6uoacNL) (C Chp(12)+ 6 46mpNp )+ (CLL (1) + 644D N3 ) (Ch (1) + fsl-ﬂrfggwg}]

SSC |
L g g (x) ) 7 2 /v.z
CovSSC (E (), Eﬁ.fﬂ“ﬂ} j‘ v g 0 ggly ‘i.:_"'fX qplx f'}f:'_s‘.ﬁ'fl'llx_'r,t’n';}f:l] ffi'PmU_fit’w'L{”] (O 20))
Y iy, o,
Relevant connected parts
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+ double Hankel transform if you work in real space
+ probably worry about survey geometry (mode coupling)

<AC’§*’AC’¢F> =) > (CECIW Wi, Wi Wi, + CEACWi Wi, Wi, Wi )
mm’ 1115

Computation scales very bad: O(Ngy2 Ny,;,%)



Computing the covariance matrix

Different methods:

» Jackknife/bootstrap: use sub-samples of your own data.

* Mock catalogues: based on N-body sims or fast methods (Gaussian,
lognormal, 2LPT, COLA, PINOCHIO, PTHALQOS, QuickPM ...)

* Analytical covariance matrix:
Gaussian connected part: Krause & Eifler 1601.05779

4noy, 1,
Q20 + 1)Ad

CovO (€Y. Co (1)) = ((Cith) + 6uoac NG ) (C R (1) + 6008DN L) + (Clp(1) + 636an NG ) (Chetla) + 6 388N |

SSC |
i F vk
\ o SSC (i -kl _ 4400090000 3Pl [x.200) dPcp(b [x.z(x) .
o (E""EU”L“]UE]}_ j‘m{ x* ady, g, TR
Relevant connected parts
2 7 ] - : i
- NGO [~ -kl _LI d-1 -l %rh'i«fi'#ia-'i«ﬂa‘ivw#nfx?' ikl ' Fpoo

+ double Hankel transform if you work in real space NaMaster can do this.
)A/ Stay tuned!

+ probably worry about survey geometry (mode coupling
<AC’§*’AC’¢F> =) > (CECIW Wi, Wi Wi, + CEACWi Wi, Wi, Wi )
mm’ 1115

Computation scales very bad: O(Ngy2 Ny,;,%)



Computing the covariance matrix

Different methods:

» Jackknife/bootstrap: use sub-samples of your own data.

* Mock catalogues: based on N-body sims or fast methods (Gaussian,
lognormal, 2LPT, COLA, PINOCHIO, PTHALQOS, QuickPM ...)

* Analytical covariance matrix:

All of these cases would benefit massively from
reducing the size of the data vector.

Can we compress further?




bility distribution

Data compression

Example: cosmic shear
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Data compression

Example: cosmic shear . .
y 74000
Cl.(D= f dy——=""—Pap(l/x.2(x))
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Different bins are very correlated.
Correlation — you have fewer d.o.f.s than you think.
You can compress further!



The Karhunen-Loeve transform

Idea: find the linear combinations of your data that contain most of the
information about a given parameter 6.

Yp = e;ﬂx

Data: x — maps/a,,s of a given set of tomographic observables
(e.g. galaxy overdensity or shear in a set of redshift bins).

The linear coefficients e can be found as the eigenvectors of a generalized

eigenvalue equation: Covariance of x
89 C eig — AP@K

One generic parameter we could optimize for is the overall S/N amplitude.
Maximizing this should provide us with most of the information about any
parameter in most cases.

In this case, the eigenvalue equation reads: : :
< Noise covariance

Signal Covariancew+ N)ep —P. D

Resulting modes y,, are uncorrelated and contain the maximum amount of
information (info(yg) > info(y4) > ...).



The Karhunen-Loeve transform

Example: galaxy clustering with spectroscopic redshifts.
X — galaxy overdensity in an infinitesimal redshift bin.

C — all possible cross-power spectra between bins (noise + signal)
N — flat, diagonal shot-noise power spectrum

The solution to the generalized eigenvalue equation (KL modes) is
ex,0(z) o je (kx(2))

i.e. KL transform in this case is the harmonic-Bessel transform.

The covariance of the resulting KL modes is

)\k}g 0.¢ P(k‘)

i.e. in this case the KL transform tells you to just compute the Fourier
transform and estimate the 3D power spectrum (as expected!).



The KL transform: cosmic shear

—— 1 KL mode

— 2 KL modes
3 KL modes

— All modes

pe (1,16 B

107 |

Signal-

dominated
s
ST =
10°F :
T T T
¢ Xm,

Noise-
dominated

Idealized LSST-like survey (ng, = 27 arcmin-2)

First three modes contain all of the signal
They are also able to recover the full constraining power.
Formally speaking, this is the P(k) equivalent of tomographic shear

analyses.



The KL transform: application to CFHTLens
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» Latest analysis (Joudaki et al. 2016) uses 7 tomographic bins in
real space.



The KL transform: application to CFHTLens
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» Latest analysis (Joudaki et al. 2016) uses 7 tomographic bins in
real space.
» Size of data vector: 2 x 5 x (7x8)/2 = 280 elements



The KL transform: application to CFHTLens

Eigenvectors

; (normalized)

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Z

» Latest analysis (Joudaki et al. 2016) uses 7 tomographic bins in
real space.

» Size of data vector: 2 x 5 x (7x8)/2 = 280 elements.

* Eigenvectors close to scale-independent.
Think of them as redshift-dependent galaxy weights.



The KL transform: application to CFHTLens

0.44
0.42 { Black — Fiducial constraints
Blue — 2 principal KL modes
o0k | Green — 2 modes,
35 only auto-corr
<
© 0.38F
0.36
0.34
008 016 024 032 040
Qi
» Latest analysis (Joudaki et al. 2016) uses 7 tomographic bins in
real space.

» Size of data vector: 2 x 5 x (7x8)/2 = 280 elements.

* Eigenvectors close to scale-independent.
Think of them as redshift-dependent galaxy weights.

* The first 2 modes are able to recover the full constraining power.
Compression factor ~19-30!



Data compression

Other uses of the KL transform:
* Large-scale effects: optimize fNL constraints.

» Systematics: remove modes that are most sensitive to e.g. intrinsic alignments,
magnification ...
(basically put everything you don’t like in the noise component)

* Foreground removal in 21cm experiments

Extreme data compression:
* Alsing & Wandelt 1712.00012, Alsing et al. 1801.01497.

* One summary statistic per free parameter.
* Can be made robust to systematics.

* Potentially more sensitive to modeling errors. Missing systematics may be more
difficult to detect (KL at least gives you maps to inspect).



Robust theory predictions

Core Cosmology Library: precision
cosmological predictions for LSST

Chisari E., DA, E. Krause +27,
arXiv:1812.05995



https://arxiv.org/abs/1812.05995

Robust theory predictions

-2 log P(d]6) = (d-t(8))T C-1 (d-t(8)) + L,

Having accurate models for t(0) is vital.
The accuracy must be significantly higher than the statistical power.
LSST's statistical power will be awesome.

Requirements for LSST:

» Accuracy (errors well below statistical uncertainties)

* Robustness (thorough code validation and comparison)

* Flexibility (many observables, many cosmological models, ability to
vary models and absorb systematics)

* Numerical performance (reasonable MCMC-ing time)



The Core Cosmology Library

Ll LSSTDESC/CCL @ Unwatch~ 138  JrUnstar 40 Y Fork 10
<3 Code lssues 77 Pull requests 8 Projects 0 Wiki Insights Settings
DESC Core Cosmology Library: cosmology routines with validated numerical accuracy Edit

Manage topics

D 2,824 commits i# 21 branches T 11 releases 42 38 contributors s View license

Docs » Core Cosmology Library ) Edit on GitHub
Core Cosmology Library
Installation The Core Cosmology Library (CCL) is a standardized library of routines to calculate basic

Installation for developers observables used in cosmology. It will be the standard analysis package used by the LSST Dark

Energy Science Collaboration (DESC).

Reporting a bug

Code: https://github.com/LSSTDESC/CCL
Docs: https://ccl.readthedocs.io/en/latest/
Latest release: hitps://github.com/LSSTDESC/CCL/releases/tag/v1.0.0


https://github.com/LSSTDESC/CCL
https://ccl.readthedocs.io/en/latest/
https://github.com/LSSTDESC/CCL/releases/tag/v1.0.0

The Core Cosmology Library

LJ LSSTDESC / Ci

<> Code lssu

DESC Core Cosma

Manage topics

D 2,824 commi

Installation

Installation for develope

Reporting a bug

In [9]:

In [10]:

In [11]:

In [12]:

3x2 correlations with CCL

With two samples of galaxies, there are three types of correlations we can perform. We could measure and model the auto-correlations
of galaxy positions ("clustering”), the auto-correlations of galaxy shapes ("cosmic shear”) and the cross-correlation between positions
and shapes. Normally, to gain information on the expansion history of the Universe, we would split the sample into different redshift bins
with a sufficient number of galaxies to have a significant measurement in each one. But for now, let's just take the full redshift
distribution.

Correlations are expressed in different forms. Here, we are going to express them in terms of "angular power spectra”, or C_ell. Imagine
that we took the sphere of the sky and expanded any function of the coordinates of the sphere into a basis of spherical harmonics. Each
harmonic would contribute to the expansion with a given amplitude. What we are going to plot is the square of that amplitude as a
function of multipole index.

Galaxy positions

To model galaxy positions we need to define a "bias"” parameter. This parameter tells us how the galaxies are connected to the density
field. To make it simple, we'll take a one-to-one relation. Galaxies are simply tracing the density field in this model:

bias gal = np.ones(z.size)
We know need to define a convenience function, called a "tracer” which will store this information.

gal pos =
)

ccl.NumberCountsTracer(cosmo fid, has rsd=False, dndz=(z, dNdz pos), bias=(z, bias gal)

The "False” statements above control the modeling of potential contributions to the signal, like redshift-space distortions.

gal shapes = ccl.WeaklLensingTracer(cosmo fid, dndz=(z, dNdz_shape))

Angular power spectra

We are now ready to compute angular power spectra, C_ell. These are a function of multipole number, with high ell correponding to small
scales on the sky and low ell, to large separations on the sky.

ell=np.arange(100,5000)

cls auto pos = ccl.angular cl(cosmo fid, gal pos, gal pos, ell)
cls_auto shape = ccl.angular_cl(cosmo_fid, gal shapes, gal shapes, ell)
cls pos shape = ccl.angular cl(cosmo_fid, gal pos, gal shapes, ell)

Code: https://github.com/LSSTDESC/CCL
Docs: https://ccl.readthedocs.io/en/latest/
Latest release: hitps://github.com/LSSTDESC/CCL/releases/tag/v1.0.0

0 %W Fork 10
Edit

View license

I |

dit on GitHub

asic

S5T Dark


https://github.com/LSSTDESC/CCL
https://ccl.readthedocs.io/en/latest/
https://github.com/LSSTDESC/CCL/releases/tag/v1.0.0

Strict code validation requirements

 All calculations are performed with at least one different independent code.

* Agreement must be found within well-motivated/crazy stringent
requirements.

* Alternative calculations are kept as benchmarks.

e CCL is automatically compared against benchmarks whenever a new
addition is made to the code.

* Unit tests for other types of functionality (error passing etc.) are also in
place.
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Currently implemented:
* Background quantities and linear growth.
* Matter power spectrum
Links to CLASS, CosmicEmu, fast approximations (E&H, BBKS).
Halo quantities:
Mass function
Bias
Concentrations
Profiles
Halo model power spectra
Angular power spectra
Galaxy clustering, cosmic shear, CMB lensing
Angular correlations functions
3D correlation functions

Latest release: hitps://github.com/LSSTDESC/CCL/releases/tag/v1.0.0


https://github.com/LSSTDESC/CCL/releases/tag/v1.0.0

Currently implemented:
* Background quantities and linear growth.
* Matter power spectrum
Links to CLASS, CosmicEmu, fast approximations (E&H, BBKS).
Halo quantities:
Mass function
Bias
Concentrations
Profiles
Halo model power spectra
Angular power spectra
Galaxy clustering, cosmic shear, CMB lensing
Angular correlations functions
3D correlation functions

Ongoing/future work:

Flexibility: generalized input power spectra and radial kernels.

Other observables: CMB observables (SZ, ISW), generalized halo models.
Speed optimization.

Integration into downstream pipelines.

Latest release: hitps://github.com/LSSTDESC/CCL/releases/tag/v1.0.0


https://github.com/LSSTDESC/CCL/releases/tag/v1.0.0

Theory predictions and covariance matrices

The effect on cosmological parameter
estimation of a parameter-dependent
covariance matrix

Kodwani D., DA, P. Ferreira
arXiv:1811.11584



https://arxiv.org/abs/1811.11584

Theory predictions and covariance matrices

-2 log P(d|8) = (d-t(8))T C-1 (d-t(8)) + L,




Theory predictions and covariance matrices

-2 log P(d[8) = (d-t(8))T C-1(6) (d-t(8)) + Ly ?
2 log P(d]8) = (d-t(®)T Cr™? (d-4(8)) + Lo ?

* Do we have to take into account the parameter dependence of the
covariance matrix?

* |.e. do we need to compute a new covariance at every point in an
MCMC chain?



Theory predictions and covariance matrices

-2 log P(d[8) = (d-t(8))T C-1(6) (d-t(8)) + Ly ?
2 log P(d]8) = (d-t(®)T Cr™? (d-4(8)) + Lo ?

* Do we have to take into account the parameter dependence of the
covariance matrix?

* |.e. do we need to compute a new covariance at every point in an
MCMC chain?

* Carron 2016: for Gaussian fields it's not only unnecessary, it's
incorrect.

* The galaxy overdensity and cosmic shear aren’t Gaussian, so do
we need to worry about this at all?



The information content of the covariance matrix can be quantified
approximating the likelihood as Gaussian around the maximum (i.e. a la
Fisher).

» Effect on parameter uncertainties:

1
Fuw =0, t7T710,t + 5 Tr (£7'0,x2719,%)

» Effect on parameter bias:

Af, = —%F_l Folopt' L0, Y10t

LV



The information content of the covariance matrix can be quantified
approximating the likelihood as Gaussian around the maximum (i.e. a la
Fisher).

» Effect on parameter uncertainties:
1
Fup = 0,770t + 5 Tr (£7'0,x2719,%)

» Effect on parameter bias:

1
Af, = _5.?—1 F ot Lo,y 10t

LV

Let's examine the dependence on f, .

Roughly: ¥ ¢ fS;}lf
Then A0 o foy . 80(0) o fo.20

In general, the effects of a parameter-dependent covariance shrink with
the number of modes in the analysis (same also with £,,.,)



Parameter-dependent covariances

Results: parameter uncertainties
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Parameter-dependent covariances

Results: parameter uncertainties
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The parameter dependence of the covariance is irrelevant in all cases.




 Two computational tools for future large-scale structure experiments developed by
the LSST DESC:
= Compute power spectra with NaMaster:
Arbitrary-spin quantities.
Systematics deprojection.
E/B purification.
More work in progress.

= Compute theory predictions with CCL.:
Background quantities.
Halo-model quantities.
Power spectra.
Correlation functions.
More work in progress.

« Data compression can help mitigate problems with covariance estimation (among
other things).
= Particularly true for cosmic shear due to strong inter-bin correlations.
= Proof of concept: application to CFHTLens data (full constraints recovered with 2
modes).

* There is no need to account for parameter dependence of the covariance matrix
in two-point analyses.



 Two computational tools for future large-scale structure experiments developed by
the LSST DESC:
= Compute power spectra with NaMaster:
Arbitrary-spin quantities.
Systematics deprojection.
E/B purification.
More work in progress.

= Compute theory predictions with CCL.:
Background quantities.
Halo-model quantities.
Power spectra.
Correlation functions.
More work in progress.

« Data compression can help mitigate problems with covariance estimation (among
other things).
= Particularly true for cosmic shear due to strong inter-bin correlations.
= Proof of concept: application to CFHTLens data (full constraints recovered with 2
modes).

* There is no need to account for parameter dependence of the covariance matrix
in two-point analyses.

Obrigado!
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