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The r-process and s-process

The heavy elements (A > 62) are formed by 
neutron capture onto seed nuclei 

rapid neutron capture (r-process): 
timescale for neutron capture shorter than for 𝛃-decay 

slow neutron capture (s-process): 
timescale for neutron capture longer than for 𝛃-decay 

speculated that r-process requires explosive 
environment of supernovae
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"It is the stars, The stars above us, govern our conditions";
(Eing Lear, Act IV, Scene 3)

"The fault, dear Brutus, is not in our stars, But in ourselves, "
(Julius Caesar, Act I, Scene 2)
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Neutron star mergers and r-process
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• dynamical expansion of n-rich matter provides a natural r-process site

Schramm

Lattimer

• though predicted 40 years ago, this idea for the r-process had 
not been favored until very recently

Lattimer & Schramm (1974):

Multimessenger astrophysics and the cosmic origin of the heavy elements



GW170817 and the firework of EM counterparts

Daniel Siegel
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Figure 1. Complete UVOIR light curves, along with the models with the highest likelihood scores. Solid lines represent the realizations of
highest likelihood for each model, while shaded regions represent the 1� uncertainty ranges. For some bands there are multiple lines that
capture subtle differences between filters.

The variance parameter � is an additional scatter term, which
we fit, that encompasses additional uncertainty in the models
and/or data. For upper limits, we use a one-sided Gaussian
penalty term.

For each component of our model there are four free pa-
rameters: ejecta mass (Mej), ejecta velocity (vej), opacity (),
and the temperature floor (Tc). We use flat priors for the first
three parameters, and a log-uniform prior for Tc. In the case
of the asymmetric model, we assume a flat prior for the half
opening angle (✓).

For each model, we ran MOSFiT for approximately 24
hours using 10 nodes on Harvard University’s Odyssey com-
puter cluster. We utilized 100 chains until they reached con-
vergence (i.e., had a Gelman-Rubin statistic < 1.1; Gelman
& Rubin 1992). We use the first ' 80% of the chain as burn-
in. We compare the resulting fits utilizing the Watanabe-
Akaike Information Criteria (WAIC, Watanabe 2010; Gel-

man et al. 2014), which accounts for both the likelihood score
and number of fitted parameters for each model.

4. RESULTS OF THE KILONOVA MODELS

We fit three different models to the data: a spherical
two-component model, a spherical three-component model,
and an asymmetric three-component model. The results are
shown in Figures 1–5 and summarized in Table 2.

For the spherical two-component model we allow the opac-
ity of the red component to vary freely. This model has a total
of 8 free parameters: two ejecta masses, velocities and tem-
peratures, one free opacity, and one scatter term. We find
best-fit values of Mblue

ej = 0.019+0.001
-0.001 M�, vblue

ej = 0.257+0.009
-0.007c,

Mred
ej = 0.047+0.002

-0.002 M�, vred
ej = 0.151+0.004

-0.004c, and red = 3.78+0.13
-0.07

cm2 g-1. Although the model provides an adequate fit, it
predicts a double-peaked structure in the NIR light curves
at ⇡ 2 - 5 days that is not seen in the data.

kilonova
UV-optical-IR
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The X-ray counterpart to the gravitational-wave 
event GW170817
E. Troja1,2, L. Piro3, H. van Eerten4, R. T. Wollaeger5, M. Im6, O. D. Fox7, N. R. Butler8, S. B. Cenko2,9, T. Sakamoto10, C. L. Fryer5, 
R. Ricci11, A. Lien2,12, R. E. Ryan Jr7, O. Korobkin5, S.-K. Lee6, J. M. Burgess13, W. H. Lee14, A. M. Watson14, C. Choi6, S. Covino15, 
P. D’Avanzo15, C. J. Fontes5, J. Becerra González16,17, H. G. Khandrika7, J. Kim6, S.-L. Kim18, C.-U. Lee18, H. M. Lee19, 
A. Kutyrev1,2, G. Lim6, R. Sánchez-Ramírez3, S. Veilleux1,9, M. H. Wieringa20 & Y. Yoon6

A long-standing paradigm in astrophysics is that collisions—
or mergers—of two neutron stars form highly relativistic and 
collimated outflows (jets) that power γ-ray bursts of short (less 
than two seconds) duration1–3. The observational support for 
this model, however, is only indirect4,5. A hitherto outstanding 
prediction is that gravitational-wave events from such mergers 
should be associated with γ-ray bursts, and that a majority of 
these bursts should be seen off-axis, that is, they should point 
away from Earth6,7. Here we report the discovery observations 
of the X-ray counterpart associated with the gravitational-wave 
event GW170817. Although the electromagnetic counterpart at 
optical and infrared frequencies is dominated by the radioactive 
glow (known as a ‘kilonova’) from freshly synthesized rapid 
neutron capture (r-process) material in the merger ejecta8–10, 
observations at X-ray and, later, radio frequencies are consistent 
with a short γ-ray burst viewed off-axis7,11. Our detection of X-ray 
emission at a location coincident with the kilonova transient 
provides the missing observational link between short γ-ray 
bursts and gravitational waves from neutron-star mergers, and 
gives independent confirmation of the collimated nature of the 
γ-ray-burst emission.

On 17 August 2017 at 12:41:04 universal time (ut; hereafter T0), 
the Advanced Laser Interferometer Gravitational-Wave Observatory 
(LIGO) detected a gravitational-wave transient from the merger of two 
neutron stars at a distance12 of 40 ± 8  Mpc. Approximately two seconds 
later, a weak γ-ray burst (GRB) of short duration (<2 s) was observed 
by the Fermi Gamma-ray Space Telescope13 and INTEGRAL14. The 
low luminosity of this γ-ray transient was unusual compared to the 
population of short GRBs at cosmological distances15 , and its physical 
connection with the gravitational-wave event remained unclear.

A vigorous observing campaign targeted the localization region 
of the gravitational-wave transient, and rapidly identified a source of 
bright optical, infrared and ultraviolet emission in the early-type galaxy  
NGC 499316,17. This source was designated ‘SSS17a’ by the Swope 
team16, but here we use the official IAU designation, AT 2017gfo.

AT 2017gfo was initially not visible at radio and X-ray wavelengths. 
However, on 26 August 2017, we observed the field with the Chandra  
X-ray Observatory and detected X-ray emission at the position  
of AT 2017gfo (Fig. 1). The observed X-ray flux (see Methods) implies 
an isotropic luminosity of 9 ×  1038  erg s− 1 if located in NGC 4993  
at a distance of about 40 Mpc. Further Chandra observations,  
performed between 1 and 2 September 2017, confirmed the presence 

1Department of Astronomy, University of Maryland, College Park, Maryland 20742-4111, USA. 2Astrophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, 
Maryland 20771, USA. 3INAF, Istituto di Astrofisica e Planetologia Spaziali, via Fosso del Cavaliere 100, 00133 Rome, Italy. 4Department of Physics, University of Bath, Claverton Down, Bath 
BA2 7AY, UK. 5Center for Theoretical Astrophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA. 6Center for the Exploration for the Origin of the Universe, Astronomy 
Program, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea. 7Space Telescope Science Institute, Baltimore, Maryland 21218, 
USA. 8School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, USA. 9Joint Space-Science Institute, University of Maryland, College Park, Maryland 20742, USA. 
10Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara-shi Kanagawa 252-5258, Japan. 11INAF-Istituto di Radioastronomia, Via Gobetti 
101, I-40129, Italy. 12Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA. 13Max-Planck-Institut für extraterrestrische Physik, 
Giessenbachstrasse, D-85748 Garching, Germany. 14Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 70-264, 04510 Ciudad de México, México. 15INAF/Brera  
Astronomical Observatory, via Bianchi 46, Merate, Italy. 16Instituto de Astrofísica de Canarias, E-38200 La Laguna, Spain. 17Universidad de La Laguna, Departimento of Astrofísica, E-38206  
La Laguna, Spain. 18Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055, South Korea. 19Astronomy Program, Department of Physics and Astronomy, 
Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea. 20CSIRO Astronomy and Space Science, PO Box 76, Epping, New South Wales 1710, Australia.

22 August 2017

a

5″

GW170817
N

E

0.5–8.0 keV
26 August 2017

b

5″

N

E

GW170817

Figure 1 | Optical/infrared and X-ray images of the counterpart of 
GW170817. a, Hubble Space Telescope observations show a bright and 
red transient in the early-type galaxy NGC 4993, at a projected physical 
offset of about 2 kpc from its nucleus. A similar small offset is observed 

in less than a quarter of short GRBs5 . Dust lanes are visible in the inner 
regions, suggestive of a past merger activity (see Methods). b, Chandra 
observations revealed a faint X-ray source at the position of the optical/
infrared transient. X-ray emission from the galaxy nucleus is also visible.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

X-rays

peak, ∼15–30 days (Figure 3). As the peak is fairly broad, we
predict that the emission should remain detectable with the
VLA for weeks to months. As GW170817 is currently too
close to the Sun to be observable by X-ray and optical facilities,
radio observations will remain the only way to monitor the
transient emission during this time. Continued radio monitoring
of GW170817 will help us further narrow down this parameter
space, allowing for tighter constraints on the burst energy and
circumbinary density.

4. Predictions for Future Radio Emission
from the KN Ejecta

In addition to the relativistic jet, BNS mergers are also
expected to generate non-relativistic ejecta, which will produce
synchrotron emission at radio wavelengths once it decelerates
(Nakar & Piran 2011). This is the same ejecta that initially
generates the KN emission detected in the UV/optical/NIR
bands. Compared to the relativistic jet, this ejecta component
will decelerate on a significantly longer timescale due to

its larger mass, » :– M0.01 0.1 (Metzger & Bower 2014;
Hotokezaka & Piran 2015). The radio emission from the KN
ejecta is therefore expected to peak on timescales of months to
years (Nakar & Piran 2011; Metzger & Berger 2012; Metzger
& Bower 2014; Hotokezaka & Piran 2015). Searches for this
component following a subset of cosmological SGRBs have all
yielded deep non-detections, placing constraints on the kinetic
energy injected of21051 erg in these events (Metzger & Bower
2014; Fong et al. 2016; Horesh et al. 2016).
For the first time, we can make specific predictions for the

KN radio emission using the parameters inferred from
modeling of the UV/optical/NIR emission (Chornock et al.
2017; Cowperthwaite et al. 2017; Nicholl et al. 2017). The
KN emission requires two components: a “blue” component
with » :M M0.02ej and »v c0.3ej , and a “red” component
with »M 0.04ej :M and »v c0.1ej (Chornock et al. 2017;
Cowperthwaite et al. 2017; Nicholl et al. 2017). The predicted
radio emission from each component is shown in Figure 4 for
a fiducial density of = ´ -n 1 10 3 cm−3 (solid lines). The
shaded bands indicate the full range of possible densities

Figure 3. Simulated radio light curves for the four models also presented in Margutti et al. (2017), shown with all of our radio upper limits (triangles; s3 ) and
detections (circles). The emission peaks on a timescale of ∼15–30 days, but should remain detectable at 6 GHz for weeks to months. We note that the observations at
19.2 days were taken under poor weather conditions, which can lead to flux decorrelation at high frequencies of 10 GHz. Our final 10 GHz upper limit may therefore
underestimate the true flux density at this epoch.

5

The Astrophysical Journal Letters, 848:L21 (7pp), 2017 October 20 Alexander et al.

radio

• unique event in astronomy, 
maybe most important 
observation since SN 1987A

• unprecedented level of multi-
messenger observations

• confirms association of BNS to 
SGRBs 

• kilonova provides strong 
evidence for synthesis of 
r-process material

Multimessenger astrophysics and the cosmic origin of the heavy elements



The kilonova of GW170817

Daniel Siegel

• red kilonova properties: 

Mej ~ 4-5x10-2Msun

vej ~ 0.08-0.14c
Ye < 0.25
XLa ~ 0.01

Kilpatrick+ 2017
Kasen+ 2017
Kasliwal+ 2017
Drout+ 2017
Cowperthwaite+ 2017
Chornock+ 2017
Villar+ 2017
Coughlin+ 2018
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Figure 1. Complete UVOIR light curves, along with the models with the highest likelihood scores. Solid lines represent the realizations of
highest likelihood for each model, while shaded regions represent the 1� uncertainty ranges. For some bands there are multiple lines that
capture subtle differences between filters.

The variance parameter � is an additional scatter term, which
we fit, that encompasses additional uncertainty in the models
and/or data. For upper limits, we use a one-sided Gaussian
penalty term.

For each component of our model there are four free pa-
rameters: ejecta mass (Mej), ejecta velocity (vej), opacity (),
and the temperature floor (Tc). We use flat priors for the first
three parameters, and a log-uniform prior for Tc. In the case
of the asymmetric model, we assume a flat prior for the half
opening angle (✓).

For each model, we ran MOSFiT for approximately 24
hours using 10 nodes on Harvard University’s Odyssey com-
puter cluster. We utilized 100 chains until they reached con-
vergence (i.e., had a Gelman-Rubin statistic < 1.1; Gelman
& Rubin 1992). We use the first ' 80% of the chain as burn-
in. We compare the resulting fits utilizing the Watanabe-
Akaike Information Criteria (WAIC, Watanabe 2010; Gel-

man et al. 2014), which accounts for both the likelihood score
and number of fitted parameters for each model.

4. RESULTS OF THE KILONOVA MODELS

We fit three different models to the data: a spherical
two-component model, a spherical three-component model,
and an asymmetric three-component model. The results are
shown in Figures 1–5 and summarized in Table 2.

For the spherical two-component model we allow the opac-
ity of the red component to vary freely. This model has a total
of 8 free parameters: two ejecta masses, velocities and tem-
peratures, one free opacity, and one scatter term. We find
best-fit values of Mblue

ej = 0.019+0.001
-0.001 M�, vblue

ej = 0.257+0.009
-0.007c,

Mred
ej = 0.047+0.002

-0.002 M�, vred
ej = 0.151+0.004

-0.004c, and red = 3.78+0.13
-0.07

cm2 g-1. Although the model provides an adequate fit, it
predicts a double-peaked structure in the NIR light curves
at ⇡ 2 - 5 days that is not seen in the data.

Villar+ 2017

red KN

blue KN• blue kilonova properties: 

Mej ~ 10-2Msun

vej ~ 0.2-0.3c
Ye > 0.25
XLa < 10-4

Kilpatrick+ 2017
Kasen+ 2017
Nicholl+ 2017
Villar+ 2017
Coughlin+ 2018

• two (“red-blue”) or multiple components expected from merger simulations

• single component models might be possible, 
but require fine-tuning

Smartt+ 2017
Waxman+ 2017

heavy r-process elements!
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neutron rich ejecta from 
NS-NS or NS-BH mergers 

(Ye~0.1-0.4)

heavy radioactive elements

decompression
rapid neutron capture (r-process)

alpha, beta decay

~1s

nuclear fission
further expansion

thermal emission (kilonova)

~ days

Daniel Siegel

(quasi isotropic, long lasting: ~days)

Mass ejection generates kilonovae

Most simple kilonova model:
Piran+ 2013, Metzger+ 2017

homologous 
expansion

ejecta matter

dEv

dt
= �Ev

t
� Ev

tdi↵
+ Q̇v

radioactive 
heating

(r-process)radiative luminosity
(kilonova)

adiabatic losses

Multimessenger astrophysics and the cosmic origin of the heavy elements



long-lived NS

sim. & vis.: W. Kastaun

NS—NS

SMNS / HMNS

BH - torus
BH - torus

prompt 
collapse

Daniel Siegel

BH

BH—NS

NS merger phenomenology

Outcome depends on EOS 
and binary parameters 
(masses, mass ratio, spin, …)

Multimessenger astrophysics and the cosmic origin of the heavy elements



outflows

Sources of ejecta in NS mergers

Daniel Siegel

neutrino-driven wind 
Ṁin⇠(10�4�10�3)M�s

�1

magnetically driven wind
Ṁin ⇠(10�3�10�2)M�s

�1

The Astrophysical Journal Letters, 785:L6 (6pp), 2014 April 10 Siegel, Ciolfi, & Rezzolla

Figure 1. Snapshots of the magnetic field strength (color-coded in logarithmic scale and Gauss) and rest-mass density contours in the (x, z) plane at representative
times for model dip-60. Magnetic field lines are drawn in red in the left panel. The leftmost inset shows a magnification of the HMNS, the other ones show a
horizontal cut at z = 120 km.
(A color version of this figure is available in the online journal.)

Figure 2. Same as Figure 1, but for model dip-6.
(A color version of this figure is available in the online journal.)

Figure 3. Same as Figure 1, but for model rand.
(A color version of this figure is available in the online journal.)

field geometry and could be absent if the field is randomly
distributed.

In all of the configurations considered, the mag-
netized baryon-loaded outflow has rest-mass densities
∼108–109 g cm−3 and is ejected from the star with velocities
v/c ! 0.1, in the isotropic part, and v/c ! 0.3, in the colli-
mated part.

Defining the isotropic luminosity as

LEM ≡ −
∮

r=Rd

dΩ
√

−g (T
EM

)rt , (2)

where dΩ is the solid-angle element, g is the determinant
of the spacetime metric, and T

EM

µν is the EM part of the

3

wind

Siegel+ 2014
Ciolfi, Siegel+ 2017

1694 DESSART ET AL. Vol. 690

Figure 13. Colormaps of the log of the mass-loss rate per steradian (d2M/dt dΩ, in units of M⊙ s−1 str−1) for the no-spin BNS merger model at 10 ms (top left),
30 ms (top right), 60 ms (bottom left), and 100 ms (bottom right) after the start of the VULCAN/2D simulation, and depicting the mass loss associated with the initial
transient, followed by the neutrino-driven wind. The displayed region covers 2000 × 2000 km2. Regions that are infalling or denser than 1010 g cm−3 are shown in
red, and velocity vectors, overplotted in black, have a length saturated at 7% of the width of the display for a magnitude of 30,000 km s−1. Note the concomitant mass
loss from the poles down to midlatitudes (the wind) and the expansion of BNS merger material at near-equatorial latitudes.
(A color version of this figure is available in the online journal.)

is on the order of 2×1052 erg in the torus disk, regions with den-
sities between 1011 and 1014 g cm−3. Similar conditions in the
core-collapse context yield powerful, magnetically (and ther-
mally) driven explosions (LeBlanc & Wilson 1970; Bisnovatyi-
Kogan et al. 1976; Akiyama et al. 2003; Ardeljan et al. 2005;
Moiseenko et al. 2006; Obergaulinger et al. 2006; Burrows
et al. 2007a; Dessart et al. 2007). Rotation dramatically en-
hances the rate of mass ejection by increasing the density
rather than the velocity of the flow, even possibly halting ac-
cretion and inhibiting the formation of a black hole (Dessart
et al. 2008). In the present context, the magneto-rotational
effects, which we do not include here, would considerably
enhance the mass flux of the neutrino-driven wind. Impor-
tantly, the loss of differential rotational energy needed to fa-
cilitate the gravitational instability is at the same time de-
laying it through the enhanced mass loss it induces. Work is
needed to understand the systematics of this interplay, and how
much rotational energy the back hole is eventually endowed
with.

Oechslin et al. (2007), using a conformally flat approximation
to GR and an SPH code, find that BNS mergers of the type
discussed here and modeled with the Shen EOS avoid the
general-relativistic gravitational instability for many tens of
milliseconds after the neutron stars first come into contact.
Baumgarte et al. (2000), and more recently Morrison et al.
(2004), Duez et al. (2004, 2006), and Shibata et al. (2006),
using GR (and for some using a polytropic EOS), find that
imposing even modest levels of differential rotation yields a
significant increase by up to 50% in the maximum mass that can
be supported stably, in particular pushing this value beyond that
of the merger remnant mass after coalescence. Surprisingly,
Baiotti et al. (2008), using a full GR treatment but with a
simplified (and soft) EOS, find prompt black hole formation
in such high-mass progenitors. Despite this lack of consensus,
the existence of neutron stars with a gravitational mass around
2 M⊙ favors a high incompressibility of nuclear matter, such
as in the Shen EOS, and suggests that SMNSs formed through
BNS merger events may survive for tens of milliseconds before

Dessart+ 2009

wind

The Astrophysical Journal Letters, 778:L16 (5pp), 2013 November 20 Hotokezaka et al.

Figure 1. Rest-mass density profiles on the meridional plane for the NS–NS (SLy, Mtot = 2.7M⊙,Q = 1.0) (left) and BH–NS (H4, Q = 3, χ = 0.75) (right) models
at 8.8 ms after the onset of the merger. The red arrows show the velocity profiles of the ejecta.
(A color version of this figure is available in the online journal.)

simulation using SACRA code (Yamamoto et al. 2008). We
follow the dynamical ejecta with the numerical-relativity simu-
lation until the head of the ejecta reaches ≃1000 km (see Ho-
tokezaka et al. 2013 and Kyutoku et al. 2013 for details). After
that, the density and velocity structures of the ejecta are mod-
eled assuming homologous expansion (Rosswog et al. 2013a).
For the simulations, we employ a piecewise polytropic EOS with
which the cold EOSs of neutron-star matter are well fitted (Read
et al. 2009). For systematic studies of the dependence of mass
ejection on the cold EOSs of neutron-star matter, we consider
five cold EOSs: APR4 (Akmal et al. 1998) and SLy (Douchin &
Haensel 2001) as soft EOSs, ALF2 (Alford et al. 2005) as a mod-
erate EOS, and H4 (Glendenning & Moszkowski 1991; Lackey
et al. 2006) and MS1 (Müller & Serot 1996) as stiff EOSs.7
To take into account the effects of shock heating, we add the
thermal pressure as a Γ-law ideal gas EOS. The ejecta masses
obtained with this approximation of thermal effects agree with
those obtained with tabulated finite-temperature EOSs within
errors of several tens of percent for NS–NS mergers (Bauswein
et al. 2013).

For NS–NS mergers, we choose the total gravitational mass
of the binary Mtot = 2.6 M⊙–2.8 M⊙ and the mass ratio8

Q = 1.0–1.25. For BH–NS mergers, the gravitational mass of
the neutron star MNS is fixed to be 1.35 M⊙ and the mass ratio
is chosen to be Q = 3–7. The nondimensional spin parameter
of the black hole χ is chosen as χ = 0.75. We also perform
the simulations for Q = 7 and χ = 0.5. These parameters,
ejecta masses Mej, and averaged ejecta velocities ⟨vej⟩/c of the
progenitor models are summarized in Table 1.

The morphologies of the ejecta for NS–NS and BH–NS
mergers are compared in Figure 1. This figure plots the profiles
of the density and velocity fields at 8.8 ms after the onset of
the merger. Note that the ejecta velocities are in the small range
between ∼ 0.1c and ∼ 0.3c irrespective of the progenitor model.
However, the ejecta mass and morphology depend sensitively
on the progenitor models. In Table 1, we summarize these
properties of the NS–NS and BH–NS ejecta.

NS–NS ejecta. As shown in Figure 1, the NS–NS ejecta have
a spheroidal shape, rather than a torus or a disk, irrespective of
Q and EOS as long as a hypermassive neutron star is formed
after the merger. The reason is as follows. The origin of the

7 In this Letter, “soft” and “stiff” EOSs mean those which reproduce the radii
R1.35 ! 12 km and R1.35 " 13.5 km, respectively. Here R1.35 is the radius of a
cold, spherical neutron star with the gravitational mass 1.35 M⊙. For all the
EOSs, the maximum masses of spherical neutron stars are larger than ≃2 M⊙.
8 The mass ratio is defined by Q = m1/m2 with m1 " m2, where m1 and m2
are the component masses of a binary.

Table 1
Parameters of the Progenitor Models and Their Ejecta Properties

EOS Type R1.35 Mtot/M⊙ Q χ Mej/10− 2 M⊙ ⟨vej⟩/c
APR4 NS–NS 11.1 2.6–2.9 1.0–1.25 · · · 0.01–1.4 0.22–0.27
SLy NS–NS 11.4 2.6–2.8 1.0–1.25 · · · 0.8–2.0 0.20–0.26
ALF2 NS–NS 12.4 2.6–2.8 1.0–1.25 · · · 0.15–0.55 0.22–0.24
H4 NS–NS 13.6 2.6–2.8 1.0–1.25 · · · 0.03–0.40 0.18–0.26
MS1 NS–NS 14.4 2.6–2.8 1.0–1.25 · · · 0.06–0.35 0.18–0.20

APR4 BH–NS 11.1 5.4–10.8 3.0–7.0 0.75 0.05–1.0 0.23–0.27
ALF2 BH–NS 12.4 5.4–10.8 3.0–7.0 0.75 2.0–4.0 0.25–0.29
H4 BH–NS 13.6 5.4–10.8 3.0–7.0 0.75 4.0–5.0 0.24–0.29
MS1 BH–NS 14.4 5.4–10.8 3.0–7.0 0.75 6.5–8.0 0.25–0.30

APR4 BH–NS 11.1 10.8 7.0 0.5 #10− 4 · · ·
ALF2 BH–NS 12.4 10.8 7.0 0.5 0.02 0.27
H4 BH–NS 13.6 10.8 7.0 0.5 0.3 0.29
MS1 BH–NS 14.4 10.8 7.0 0.5 1.7 0.30

ejecta for NS–NS mergers can be divided into two parts: the
contact interface of two neutron stars at the collision and the tidal
tails formed during an early stage of the merger. At the contact
interface, the kinetic energy of the approaching velocities of the
two stars is converted into thermal energy through shock heating.
The heated matter at the contact interface expands into the
low-density region. As a result, the shocked matter can escape
even toward the rotational axis and the ejecta shape becomes
spheroidal. By contrast, the tidal tail component is asymmetric
and the ejecta is distributed near the equatorial plane.

Numerical simulations of NS–NS mergers show that the total
amount of ejecta is in the range 10− 4–10− 2 M⊙ depending on
Mtot, Q, and the EOS (see Figure 2). The more compact neutron
star models with soft EOSs produce a larger amount of ejecta,
because the impact velocities and subsequent shock heating
effects at merger are larger. More specifically, the amount of
ejecta is

10− 4 ! Mej/M⊙ ! 2 × 10− 2 (soft EOSs),

10− 4 ! Mej/M⊙ ! 5 × 10− 3 (stiff EOSs). (1)

Bauswein et al. (2013) show a similar dependence of the
ejecta masses on the EOSs and Mej ! 0.01 M⊙ for stiff EOS
models. According to these results, it is worth noting that the
ejecta masses of the stiff EOS models are likely to be at most
0.01 M⊙.

The dependence of the ejecta mass on the total mass of
the binary is rather complicated as shown in Figure 2. The
ejecta mass increases basically with increasing Mtot as long
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FIG. 5. Electron fraction Ye and normalized electron chemical potential ⌘ = µ/⇥ at t = 43ms (left), t = 130ms (center), and
t = 250ms (right), showing a mildly degenerate state and low Ye in the inner parts of the disk as a result of self-regulation
(Sec. IVC).

TABLE II. Characteristics of the outflow as recorded by tracer particles: mean electron fraction, specific entropy, expansion
timescales, computed at t = t5GK and classified into equatorial (30� < ✓ < 150�), polar (✓  30� and ✓ � 150�), and total
outflow. The polar angle ✓ for each tracer particle is measured at the end of the simulation. The initial disk mass Mt,in as
well as the total integrated outflow mass (polar/equatorial and total) are also listed. Corresponding values from Newtonian
alpha-disk simulations by [38] (F15) and [54] (J15) are also shown.

simulation neutrino outflow equatorial outflow polar outflow total outflow
absorption type Mt,in Ȳe s̄ t̄exp Ȳe s̄ t̄exp Ȳe s̄ t̄exp Mpol Mout

[10�2M�] [kB/b] [ms] [kB/b] [ms] [kB/b] [ms] [Meq] [Mt,in]
this work no total 2.02 0.17 28 26 0.19 43 18 0.17 30 25 0.15 0.23
this work no unbound 2.02 0.18 31 24 0.19 39 18 0.18 32 23 0.22 0.16
this work yes unbound 2.02 31 24 39 18 32 23 0.22 0.16
F15 t-a80 yes total 3.00 0.22 21 35 0.31 38 9.4 - - - 0.01 0.17

J15 M3A8m03a2 yes total 3.00 - - - - - - 0.27 30 - - 0.23
J15 M3A8m03a5 yes total 3.00 - - - - - - 0.25 33 - - 0.24

diagram clearly indicates the presence of magnetic cycles
with a period of roughly ⇠ 20ms throughout the entire
simulation time domain. In the disk midplane, magnetic
fields of temporally alternating polarity are generated by
MHD turbulence. These fields slowly migrate o↵ the
midplane by magnetic pressure gradients and buoyancy,
where they are gradually dissipated into heat. This mi-
gration and dissipation of magnetic energy contributes
to establishing a ‘hot’ corona above and below the mid-
plane, as indicated by the middle panel of Fig. 7. This
spacetime diagram of the specific entropy shows strongly
increasing specific entropies o↵ the midplane where ma-
gentic field strengths decrease.

In the hot corona powerful outflows are generated.
In these regions of lower density, viscous heating from
MHD turbulence, dissipation of magnetic energy, and
energy release from recombination of free nucleons into
alpha particles exceeds cooling by neutrino emission,
which is strongest in the disk midplane (cf. Fig. 7, lower
panel). This heating-cooling imbalance results in launch-
ing neutron-rich winds from the disk. Above and below
the midplane, the neutrino emissivities decrease as func-
tions of ‘height’ |z| and the weak interactions (and thus
Ye) essentially ‘freeze out’; however, futher mixing in the
(initially turbulent) outflows can still change Ye.

The outflows are tracked by 104 passive tracer particles
that are advected with the plasma. These tracer particles
are of equal mass and they are placed within the initial
torus at t = 0ms with a probability proportional to the
conserved rest-mass density D̂ =

p
�⇢W . We distinguish

between total outflow, defined as the entity of all tracer
particles that have reached a radial coordinate distance
of 103 km from the center of the BH by the end of the
simulation, and unbound outflow, or ejecta, defined as
the entity of tracer particles that are additionally un-
bound according to the Bernoulli criterion �hu0 > 1.
We find that at r = 103 km, (most of) the conversion
of internal to kinetic energy has already been achieved
(h ! 1). Therefore, employing the Bernoulli criterion is
essentially identical to employing the geodesic criterion
�u0 > 1 (non-vanishing escape velocity at infinity), and
our results are not sensitive to the particular choice of a
criterion for unboundness.

Outflows are generated over a wide range of radii. This
is illustrated by Fig. 8, which shows mass histograms of
the outflow tracer particles in terms of their cylindrical
coordinate radii $ =

p
x2 + y2 at the time of ejection

from the disk, $ej ⌘ $(t = tej). We define the time
of ejection from the disk or corona t = tej as the time
after which the radial coordinate position of a tracer
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FIG. 5. Electron fraction Ye and normalized electron chemical potential ⌘ = µ/⇥ at t = 43ms (left), t = 130ms (center), and
t = 250ms (right), showing a mildly degenerate state and low Ye in the inner parts of the disk as a result of self-regulation
(Sec. IVC).

where ⇣ is the Riemann ⇣-function and Q = (mn �

mp)/me = 2.531 the neutron-proton mass di↵erence in
units of the electron mass. A very mild electron degen-
eracy ⌘ ' 1 in hot matter ⇥ ⇡ 1 is therefore su�cient
to generate conditions of neutron richness Ye < 0.5. For
the hot ⇥ & 1 and mildly degenerate conditions ⌘ & 1 of
the inner parts of the disk, the resulting neutron richness
adjusts to an equilibrium value of typically Ye ⇠ 0.1 or
lower (see Fig. 5).

The presence of this self-regulation mechanism to mild
electron degeneracy, which implies a low Ye ⇠ 0.1,
is important to allow for the generation of neutron-
rich outflows that can undergo r-process nucleosynthesis
(Secs. IVD and V); it forces the disk to keep a reservoir of
neutron rich material despite the ongoing protonization
process in the rest of the disk – neutron rich material that
is continuously fed into the outflows to keep the overall
mean electron fraction Ȳe of the outflow rather low over
the lifetime of the disk (Ȳe ⇠ 0.2, see Tab. II of [70] and
Sec. VB). This results in the possibility of generating
a robust second-to-third-peak r-process (cf. Sec. V) and
thus the production of a significant amount of Lanthanide
material in the outflow. Due to their high opacities, this
material can then produce a red kilonova, as observed in
the recent GW170817 event.

D. Magnetic dynamo, disk corona, and generation
of outflows

Magnetic stresses generated by MHD turbulence via
the MRI mediate angular momentum transport and thus
energy dissipation in the disk. Turbulence also dissipates
magnetic energy, which, however, is regenerated through
a dynamo (e.g., [118, 119]). The balance of the two
processes results in a saturated steady-turbulent, quasi-
equilibrium state, which is characterized by a roughly
constant ratio of magnetic to internal energy in the disk.

Figure 6 shows the temporal evolution of the density-
averaged ratio of electromagnetic to internal energy

FIG. 6. Evolution of the density-averaged ratio of the electro-
magnetic to internal energy (top) and of the magnetic-to-fluid
pressure ratio (bottom), indicating a steady turbulent state
of the disk.

heEM/eintiD̂ and of the magnetic-to-fluid pressure ra-
tio hpB/pfiD̂, which are indeed indicative of a disk in a
steady turbulent state. We define the rest-mass density-
average of a quantity � by

h�i
D̂

⌘

R
�D̂d3x

R
D̂d3x

, (55)

where D̂ =
p
�⇢W is the conserved rest-mass density

• Neutron-richness: self-regulation mechanism 
in degenerate inner disk provides neutron 
rich outflows (Ye<0.25)

Naively, neutron-rich conditions favor: 

e+ + n ! p+ ⌫̄e
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FIG. 5. Electron fraction Ye and normalized electron chemical potential ⌘ = µ/⇥ at t = 43ms (left), t = 130ms (center), and
t = 250ms (right), showing a mildly degenerate state and low Ye in the inner parts of the disk as a result of self-regulation
(Sec. IVC).

TABLE II. Characteristics of the outflow as recorded by tracer particles: mean electron fraction, specific entropy, expansion
timescales, computed at t = t5GK and classified into equatorial (30� < ✓ < 150�), polar (✓  30� and ✓ � 150�), and total
outflow. The polar angle ✓ for each tracer particle is measured at the end of the simulation. The initial disk mass Mt,in as
well as the total integrated outflow mass (polar/equatorial and total) are also listed. Corresponding values from Newtonian
alpha-disk simulations by [38] (F15) and [54] (J15) are also shown.

simulation neutrino outflow equatorial outflow polar outflow total outflow
absorption type Mt,in Ȳe s̄ t̄exp Ȳe s̄ t̄exp Ȳe s̄ t̄exp Mpol Mout

[10�2M�] [kB/b] [ms] [kB/b] [ms] [kB/b] [ms] [Meq] [Mt,in]
this work no total 2.02 0.17 28 26 0.19 43 18 0.17 30 25 0.15 0.23
this work no unbound 2.02 0.18 31 24 0.19 39 18 0.18 32 23 0.22 0.16
this work yes unbound 2.02 31 24 39 18 32 23 0.22 0.16
F15 t-a80 yes total 3.00 0.22 21 35 0.31 38 9.4 - - - 0.01 0.17

J15 M3A8m03a2 yes total 3.00 - - - - - - 0.27 30 - - 0.23
J15 M3A8m03a5 yes total 3.00 - - - - - - 0.25 33 - - 0.24

diagram clearly indicates the presence of magnetic cycles
with a period of roughly ⇠ 20ms throughout the entire
simulation time domain. In the disk midplane, magnetic
fields of temporally alternating polarity are generated by
MHD turbulence. These fields slowly migrate o↵ the
midplane by magnetic pressure gradients and buoyancy,
where they are gradually dissipated into heat. This mi-
gration and dissipation of magnetic energy contributes
to establishing a ‘hot’ corona above and below the mid-
plane, as indicated by the middle panel of Fig. 7. This
spacetime diagram of the specific entropy shows strongly
increasing specific entropies o↵ the midplane where ma-
gentic field strengths decrease.

In the hot corona powerful outflows are generated.
In these regions of lower density, viscous heating from
MHD turbulence, dissipation of magnetic energy, and
energy release from recombination of free nucleons into
alpha particles exceeds cooling by neutrino emission,
which is strongest in the disk midplane (cf. Fig. 7, lower
panel). This heating-cooling imbalance results in launch-
ing neutron-rich winds from the disk. Above and below
the midplane, the neutrino emissivities decrease as func-
tions of ‘height’ |z| and the weak interactions (and thus
Ye) essentially ‘freeze out’; however, futher mixing in the
(initially turbulent) outflows can still change Ye.

The outflows are tracked by 104 passive tracer particles
that are advected with the plasma. These tracer particles
are of equal mass and they are placed within the initial
torus at t = 0ms with a probability proportional to the
conserved rest-mass density D̂ =

p
�⇢W . We distinguish

between total outflow, defined as the entity of all tracer
particles that have reached a radial coordinate distance
of 103 km from the center of the BH by the end of the
simulation, and unbound outflow, or ejecta, defined as
the entity of tracer particles that are additionally un-
bound according to the Bernoulli criterion �hu0 > 1.
We find that at r = 103 km, (most of) the conversion
of internal to kinetic energy has already been achieved
(h ! 1). Therefore, employing the Bernoulli criterion is
essentially identical to employing the geodesic criterion
�u0 > 1 (non-vanishing escape velocity at infinity), and
our results are not sensitive to the particular choice of a
criterion for unboundness.

Outflows are generated over a wide range of radii. This
is illustrated by Fig. 8, which shows mass histograms of
the outflow tracer particles in terms of their cylindrical
coordinate radii $ =

p
x2 + y2 at the time of ejection

from the disk, $ej ⌘ $(t = tej). We define the time
of ejection from the disk or corona t = tej as the time
after which the radial coordinate position of a tracer
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FIG. 5. Electron fraction Ye and normalized electron chemical potential ⌘ = µ/⇥ at t = 43ms (left), t = 130ms (center), and
t = 250ms (right), showing a mildly degenerate state and low Ye in the inner parts of the disk as a result of self-regulation
(Sec. IVC).

where ⇣ is the Riemann ⇣-function and Q = (mn �

mp)/me = 2.531 the neutron-proton mass di↵erence in
units of the electron mass. A very mild electron degen-
eracy ⌘ ' 1 in hot matter ⇥ ⇡ 1 is therefore su�cient
to generate conditions of neutron richness Ye < 0.5. For
the hot ⇥ & 1 and mildly degenerate conditions ⌘ & 1 of
the inner parts of the disk, the resulting neutron richness
adjusts to an equilibrium value of typically Ye ⇠ 0.1 or
lower (see Fig. 5).

The presence of this self-regulation mechanism to mild
electron degeneracy, which implies a low Ye ⇠ 0.1,
is important to allow for the generation of neutron-
rich outflows that can undergo r-process nucleosynthesis
(Secs. IVD and V); it forces the disk to keep a reservoir of
neutron rich material despite the ongoing protonization
process in the rest of the disk – neutron rich material that
is continuously fed into the outflows to keep the overall
mean electron fraction Ȳe of the outflow rather low over
the lifetime of the disk (Ȳe ⇠ 0.2, see Tab. II of [70] and
Sec. VB). This results in the possibility of generating
a robust second-to-third-peak r-process (cf. Sec. V) and
thus the production of a significant amount of Lanthanide
material in the outflow. Due to their high opacities, this
material can then produce a red kilonova, as observed in
the recent GW170817 event.

D. Magnetic dynamo, disk corona, and generation
of outflows

Magnetic stresses generated by MHD turbulence via
the MRI mediate angular momentum transport and thus
energy dissipation in the disk. Turbulence also dissipates
magnetic energy, which, however, is regenerated through
a dynamo (e.g., [118, 119]). The balance of the two
processes results in a saturated steady-turbulent, quasi-
equilibrium state, which is characterized by a roughly
constant ratio of magnetic to internal energy in the disk.

Figure 6 shows the temporal evolution of the density-
averaged ratio of electromagnetic to internal energy

FIG. 6. Evolution of the density-averaged ratio of the electro-
magnetic to internal energy (top) and of the magnetic-to-fluid
pressure ratio (bottom), indicating a steady turbulent state
of the disk.

heEM/eintiD̂ and of the magnetic-to-fluid pressure ra-
tio hpB/pfiD̂, which are indeed indicative of a disk in a
steady turbulent state. We define the rest-mass density-
average of a quantity � by

h�i
D̂

⌘
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, (55)

where D̂ =
p
�⇢W is the conserved rest-mass density

• Neutron-richness: self-regulation mechanism 
in degenerate inner disk provides neutron 
rich outflows (Ye<0.25)

• Production of full range of r-process nuclei, 
excellent agreement with observed r-
process abundances (solar, halo stars)
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FIG. 5. Electron fraction Ye and normalized electron chemical potential ⌘ = µ/⇥ at t = 43ms (left), t = 130ms (center), and
t = 250ms (right), showing a mildly degenerate state and low Ye in the inner parts of the disk as a result of self-regulation
(Sec. IVC).

TABLE II. Characteristics of the outflow as recorded by tracer particles: mean electron fraction, specific entropy, expansion
timescales, computed at t = t5GK and classified into equatorial (30� < ✓ < 150�), polar (✓  30� and ✓ � 150�), and total
outflow. The polar angle ✓ for each tracer particle is measured at the end of the simulation. The initial disk mass Mt,in as
well as the total integrated outflow mass (polar/equatorial and total) are also listed. Corresponding values from Newtonian
alpha-disk simulations by [38] (F15) and [54] (J15) are also shown.

simulation neutrino outflow equatorial outflow polar outflow total outflow
absorption type Mt,in Ȳe s̄ t̄exp Ȳe s̄ t̄exp Ȳe s̄ t̄exp Mpol Mout

[10�2M�] [kB/b] [ms] [kB/b] [ms] [kB/b] [ms] [Meq] [Mt,in]
this work no total 2.02 0.17 28 26 0.19 43 18 0.17 30 25 0.15 0.23
this work no unbound 2.02 0.18 31 24 0.19 39 18 0.18 32 23 0.22 0.16
this work yes unbound 2.02 31 24 39 18 32 23 0.22 0.16
F15 t-a80 yes total 3.00 0.22 21 35 0.31 38 9.4 - - - 0.01 0.17

J15 M3A8m03a2 yes total 3.00 - - - - - - 0.27 30 - - 0.23
J15 M3A8m03a5 yes total 3.00 - - - - - - 0.25 33 - - 0.24

diagram clearly indicates the presence of magnetic cycles
with a period of roughly ⇠ 20ms throughout the entire
simulation time domain. In the disk midplane, magnetic
fields of temporally alternating polarity are generated by
MHD turbulence. These fields slowly migrate o↵ the
midplane by magnetic pressure gradients and buoyancy,
where they are gradually dissipated into heat. This mi-
gration and dissipation of magnetic energy contributes
to establishing a ‘hot’ corona above and below the mid-
plane, as indicated by the middle panel of Fig. 7. This
spacetime diagram of the specific entropy shows strongly
increasing specific entropies o↵ the midplane where ma-
gentic field strengths decrease.

In the hot corona powerful outflows are generated.
In these regions of lower density, viscous heating from
MHD turbulence, dissipation of magnetic energy, and
energy release from recombination of free nucleons into
alpha particles exceeds cooling by neutrino emission,
which is strongest in the disk midplane (cf. Fig. 7, lower
panel). This heating-cooling imbalance results in launch-
ing neutron-rich winds from the disk. Above and below
the midplane, the neutrino emissivities decrease as func-
tions of ‘height’ |z| and the weak interactions (and thus
Ye) essentially ‘freeze out’; however, futher mixing in the
(initially turbulent) outflows can still change Ye.

The outflows are tracked by 104 passive tracer particles
that are advected with the plasma. These tracer particles
are of equal mass and they are placed within the initial
torus at t = 0ms with a probability proportional to the
conserved rest-mass density D̂ =

p
�⇢W . We distinguish

between total outflow, defined as the entity of all tracer
particles that have reached a radial coordinate distance
of 103 km from the center of the BH by the end of the
simulation, and unbound outflow, or ejecta, defined as
the entity of tracer particles that are additionally un-
bound according to the Bernoulli criterion �hu0 > 1.
We find that at r = 103 km, (most of) the conversion
of internal to kinetic energy has already been achieved
(h ! 1). Therefore, employing the Bernoulli criterion is
essentially identical to employing the geodesic criterion
�u0 > 1 (non-vanishing escape velocity at infinity), and
our results are not sensitive to the particular choice of a
criterion for unboundness.

Outflows are generated over a wide range of radii. This
is illustrated by Fig. 8, which shows mass histograms of
the outflow tracer particles in terms of their cylindrical
coordinate radii $ =

p
x2 + y2 at the time of ejection

from the disk, $ej ⌘ $(t = tej). We define the time
of ejection from the disk or corona t = tej as the time
after which the radial coordinate position of a tracer
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FIG. 5. Electron fraction Ye and normalized electron chemical potential ⌘ = µ/⇥ at t = 43ms (left), t = 130ms (center), and
t = 250ms (right), showing a mildly degenerate state and low Ye in the inner parts of the disk as a result of self-regulation
(Sec. IVC).

where ⇣ is the Riemann ⇣-function and Q = (mn �

mp)/me = 2.531 the neutron-proton mass di↵erence in
units of the electron mass. A very mild electron degen-
eracy ⌘ ' 1 in hot matter ⇥ ⇡ 1 is therefore su�cient
to generate conditions of neutron richness Ye < 0.5. For
the hot ⇥ & 1 and mildly degenerate conditions ⌘ & 1 of
the inner parts of the disk, the resulting neutron richness
adjusts to an equilibrium value of typically Ye ⇠ 0.1 or
lower (see Fig. 5).

The presence of this self-regulation mechanism to mild
electron degeneracy, which implies a low Ye ⇠ 0.1,
is important to allow for the generation of neutron-
rich outflows that can undergo r-process nucleosynthesis
(Secs. IVD and V); it forces the disk to keep a reservoir of
neutron rich material despite the ongoing protonization
process in the rest of the disk – neutron rich material that
is continuously fed into the outflows to keep the overall
mean electron fraction Ȳe of the outflow rather low over
the lifetime of the disk (Ȳe ⇠ 0.2, see Tab. II of [70] and
Sec. VB). This results in the possibility of generating
a robust second-to-third-peak r-process (cf. Sec. V) and
thus the production of a significant amount of Lanthanide
material in the outflow. Due to their high opacities, this
material can then produce a red kilonova, as observed in
the recent GW170817 event.

D. Magnetic dynamo, disk corona, and generation
of outflows

Magnetic stresses generated by MHD turbulence via
the MRI mediate angular momentum transport and thus
energy dissipation in the disk. Turbulence also dissipates
magnetic energy, which, however, is regenerated through
a dynamo (e.g., [118, 119]). The balance of the two
processes results in a saturated steady-turbulent, quasi-
equilibrium state, which is characterized by a roughly
constant ratio of magnetic to internal energy in the disk.

Figure 6 shows the temporal evolution of the density-
averaged ratio of electromagnetic to internal energy

FIG. 6. Evolution of the density-averaged ratio of the electro-
magnetic to internal energy (top) and of the magnetic-to-fluid
pressure ratio (bottom), indicating a steady turbulent state
of the disk.

heEM/eintiD̂ and of the magnetic-to-fluid pressure ra-
tio hpB/pfiD̂, which are indeed indicative of a disk in a
steady turbulent state. We define the rest-mass density-
average of a quantity � by

h�i
D̂

⌘

R
�D̂d3x

R
D̂d3x

, (55)

where D̂ =
p
�⇢W is the conserved rest-mass density

• Neutron-richness: self-regulation mechanism 
in degenerate inner disk provides neutron 
rich outflows (Ye<0.25)

• Production of full range of r-process nuclei, 
excellent agreement with observed r-
process abundances (solar, halo stars)

• Slow outflow velocities (~0.1c)

• Large amount of ejecta (                   )& 10�2M�

v1 ⇡ 0.1c

Multimessenger astrophysics and the cosmic origin of the heavy elements
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Constraints on r-process nucleosynthesis
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post-merger disk outflows are a promising site for the r-process!

Multimessenger astrophysics and the cosmic origin of the heavy elements
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But… what about galactic chemical evolution?

late-time galactic r-process enrichment (Eu/Fe decrease) 
inconsistent with NS merger paradigm Côté+ 2017, 2018, Hotokezaka+ 2018a

There should be another significant source of r-process enrichment… 

Siegel, Barnes, Metzger 2018

Galactic chemical 
evolution models,

merger-only r-
process enrichment

Multimessenger astrophysics and the cosmic origin of the heavy elements

Halo stars



Daniel Siegel

Structure and stellar populations of the Milky Way

Frebel 2018

Multimessenger astrophysics and the cosmic origin of the heavy elements

Figure 1

Structure and stellar populations of the Milky Way. Stellar archaeology is based on old, metal-poor halo stars.
Dwarf galaxy archaeology utilizes stars in satellite dwarf galaxies that orbit the Milky Way. Figure courtesy of K.
Brauer.

opportunity to assess their environment to derive firm conclusions about element-production events, how

elemental yields were dispersed through the galaxy, and how the yields eventually got incorporated into

the dwarf-galaxy stars we observe. Studying stars and stellar populations in the satellite dwarf galaxies

therefore provides an excellent complementary approach to working with halo stars. As will be outlined

in Section 4.1, research based on the compositions of individual stars in dwarf galaxies recently led to a

breakthrough in understanding the astrophysical site of the heaviest elements.

1.2. Review aims and further reading

This review provides a compact overview of the recent progress regarding the origin and early evolution

of the heavy elements that are made during the rapid neutron-capture process, as told by an astronomer.

We aim to highlight links between what is studied by nuclear physicists (nuclear properties of matter),

and what astronomers observe (stars with chemical abundance signatures that are the end result of various

nucleosynthesis processes). New experimental nuclear physics facilities, such as the Facility for Rare Isotope

Beams (FRIB), will investigate neutron-rich nuclei far away from stability, which promises to yield an

improved understanding of heavy-element production. Observations of the oldest stars in the Milky Way

and its satellite dwarf galaxies provide complementary insights. They preserve a fossil nucleosynthesis record

of astrophysical events of element production, providing valuable details concerning the nucleosynthesis

processes involved and their associated astrophysical sites of operation.

Focusing here on the topic of neutron-capture elements implies that much of the related information on

old stars, stellar archaeology, dwarf galaxy archaeology, near-field cosmology, and even nuclear astrophysics

can unfortunately not be covered. We instead refer the interested reader to the following reviews:

– A detailed overview of near-field cosmology, stellar archaeology and dwarf galaxy archaeology with

the oldest stars (Frebel & Norris 2015); additional introductory material on the subject is covered by

(Frebel & Norris 2013)

– Early progress including the history of the search for old stars in the Galaxy (Beers & Christlieb

2005)

– Observations of neutron-capture elements in old stars and their interpretation (Sneden, Cowan &

Gallino 2008; Jacobson & Frebel 2014)

– Reviews on neutron star mergers and associated heavy element production (Fernández & Metzger

2016; Thielemann et al. 2017)

4 Frebel
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But… what about galactic chemical evolution?

late-time galactic r-process enrichment (Eu/Fe decrease) 
inconsistent with NS merger paradigm Côté+ 2017, 2018, Hotokezaka+ 2018a

There should be another significant source of r-process enrichment… 
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Ultra-faint dwarfs: another challenge for mergers

Enhancement thought to be 
caused by single high-yield 
r-process event 
(‘clean’ r-process site)

Multimessenger astrophysics and the cosmic origin of the heavy elements

Ji+ 2016, Nature  
Figure 2: Chemical abundances of stars in Reticulum II 
a, [Ba/H] and [Fe/H] of stars in Ret II (red points), in the halo24 (gray points), and in UFDs 
(colored points, references within refs. 16, 17). Orange and brown vertical bars indicate expected 
abundance ranges following a neutron star merger and core-collapse supernova, respectively. 
Dotted black lines show constant [Ba/Fe]. Arrows denote upper limits. Error bars are 1σ (see 
Extended Data Table 1 and Methods). b, Same as a but for Eu.  
c, Abundance patterns above Ba for the four brightest Eu-enhanced stars in Ret II (Extended 
Data Table 2), compared to solar r- and s-process patterns9 (purple and yellow lines, 
respectively). Solar patterns are scaled to stellar Ba. Stars are offset by multiples of 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Reticulum II stars

other UFDs
(upper limits)

 at least x100 
enhancement!

Not impossible: 
Beniamini+ 2016

Challenges for NS mergers:
• need extremely low kick velocities <10 km/s (UFDs have low escape speeds!)
• need either very short merger timescale < 100 Myr or:
• need second epoch of star formation to feed r-process material back into stars
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GW170817 points to collapsars as main r-process 
source

• Angular momentum of infalling stellar material leads to 
circularization and formation of accretion disk around the BH

• BH-accretion disk from collapse of rapidly rotating massive 
stars (M > 20 Msun)

“failed explosion” (direct collapse to a BH)

“weak explosion” (proto-NS collapses due to fallback material)

core collapse

BH formation

accretion disk
Formation

jet punches through infalling 
material, generates GRB

Siegel, Barnes, Metzger 2018

Multimessenger astrophysics and the cosmic origin of the heavy elements

No. 1, 1999 COLLAPSARS 271

FIG. 7.ÈDensity in the central regions of model 14A 7.598 s after core collapse. A dense disk (red ; 109 g cm~3) of gas is accreting into the black hole. The
centrifugally supported torus has a radius of 200 km. Still higher densities exist in the disk inside the inner boundary of our calculation (50 km). Gas is
accreting much more readily along the polar axis because of the lack of centrifugal support and has left behind a channel with relatively low density (blue ; 106
g cm~3). Should energy be deposited near the black hole, this geometry will naturally focus jets along the rotational axis.

cosity was calculated using where r is the sphericall\ acs r,
distance from the origin and a was 0.1. Another calculation,
which assumed that with H the density scalel\ acs H,
height and a \ 0.1, gave about one-half as much energy to
the plumes. In practice the plumes shown in Figure 16
would result from using a larger value of a B 0.2 in the
latter expression.

The plumes (or wind) are thus artiÐcial in the sense that
they are generated by an ““ alpha viscosity.ÏÏ However, the
dissipation modeled by a may have a real physical originÈ
magnetic energy dissipation in and above the disk. Very

roughly, the MHD Ñux from the disk is a small fraction, say
1%È10% , of the magnetic energy density in the disk, B2/8n,
times the speed, about the speed of light in the innerAlfve" n
disk. The Ðeld itself might have an energy density 10% of
ov2. Then for density D1010 g cm~3, v D 1010 cm s~1 and a
disk area of 1013 cm, the MHD energy input is D1051 ergs
s~1.

The matter that is ejected has mostly been at high tem-
perature, and is initially composed of nucleons. AsT9 Z 10
these nucleons reassemble in nuclear statistical equilibrium,
and provided remains near 0.5, the freezeout composi-Y

e

• Widely accepted model to 
generate long GRBs and 
their accompanying GRB 
SNe (hypernovae, broad-
lined Type Ic)

MacFadyen & Woosley 1999
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Collapsar scenario overview

core collapse

BH formation

Multimessenger astrophysics and the cosmic origin of the heavy elements

2DRAFT VERSION - DECEMBER 29, 2017 MÖSTA et al.

Figure 1. Meridional slices (xz-plane, z being the vertical) of specific entropy s in units of kB baryon-1 for models B13 (left), B12-sym (center), and B12
(right). The rendering size is 1600km⇥1600km and times after core bounce for model B13, B12-sym, and B12 are 17ms, 89ms, and 131ms, respectively. The
colormaps vary slightly to best capture the dynamics of each simulation and are shown in the panels. B13 and B12-sym show a clear jet explosion, while B12
explodes in a dual-lobe fashion due to a kink instability of the jet (Mösta et al. 2014b).

Figure 2. Volume renderings of specific entropy for models B13 (left), B12-sym (center), and B12 (right) at the same times as in Fig. 1. The z-axis is the rotation
axis of the PNS and we show 1600km on a side. The colormaps vary for the different models but are generally chosen such that blue corresponds to lower
entropy material of s ' 4kB baryon-1, cyan to s ' 5kB baryon-1 indicating the shock surface, green to s ' 6kB baryon-1, yellow to s ' 8kB baryon-1, and red to
higher entropy material at s ' 10 - 12kB baryon-1.

metric MHD CCSN simulations and found that in prompt ex-
plosions (texp  50ms) a robust r-process abundance pattern
is recovered, while for delayed explosions the abundance pat-
tern differs from solar above mass number A ⇠ 130, which
includes the second and third r-process peaks.

We present results on r-process nucleosynthesis from
full 3D dynamical-spacetime general-relativistic MHD
(GRMHD) simulations of rapidly rotating magnetized CC-
SNe. We carry out simulations with initial field strengths of
1012 G and 1013 G in full unconstrained 3D. For the 1012 G
case, we compare results with a simulation starting from iden-
tical initial conditions but that is set up to remain perfectly
axisymmetric in its dynamics. We calculate nucleosynthetic
yields by post-processing Lagrangian tracer particles with the
open-source nuclear reaction network SkyNet (Lippuner &
Roberts 2017). We also investigate the impact of neutrinos on
the nucleosynthetic yields by varying the uncertain neutrino

luminosities from our simulations in the nuclear reaction
network calculation.

Our results for a model with initial poloidal B-field of
1012 G show that the nucleosynthetic signatures of jet-driven
CCSNe are substantially different when simulated in 2D ver-
sus 3D. In 2D, robust second and third peak r-process ma-
terial is synthesized in the explosion, while in full 3D, nu-
clei beyond the second peak are two orders of magnitude less
abundant. Only in a simulation starting with a 1013 G poloidal
magnetic field (which has dynamics similar to the simulation
of Winteler et al. 2012), do we find a robust r-process pattern
that is consistent with the solar r-process residuals. These
differences are driven by differing thermodynamic histories
of material ejected in the jet. For a 1012 G initial magnetic
field, we find that ejected material reaches lower maximum
density before being ejected than in the simulation with the
1013 G field. As a result, this material starts with higher elec-

proto-magnetar
“MHD supernova”

Collapsar accretion disk

GRB jet

r-process outflow

minor contribution 
to (mostly) light r-

process
Moesta+ 2018

Halevi & Moesta 2018
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Ṁ

fb
[M

�
s�

1
]

black hole
formation gamma-ray burst

Ṁ1
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a c

b
Ye

degeneracy

accretion rate nucleosynthesis in disk outflow

Daniel Siegel

e� + p ! n + ⌫e

e+ + n ! p + ⌫̄e

Low disk densities (low    ):Ṁ
<latexit sha1_base64="BOgzIl3Dy3mvMHScnuNvdfJ8HCY=">AAAB7nicbVDLSsNAFL2pr1pfUZduBovgqiQi1GXBjRuhgn1AG8pkOmmHTiZh5kYooR/hxoUibv0ed/6N0zYLbT0wcDjnHubeE6ZSGPS8b6e0sbm1vVPereztHxweuccnbZNkmvEWS2SiuyE1XArFWyhQ8m6qOY1DyTvh5Hbud564NiJRjzhNeRDTkRKRYBSt1OkPE8zvZwO36tW8Bcg68QtShQLNgftlkyyLuUImqTE930sxyKlGwSSfVfqZ4SllEzriPUsVjbkJ8sW6M3JhlSGJEm2fQrJQfydyGhszjUM7GVMcm1VvLv7n9TKMboJcqDRDrtjyoyiTBBMyv50MheYM5dQSyrSwuxI2ppoytA1VbAn+6snrpH1V8y1/uK426kUdZTiDc7gEH+rQgDtoQgsYTOAZXuHNSZ0X5935WI6WnCJzCn/gfP4AeuSPnQ==</latexit><latexit sha1_base64="BOgzIl3Dy3mvMHScnuNvdfJ8HCY=">AAAB7nicbVDLSsNAFL2pr1pfUZduBovgqiQi1GXBjRuhgn1AG8pkOmmHTiZh5kYooR/hxoUibv0ed/6N0zYLbT0wcDjnHubeE6ZSGPS8b6e0sbm1vVPereztHxweuccnbZNkmvEWS2SiuyE1XArFWyhQ8m6qOY1DyTvh5Hbud564NiJRjzhNeRDTkRKRYBSt1OkPE8zvZwO36tW8Bcg68QtShQLNgftlkyyLuUImqTE930sxyKlGwSSfVfqZ4SllEzriPUsVjbkJ8sW6M3JhlSGJEm2fQrJQfydyGhszjUM7GVMcm1VvLv7n9TKMboJcqDRDrtjyoyiTBBMyv50MheYM5dQSyrSwuxI2ppoytA1VbAn+6snrpH1V8y1/uK426kUdZTiDc7gEH+rQgDtoQgsYTOAZXuHNSZ0X5935WI6WnCJzCn/gfP4AeuSPnQ==</latexit><latexit sha1_base64="BOgzIl3Dy3mvMHScnuNvdfJ8HCY=">AAAB7nicbVDLSsNAFL2pr1pfUZduBovgqiQi1GXBjRuhgn1AG8pkOmmHTiZh5kYooR/hxoUibv0ed/6N0zYLbT0wcDjnHubeE6ZSGPS8b6e0sbm1vVPereztHxweuccnbZNkmvEWS2SiuyE1XArFWyhQ8m6qOY1DyTvh5Hbud564NiJRjzhNeRDTkRKRYBSt1OkPE8zvZwO36tW8Bcg68QtShQLNgftlkyyLuUImqTE930sxyKlGwSSfVfqZ4SllEzriPUsVjbkJ8sW6M3JhlSGJEm2fQrJQfydyGhszjUM7GVMcm1VvLv7n9TKMboJcqDRDrtjyoyiTBBMyv50MheYM5dQSyrSwuxI2ppoytA1VbAn+6snrpH1V8y1/uK426kUdZTiDc7gEH+rQgDtoQgsYTOAZXuHNSZ0X5935WI6WnCJzCn/gfP4AeuSPnQ==</latexit><latexit sha1_base64="BOgzIl3Dy3mvMHScnuNvdfJ8HCY=">AAAB7nicbVDLSsNAFL2pr1pfUZduBovgqiQi1GXBjRuhgn1AG8pkOmmHTiZh5kYooR/hxoUibv0ed/6N0zYLbT0wcDjnHubeE6ZSGPS8b6e0sbm1vVPereztHxweuccnbZNkmvEWS2SiuyE1XArFWyhQ8m6qOY1DyTvh5Hbud564NiJRjzhNeRDTkRKRYBSt1OkPE8zvZwO36tW8Bcg68QtShQLNgftlkyyLuUImqTE930sxyKlGwSSfVfqZ4SllEzriPUsVjbkJ8sW6M3JhlSGJEm2fQrJQfydyGhszjUM7GVMcm1VvLv7n9TKMboJcqDRDrtjyoyiTBBMyv50MheYM5dQSyrSwuxI2ppoytA1VbAn+6snrpH1V8y1/uK426kUdZTiDc7gEH+rQgDtoQgsYTOAZXuHNSZ0X5935WI6WnCJzCn/gfP4AeuSPnQ==</latexit>

Ye ~ 0.5
outflows produce 56Ni

Neutron-richness:

GW170817 points to collapsars as main r-process 
source Siegel, Barnes, Metzger 2018

Multimessenger astrophysics and the cosmic origin of the heavy elements



Daniel Siegel

GW170817 points to collapsars as main r-process 
source Siegel, Barnes, Metzger 2018
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<latexit sha1_base64="AsmLwxvmhXh5TY6ylUkwtbnYwRY=">AAAB8HicdVDLSgMxFL1TX7W+qi7dBIvgQsqMFGp3BTduhAr2Ie1QMmmmDU0yQ5IRytCvcONCEbd+jjv/xnQ6gooeCBzOuYfce4KYM21c98MprKyurW8UN0tb2zu7e+X9g46OEkVom0Q8Ur0Aa8qZpG3DDKe9WFEsAk67wfRy4XfvqdIskrdmFlNf4LFkISPYWOluMIpMej0fesNyxa02MqAlqddy0vCQV3UzVCBHa1h+t1mSCCoN4VjrvufGxk+xMoxwOi8NEk1jTKZ4TPuWSiyo9tNs4Tk6scoIhZGyTxqUqd8TKRZaz0RgJwU2E/3bW4h/ef3EhBd+ymScGCrJ8qMw4chEaHE9GjFFieEzSzBRzO6KyAQrTIztqGRL+LoU/U8651XPrXo3tUrzLK+jCEdwDKfgQR2acAUtaAMBAQ/wBM+Och6dF+d1OVpw8swh/IDz9gl3LZDJ</latexit><latexit sha1_base64="AsmLwxvmhXh5TY6ylUkwtbnYwRY=">AAAB8HicdVDLSgMxFL1TX7W+qi7dBIvgQsqMFGp3BTduhAr2Ie1QMmmmDU0yQ5IRytCvcONCEbd+jjv/xnQ6gooeCBzOuYfce4KYM21c98MprKyurW8UN0tb2zu7e+X9g46OEkVom0Q8Ur0Aa8qZpG3DDKe9WFEsAk67wfRy4XfvqdIskrdmFlNf4LFkISPYWOluMIpMej0fesNyxa02MqAlqddy0vCQV3UzVCBHa1h+t1mSCCoN4VjrvufGxk+xMoxwOi8NEk1jTKZ4TPuWSiyo9tNs4Tk6scoIhZGyTxqUqd8TKRZaz0RgJwU2E/3bW4h/ef3EhBd+ymScGCrJ8qMw4chEaHE9GjFFieEzSzBRzO6KyAQrTIztqGRL+LoU/U8651XPrXo3tUrzLK+jCEdwDKfgQR2acAUtaAMBAQ/wBM+Och6dF+d1OVpw8swh/IDz9gl3LZDJ</latexit><latexit sha1_base64="AsmLwxvmhXh5TY6ylUkwtbnYwRY=">AAAB8HicdVDLSgMxFL1TX7W+qi7dBIvgQsqMFGp3BTduhAr2Ie1QMmmmDU0yQ5IRytCvcONCEbd+jjv/xnQ6gooeCBzOuYfce4KYM21c98MprKyurW8UN0tb2zu7e+X9g46OEkVom0Q8Ur0Aa8qZpG3DDKe9WFEsAk67wfRy4XfvqdIskrdmFlNf4LFkISPYWOluMIpMej0fesNyxa02MqAlqddy0vCQV3UzVCBHa1h+t1mSCCoN4VjrvufGxk+xMoxwOi8NEk1jTKZ4TPuWSiyo9tNs4Tk6scoIhZGyTxqUqd8TKRZaz0RgJwU2E/3bW4h/ef3EhBd+ymScGCrJ8qMw4chEaHE9GjFFieEzSzBRzO6KyAQrTIztqGRL+LoU/U8651XPrXo3tUrzLK+jCEdwDKfgQR2acAUtaAMBAQ/wBM+Och6dF+d1OVpw8swh/IDz9gl3LZDJ</latexit><latexit sha1_base64="AsmLwxvmhXh5TY6ylUkwtbnYwRY=">AAAB8HicdVDLSgMxFL1TX7W+qi7dBIvgQsqMFGp3BTduhAr2Ie1QMmmmDU0yQ5IRytCvcONCEbd+jjv/xnQ6gooeCBzOuYfce4KYM21c98MprKyurW8UN0tb2zu7e+X9g46OEkVom0Q8Ur0Aa8qZpG3DDKe9WFEsAk67wfRy4XfvqdIskrdmFlNf4LFkISPYWOluMIpMej0fesNyxa02MqAlqddy0vCQV3UzVCBHa1h+t1mSCCoN4VjrvufGxk+xMoxwOi8NEk1jTKZ4TPuWSiyo9tNs4Tk6scoIhZGyTxqUqd8TKRZaz0RgJwU2E/3bW4h/ef3EhBd+ymScGCrJ8qMw4chEaHE9GjFFieEzSzBRzO6KyAQrTIztqGRL+LoU/U8651XPrXo3tUrzLK+jCEdwDKfgQR2acAUtaAMBAQ/wBM+Och6dF+d1OVpw8swh/IDz9gl3LZDJ</latexit>

Ṁ3
<latexit sha1_base64="WQeF0y1CyecKOCxvYCu9nqwOwAE=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgQsqMCrosuHEjVLAPaYeSSTNtaCYzJHeEMvQr3LhQxK2f486/MW1noa0HAodz7iH3niCRwqDrfjuFldW19Y3iZmlre2d3r7x/0DRxqhlvsFjGuh1Qw6VQvIECJW8nmtMokLwVjG6mfuuJayNi9YDjhPsRHSgRCkbRSo/dfozZ3aR30StX3Ko7A1kmXk4qkKPeK3/ZLEsjrpBJakzHcxP0M6pRMMknpW5qeELZiA54x1JFI278bLbwhJxYpU/CWNunkMzU34mMRsaMo8BORhSHZtGbiv95nRTDaz8TKkmRKzb/KEwlwZhMryd9oTlDObaEMi3sroQNqaYMbUclW4K3ePIyaZ5XPbfq3V9Wamd5HUU4gmM4BQ+uoAa3UIcGMIjgGV7hzdHOi/PufMxHC06eOYQ/cD5/AKT7kDg=</latexit><latexit sha1_base64="WQeF0y1CyecKOCxvYCu9nqwOwAE=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgQsqMCrosuHEjVLAPaYeSSTNtaCYzJHeEMvQr3LhQxK2f486/MW1noa0HAodz7iH3niCRwqDrfjuFldW19Y3iZmlre2d3r7x/0DRxqhlvsFjGuh1Qw6VQvIECJW8nmtMokLwVjG6mfuuJayNi9YDjhPsRHSgRCkbRSo/dfozZ3aR30StX3Ko7A1kmXk4qkKPeK3/ZLEsjrpBJakzHcxP0M6pRMMknpW5qeELZiA54x1JFI278bLbwhJxYpU/CWNunkMzU34mMRsaMo8BORhSHZtGbiv95nRTDaz8TKkmRKzb/KEwlwZhMryd9oTlDObaEMi3sroQNqaYMbUclW4K3ePIyaZ5XPbfq3V9Wamd5HUU4gmM4BQ+uoAa3UIcGMIjgGV7hzdHOi/PufMxHC06eOYQ/cD5/AKT7kDg=</latexit><latexit sha1_base64="WQeF0y1CyecKOCxvYCu9nqwOwAE=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgQsqMCrosuHEjVLAPaYeSSTNtaCYzJHeEMvQr3LhQxK2f486/MW1noa0HAodz7iH3niCRwqDrfjuFldW19Y3iZmlre2d3r7x/0DRxqhlvsFjGuh1Qw6VQvIECJW8nmtMokLwVjG6mfuuJayNi9YDjhPsRHSgRCkbRSo/dfozZ3aR30StX3Ko7A1kmXk4qkKPeK3/ZLEsjrpBJakzHcxP0M6pRMMknpW5qeELZiA54x1JFI278bLbwhJxYpU/CWNunkMzU34mMRsaMo8BORhSHZtGbiv95nRTDaz8TKkmRKzb/KEwlwZhMryd9oTlDObaEMi3sroQNqaYMbUclW4K3ePIyaZ5XPbfq3V9Wamd5HUU4gmM4BQ+uoAa3UIcGMIjgGV7hzdHOi/PufMxHC06eOYQ/cD5/AKT7kDg=</latexit><latexit sha1_base64="WQeF0y1CyecKOCxvYCu9nqwOwAE=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgQsqMCrosuHEjVLAPaYeSSTNtaCYzJHeEMvQr3LhQxK2f486/MW1noa0HAodz7iH3niCRwqDrfjuFldW19Y3iZmlre2d3r7x/0DRxqhlvsFjGuh1Qw6VQvIECJW8nmtMokLwVjG6mfuuJayNi9YDjhPsRHSgRCkbRSo/dfozZ3aR30StX3Ko7A1kmXk4qkKPeK3/ZLEsjrpBJakzHcxP0M6pRMMknpW5qeELZiA54x1JFI278bLbwhJxYpU/CWNunkMzU34mMRsaMo8BORhSHZtGbiv95nRTDaz8TKkmRKzb/KEwlwZhMryd9oTlDObaEMi3sroQNqaYMbUclW4K3ePIyaZ5XPbfq3V9Wamd5HUU4gmM4BQ+uoAa3UIcGMIjgGV7hzdHOi/PufMxHC06eOYQ/cD5/AKT7kDg=</latexit>

Ṁ2
<latexit sha1_base64="dIy8pM9Rwkwg90dsRSqE5hOEvdE=">AAAB8HicdVBNSwMxFMzWr1q/qh69BIvgQcpuKdTeCl68CBVsrbRLyabZNjTJLslboSz9FV48KOLVn+PNf2O6XUFFBwLDzBvy3gSx4AZc98MprKyurW8UN0tb2zu7e+X9g66JEk1Zh0Yi0r2AGCa4Yh3gIFgv1ozIQLDbYHqx8G/vmTY8Ujcwi5kvyVjxkFMCVrobjCJIr+bD2rBccavNDHhJGvWcND3sVd0MFZSjPSy/2yxNJFNABTGm77kx+CnRwKlg89IgMSwmdErGrG+pIpIZP80WnuMTq4xwGGn7FOBM/Z5IiTRmJgM7KQlMzG9vIf7l9RMIz/2UqzgBpujyozARGCK8uB6PuGYUxMwSQjW3u2I6IZpQsB2VbAlfl+L/SbdW9dyqd12vtM7yOoroCB2jU+ShBmqhS9RGHUSRRA/oCT072nl0XpzX5WjByTOH6Aect094sZDK</latexit><latexit sha1_base64="dIy8pM9Rwkwg90dsRSqE5hOEvdE=">AAAB8HicdVBNSwMxFMzWr1q/qh69BIvgQcpuKdTeCl68CBVsrbRLyabZNjTJLslboSz9FV48KOLVn+PNf2O6XUFFBwLDzBvy3gSx4AZc98MprKyurW8UN0tb2zu7e+X9g66JEk1Zh0Yi0r2AGCa4Yh3gIFgv1ozIQLDbYHqx8G/vmTY8Ujcwi5kvyVjxkFMCVrobjCJIr+bD2rBccavNDHhJGvWcND3sVd0MFZSjPSy/2yxNJFNABTGm77kx+CnRwKlg89IgMSwmdErGrG+pIpIZP80WnuMTq4xwGGn7FOBM/Z5IiTRmJgM7KQlMzG9vIf7l9RMIz/2UqzgBpujyozARGCK8uB6PuGYUxMwSQjW3u2I6IZpQsB2VbAlfl+L/SbdW9dyqd12vtM7yOoroCB2jU+ShBmqhS9RGHUSRRA/oCT072nl0XpzX5WjByTOH6Aect094sZDK</latexit><latexit sha1_base64="dIy8pM9Rwkwg90dsRSqE5hOEvdE=">AAAB8HicdVBNSwMxFMzWr1q/qh69BIvgQcpuKdTeCl68CBVsrbRLyabZNjTJLslboSz9FV48KOLVn+PNf2O6XUFFBwLDzBvy3gSx4AZc98MprKyurW8UN0tb2zu7e+X9g66JEk1Zh0Yi0r2AGCa4Yh3gIFgv1ozIQLDbYHqx8G/vmTY8Ujcwi5kvyVjxkFMCVrobjCJIr+bD2rBccavNDHhJGvWcND3sVd0MFZSjPSy/2yxNJFNABTGm77kx+CnRwKlg89IgMSwmdErGrG+pIpIZP80WnuMTq4xwGGn7FOBM/Z5IiTRmJgM7KQlMzG9vIf7l9RMIz/2UqzgBpujyozARGCK8uB6PuGYUxMwSQjW3u2I6IZpQsB2VbAlfl+L/SbdW9dyqd12vtM7yOoroCB2jU+ShBmqhS9RGHUSRRA/oCT072nl0XpzX5WjByTOH6Aect094sZDK</latexit><latexit sha1_base64="dIy8pM9Rwkwg90dsRSqE5hOEvdE=">AAAB8HicdVBNSwMxFMzWr1q/qh69BIvgQcpuKdTeCl68CBVsrbRLyabZNjTJLslboSz9FV48KOLVn+PNf2O6XUFFBwLDzBvy3gSx4AZc98MprKyurW8UN0tb2zu7e+X9g66JEk1Zh0Yi0r2AGCa4Yh3gIFgv1ozIQLDbYHqx8G/vmTY8Ujcwi5kvyVjxkFMCVrobjCJIr+bD2rBccavNDHhJGvWcND3sVd0MFZSjPSy/2yxNJFNABTGm77kx+CnRwKlg89IgMSwmdErGrG+pIpIZP80WnuMTq4xwGGn7FOBM/Z5IiTRmJgM7KQlMzG9vIf7l9RMIz/2UqzgBpujyozARGCK8uB6PuGYUxMwSQjW3u2I6IZpQsB2VbAlfl+L/SbdW9dyqd12vtM7yOoroCB2jU+ShBmqhS9RGHUSRRA/oCT072nl0XpzX5WjByTOH6Aect094sZDK</latexit>

a c

b

e� + p ! n + ⌫e

e+ + n ! p + ⌫̄e

Neutron-richness: High disk densities (high    ):Ṁ
<latexit sha1_base64="BOgzIl3Dy3mvMHScnuNvdfJ8HCY=">AAAB7nicbVDLSsNAFL2pr1pfUZduBovgqiQi1GXBjRuhgn1AG8pkOmmHTiZh5kYooR/hxoUibv0ed/6N0zYLbT0wcDjnHubeE6ZSGPS8b6e0sbm1vVPereztHxweuccnbZNkmvEWS2SiuyE1XArFWyhQ8m6qOY1DyTvh5Hbud564NiJRjzhNeRDTkRKRYBSt1OkPE8zvZwO36tW8Bcg68QtShQLNgftlkyyLuUImqTE930sxyKlGwSSfVfqZ4SllEzriPUsVjbkJ8sW6M3JhlSGJEm2fQrJQfydyGhszjUM7GVMcm1VvLv7n9TKMboJcqDRDrtjyoyiTBBMyv50MheYM5dQSyrSwuxI2ppoytA1VbAn+6snrpH1V8y1/uK426kUdZTiDc7gEH+rQgDtoQgsYTOAZXuHNSZ0X5935WI6WnCJzCn/gfP4AeuSPnQ==</latexit><latexit sha1_base64="BOgzIl3Dy3mvMHScnuNvdfJ8HCY=">AAAB7nicbVDLSsNAFL2pr1pfUZduBovgqiQi1GXBjRuhgn1AG8pkOmmHTiZh5kYooR/hxoUibv0ed/6N0zYLbT0wcDjnHubeE6ZSGPS8b6e0sbm1vVPereztHxweuccnbZNkmvEWS2SiuyE1XArFWyhQ8m6qOY1DyTvh5Hbud564NiJRjzhNeRDTkRKRYBSt1OkPE8zvZwO36tW8Bcg68QtShQLNgftlkyyLuUImqTE930sxyKlGwSSfVfqZ4SllEzriPUsVjbkJ8sW6M3JhlSGJEm2fQrJQfydyGhszjUM7GVMcm1VvLv7n9TKMboJcqDRDrtjyoyiTBBMyv50MheYM5dQSyrSwuxI2ppoytA1VbAn+6snrpH1V8y1/uK426kUdZTiDc7gEH+rQgDtoQgsYTOAZXuHNSZ0X5935WI6WnCJzCn/gfP4AeuSPnQ==</latexit><latexit sha1_base64="BOgzIl3Dy3mvMHScnuNvdfJ8HCY=">AAAB7nicbVDLSsNAFL2pr1pfUZduBovgqiQi1GXBjRuhgn1AG8pkOmmHTiZh5kYooR/hxoUibv0ed/6N0zYLbT0wcDjnHubeE6ZSGPS8b6e0sbm1vVPereztHxweuccnbZNkmvEWS2SiuyE1XArFWyhQ8m6qOY1DyTvh5Hbud564NiJRjzhNeRDTkRKRYBSt1OkPE8zvZwO36tW8Bcg68QtShQLNgftlkyyLuUImqTE930sxyKlGwSSfVfqZ4SllEzriPUsVjbkJ8sW6M3JhlSGJEm2fQrJQfydyGhszjUM7GVMcm1VvLv7n9TKMboJcqDRDrtjyoyiTBBMyv50MheYM5dQSyrSwuxI2ppoytA1VbAn+6snrpH1V8y1/uK426kUdZTiDc7gEH+rQgDtoQgsYTOAZXuHNSZ0X5935WI6WnCJzCn/gfP4AeuSPnQ==</latexit><latexit sha1_base64="BOgzIl3Dy3mvMHScnuNvdfJ8HCY=">AAAB7nicbVDLSsNAFL2pr1pfUZduBovgqiQi1GXBjRuhgn1AG8pkOmmHTiZh5kYooR/hxoUibv0ed/6N0zYLbT0wcDjnHubeE6ZSGPS8b6e0sbm1vVPereztHxweuccnbZNkmvEWS2SiuyE1XArFWyhQ8m6qOY1DyTvh5Hbud564NiJRjzhNeRDTkRKRYBSt1OkPE8zvZwO36tW8Bcg68QtShQLNgftlkyyLuUImqTE930sxyKlGwSSfVfqZ4SllEzriPUsVjbkJ8sW6M3JhlSGJEm2fQrJQfydyGhszjUM7GVMcm1VvLv7n9TKMboJcqDRDrtjyoyiTBBMyv50MheYM5dQSyrSwuxI2ppoytA1VbAn+6snrpH1V8y1/uK426kUdZTiDc7gEH+rQgDtoQgsYTOAZXuHNSZ0X5935WI6WnCJzCn/gfP4AeuSPnQ==</latexit>

Ye

degeneracy

Ye ~ 0.1
degenerate electrons

outflows produce r-process nuclei

accretion rate nucleosynthesis in disk outflow

Multimessenger astrophysics and the cosmic origin of the heavy elements



Daniel Siegel

Collapsars: r-process yield Siegel, Barnes, Metzger 2018

r-process mass in the Galaxy, mr, may be crudely estimated by the ratio
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where we have used the local z ⇡ 0 rates of short GRBs of RSGRB(z = 0) ⇡ 4.1+2.3
�1.9 Gpc�3

yr�1 (e.g., ref. 108) and long GRBs of RLGRB(z = 0) ⇡ 1.30.6�0.7 Gpc�3 yr�1 (e.g., ref. 109). This
approximation gives a conservative lower limit on the ratio because the ratio of long to short GRBs
increases with redshift; long GRBs approximately track star formation, which peaks at z ⇡ 2� 3,
while short GRBs are consistent with a sizable delay time (e.g., refs. 108, 110). This estimate
suggests that collapsars could well contribute more total r-process production in the Galaxy than
neutron star mergers (see Extended Data Fig. 6 for a schematic summary).

We also perform a rough absolute estimate of the r-process ejecta mass needed per collapsar
in order to explain their solar system abundances. Depending on whether one is considering abun-
dances which extend in atomic mass number down to the 1st or 2nd r-process peak, the Solar mass
fraction of r-process nuclei is Xr = 4 ⇥ 10�7 or 6 ⇥ 10�8, respectively111 (see also Sec. 7). The
r-process mass per burst needed to explain the solar system abundances is given by
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R
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, (26)

where  ̇SF is the galactic star formation rate in mass per unit time (see Sec. 7), Ṅcoll = RLGRB/fb

is the volumetric rate of collapsar events, with fb being the long GRB beaming fraction, and VMW is
the volume of Milky-Way equivalent galaxies (Sec. 7). Furthermore, tZ denotes the characteristic
time after which long GRBs no longer occur in the Milky Way due to their suppression above a
metallicity threshold (see below). If the rate of long GRBs tracks the star formation rate, then
the r-process mass per burst needed to explain the solar system abundances may be very roughly
approximated as
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where ⇢̇SF(z = 0) ⇡ 2 ⇥ 107M� yr�1 Gpc�3 is the local star-formation rate (e.g., ref. 112),
fb ⇡ 5 ⇥ 10�3 is a recent estimate of the long GRB beaming fraction113, and the prefactor fZ =R
tZ  ̇SF dt/

R
t(z=0)

 ̇SF dt is a conservative limit on the fraction of star formation in the Milky
Way that occurred below the critical metallicity threshold required for collapsars (see below). As
previous GRMHD simulations show that a fraction fw ⇡ 0.3� 0.4 of the matter inflowing through
the inner few tens of gravitational radii of the BH is unbound in winds9, 33, 56, we conclude that a
total mass mr,acc = mr,coll/fw . 0.2 � 1M� must be accreted per collapsar to explain their solar
system abundances. This is well within the range predicted by theoretical models (e.g., ref. 10;
Sec. 4).

The prefactor fZ < 1 in Eq. (27) accounts for the fact that host galaxy studies show that
long GRBs may occur preferentially below a certain stellar metallicity (e.g., ref. 31) and thus may
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Relative r-process contribution:

Independent absolute r-process estimate:

• assume accreted mass proportional to gamma-ray energy (same physical 
processes in both types of bursts, similar observational properties!)

• assume collapsars as main contribution to Galactic r-process:

r-process mass in the Galaxy, mr, may be crudely estimated by the ratio
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where we have used the local z ⇡ 0 rates of short GRBs of RSGRB(z = 0) ⇡ 4.1+2.3
�1.9 Gpc�3

yr�1 (e.g., ref. 108) and long GRBs of RLGRB(z = 0) ⇡ 1.30.6
�0.7 Gpc�3 yr�1 (e.g., ref. 109). This

approximation gives a conservative lower limit on the ratio because the ratio of long to short GRBs
increases with redshift; long GRBs approximately track star formation, which peaks at z ⇡ 2 � 3,
while short GRBs are consistent with a sizable delay time (e.g., refs. 108, 110). This estimate
suggests that collapsars could well contribute more total r-process production in the Galaxy than
neutron star mergers (see Extended Data Fig. 6 for a schematic summary).

We also perform a rough absolute estimate of the r-process ejecta mass needed per collapsar
in order to explain their solar system abundances. Depending on whether one is considering abun-
dances which extend in atomic mass number down to the 1st or 2nd r-process peak, the Solar mass
fraction of r-process nuclei is Xr = 4 ⇥ 10�7 or 6 ⇥ 10�8, respectively111 (see also Sec. 7). The
r-process mass per burst needed to explain the solar system abundances is given by
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Ṅcoll dt

, (26)

where  ̇SF is the galactic star formation rate in mass per unit time (see Sec. 7), Ṅcoll = RLGRB/fb

is the volumetric rate of collapsar events, with fb being the long GRB beaming fraction, and VMW is
the volume of Milky-Way equivalent galaxies (Sec. 7). Furthermore, tZ denotes the characteristic
time after which long GRBs no longer occur in the Milky Way due to their suppression above a
metallicity threshold (see below). If the rate of long GRBs tracks the star formation rate, then
the r-process mass per burst needed to explain the solar system abundances may be very roughly
approximated as
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where ⇢̇SF(z = 0) ⇡ 2 ⇥ 107
M� yr�1 Gpc�3 is the local star-formation rate (e.g., ref. 112),

fb ⇡ 5 ⇥ 10�3 is a recent estimate of the long GRB beaming fraction113, and the prefactor fZ =R
tZ  ̇SF dt/

R
t(z=0)

 ̇SF dt is a conservative limit on the fraction of star formation in the Milky
Way that occurred below the critical metallicity threshold required for collapsars (see below). As
previous GRMHD simulations show that a fraction fw ⇡ 0.3 � 0.4 of the matter inflowing through
the inner few tens of gravitational radii of the BH is unbound in winds9, 33, 56, we conclude that a
total mass mr,acc = mr,coll/fw . 0.2 � 1M� must be accreted per collapsar to explain their solar
system abundances. This is well within the range predicted by theoretical models (e.g., ref. 10;
Sec. 4).

The prefactor fZ < 1 in Eq. (27) accounts for the fact that host galaxy studies show that
long GRBs may occur preferentially below a certain stellar metallicity (e.g., ref. 31) and thus may
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consistent with relative estimate, using r-process yield from GW170817 (~0.05 Msun)

dominant contribution to Galactic r-process relative to mergers

Multimessenger astrophysics and the cosmic origin of the heavy elements
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Collapsars: galactic chemical evolution
Siegel, Barnes, Metzger 2018

Dominant contribution to the Galactic r-process from collapsars 
dramatically improves evolution of r-process enrichment at high 

metallicity (MW disk)!
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How can we test this observationally?
Siegel, Barnes, Metzger 2018
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How can we test this observationally?
Siegel, Barnes, Metzger 2018
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Ni-rich
& r-process 

Material

MHD SN scenario

r-process material 
increases opacity

MHD supernovae likely rued out as significant heavy r-process source
(consistent with recent 3D simulations                 )Moesta+ 2018



Conclusions

Short gamma-ray bursts in the “time-reversal” scenarioDaniel Siegel

• Collapsars help alleviate observational challenges of merger models

• NS mergers inconsistent with r-process enrichment 
of Milky Way disk (and challenged by UFDs)

reproduce r-process enrichment at high metallicity
(track star formation history)

• GW170817: heavy elements & red kilonova most likely originate 
from outflows of post-merger accretion disk

• Collapsars likely provide dominant contribution to Galactic r-
process

similar physics as in NS post-merger disks

lower event rate overcompensated by higher yield
(calibrated relative to GW170817)

can produce entire range of r-process nuclei

ubiquitous phenomenon

don’t require very short delay times and small kicks to 
explain enrichment in UFDs

Multimessenger astrophysics and the cosmic origin of the heavy elements

naturally produce high levels of r-process 
enrichment at low metallicity
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