\:

DESC

Photometric Redshifts for LSST

Jeffrey Newman, U. Pittsburgh / PITT-PACC

Follow-up Task Force Co-convener, LSST Dark Energy Science Collaboration




Outline

e Overview of photometric redshifts
— Template methods
— Training-based methods

e Requirements and resources for training and calibrating
photometric redshifts

e Some open issues

Spectroscopic incompleteness

Robust training

p(z) coverage

Combining results from multiple codes
p(z,a) storage

Defining ideal LSST algorithm
Optimizing spectroscopic samples

e Some examples of problems with current codes



LSST constrains dark energy in many ways...

all will rely on redshift information )/ “’DESC
- LSST will constrain dark energy
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Spectrosco rovides ideal redshift
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measurements — but is infeasible for large samples

e Redshift ('z') measurements allow us to determine how far back in
Universe's history we are looking for an object

e Study galaxy evolution, cosmology, etc. by measuring properties as
a function of redshift

¢ To determine: measure spectrum of light from object with
spectrograph; compare observed wavelengths of spectral features
to rest frame values to get z

e At LSST “gold sample” (i<25.3) depths, ~100 hours on a 10m
telescope to determine a redshift (75% of time) spectroscopically

e With a next-generation, 5000-fiber spectrograph on a 10m
telescope, still >50,000 telescope-years to measure redshifts for

LSST “gold” weak lensing sample (4 billion galaxies)!

Credit: ESO



Spectroscopy provides ideal redshift
measurements — but is infeasible for large samples

e Alternative: use broad
spectral features to
determinez:a
photometric redshift or
photo-z

e Advantage: high
multiplexing

e Disadvantages: lower
precision,
calibration uncertainties
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Photometric redshifts rely on the existence of <\ |
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broad spectral features in galaxy spectra... s
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but those features are stronger in some galaxies \I'
than others

Galaxies with older
stellar populations
exhibit stronger
'‘breaks’

As a result, photo-
z's can be more
precise for redder
galaxies

At higher redshifts,
blue galaxies with
young stellar
populations
dominate - photo-z
problem gets
harder
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Example: expected photo-z performance for LSST

ugrizy
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Green: Requirements on actual
performance; grey: requirements on

performance with perfect template
knowledge (as in these sims)
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Basic methods: Template fitting photo-z's
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e Use galaxies with known z to calibrate set of underlying galaxy
spectral energy distributions (SEDs) and photometric band-passes

— Determine posterior probability distribution for z | ugrizy

— Also provides info on galaxy properties from template fit

Needs spectra of
galaxies spanning
full range of

possible

properties to
tune templates,
establish priors,

etc.
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Ilbert photo-z’s vs. DEEP2 7
Plot by Ben Weiner
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Describing photometric redshift measurements

e Some codes simply outputthe | 31
best-fit z with errors — Finkelstein argnal)

e Generally better to use the B \%L;ttd ggglf
posterior probability

distribution for z | fluxes: p(z) £ |

e probabilitythata<z<b = |
Jbp(z) dz |
¢ [p(z)dz=1

e Various definitions for 'point'/
single estimate from p(z):

e Peak of distribution

e Expectation value of z
(possibly only calculating
using highest peak)

GOODSS ID16209, spec z=1.331

8



Describing photometric redshift measurements

¢ (Can also provide info on
galaxy properties from
template fit

e E.g., template index T or
galaxy parameters a;such
as stellar mass, star
formation rate, etc.):
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Basic methods: Template fitting photo-z's
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e Typical algorithms:

— Determine likelihood of
colors (=ratios of fluxes
between bands) as a
function of z and template

— Often via x2(z,T) or
min( {x2(z|T)}); some
algorithms use linear
combinations of
templates
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Benitez 2000

— Typically utilize prior for redshift or redshift & type based on
magnitude (sometimes size/morphology as well)

— Then multiply to get posterior. ..
Use spectra of galaxies spanning full range of possible properties to
tune templates/filter systems, establish priors, etc.
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Basic methods: Template fitting photo-z's
— 2DESC

HP ElC * © § 7 ] 9 @ & 1 L

e Note t.hat this is standard L b/50 —— "\ Likelihood:
Bayesian language: i0F L R 2

* p(fluxes | z) = likelihood B e e
e p(z) = prior O S e Prior
e p(z | fluxes) = posterior = ,,,_\ e
e By Bayes' theorem, - : Posterior :
p(z|fluxes) = p(fluxes|z) p(z) R .
e e e e = — LJJ/HJ—:

p(fluxes) ° 1 ; ’ !

Benitez 2000

e We often just normalize the
integral of the posterior to be
1 rather than calculating
p(fluxes)



Basic methods: Training-based photo-z's

e Use galaxies with known

redshift and uniform/well- | SDSS
understood sampling to }:' 3 4 o/(1+2)~0.02
determine relationship between E
Z and colors/fluxes 532 g -
e Can take advantage of progress % |
in machine learning & stats, but ‘é z
generally extrapolate poorly; g -
Training set MIUST span full B 8 -

e I T I P

range of properties & z of 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
. Spectroscopic Redshift (z)
galaxies

Freeman, JN et al. 2009



Basic methods: Training-based photo-z's

e Many algorithms: e.g.

— Neural networks )
— Boosted Decision Trees N S _ §/P1§zs)~0,oz
— Random Forest regression ‘§ ) ]
— k-Nearest Neighbor -
— Diffusion map + regression % s
5
o
e For bright, nearby galaxies, 5 2-
training sets are ~complete and § |
both template-based & training- & |
SEt-baSEd algorithms perform ° 0;)0 0.105'0.‘10 0.115 0.120 O.IZS O.;O 0.135
extremely simila r|y Spectroscopic Redshift (z)

Freeman, JN et al. 2009



At higher redshifts, the photo-z problem is more

difficult
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e Zhou et al. 2018 (in prep.): empirical, LSST-like dataset: CFHT LS
ugriz + Subaru y + DEEP2/DEEP3/3D-HST redshifts

EAZY (template code, untuned)
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Zhou, JN et al. 2018, in prep.
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Two spectroscopic needs for photo-z work: training
and calibration

e Better training
( optimization of
algorithms using sets of
objects with
spectroscopic redshift
measurements) shrinks
photo-z errors for

individual objects

=0.03(1+2z)

3 3

O

0.003(1+2z)
g 8

PAU o,

Redshift space

Benitez et al. 2009

— Training datasets will contribute to calibration of photo-z's.
~Perfect training sets can solve calibration needs.



Improved photometric redshift training would greatly increase the
science gains from LSST

e E.g.:all LSST probes of dark 0.1 — ———
energy will rely on measuring |
observables as a function of

— — WL
..... BAO

T T T T7TTTT
N A A (N S N |

BAO + WL | .
photometric redshift > i .
e Smaller photo-z errors from R - a ~
better-trained algorithms can % - berfect Today's 1
improve dark energy constraints, © i Training | o1raining ]

especially for BAO and clusters /////

10—3 1 1 1 1 l 1 | 1 1
0 0.05 0.1

0,/(1+2)  Zhan 2006

T
|

e LSST system-limited photo-z accuracy is 6,~0.02-0.025(1+z) (vs.
0.~0.05(1+z) in similar samples today): difference is knowledge of
templates/intrinsic galaxy spectra

e Perfect training set would increase LSST DETF FoM by at least 40%



Excellent calibration of photo-z's is needed or else
dark energy inference will be wrong

¢ For weak lensing and
supernovae, individual-object
photo-z's do not need high 2.5
precision, but the calibration

3.0

z .
must be accurate - i.e., bias S 20
and errors need to be z P
extremely well-understoodor  ° 15
dark energy constraints will
be off fo——
0.0001 0.0010 0.0100 0.1000

Ao

Z

Newman et al. 2015

— uncertainty in bias, 0 (6 )= o(<zp -z >), and in scatter, 0(c )= o(RMS(zp —2_)), must both

be <~0.002(1+z) in each bin for Stage IV surveys. Calibration may be done via cross-
correlation methods using DESI/4MOST redshifts (Newman 2008)



Requirements for photometric redshift training for
LSST

¢ Need highly-secure spectroscopic redshifts
for 20k-30k galaxies sampling full range of
galaxy colors, magnitudes, and redshifts

Equivalent 1., from 4 nights@GMT
95 T R 26

e Newman et al. 2015, Spectroscopic Needs .

for Imaging Dark Energy Experiments,
presents a baseline scenario:

- >30,000 galaxies down to LSST weak
lensing limiting magnitude (i~25.3)

- 15 widely-separated fields at least 20
arcmin diameter to allow sample/cosmic
variance to be mitigated & quantified

Fraction with successful z

0.2
: : : —— DEEP2
* Equal cosmic variance to Euclid C3R2 2COSMOS
plan but much lower sky area 0.0 :
: 18 19 20 21 22 23 24
* Long exposure times are needed to Lin

ensure >75% redshift success rates: >100
hours at Keck to achieve DEEP2-like S/N
at j=25.3

- See http://adsabs.harvard.edu/abs/2015APh....63...81N

Newman et al. 2015



Note: even for 100% complete samples, current
false-z rates would be a problem

e  Only the highest-
confidence redshifts | e,
should be useful for
precision calibration:
lowers spectroscopic
completeness further
when restrict to only the
best

0.010 - . -

Error in <z>

e A major reason why
getting highly secure
redshifts is important

0.001 - E

—— 100k calib. spectra

) ) - == 0.5% wron
Based on simulated redshift | — 2,75370 wroﬁg

distributions for ANNz-defined DES —---= 5% wrong
bins in mock catalog from Huan Lin, o b b e e e b
UCL & U Chicago, provided by Jim 0.0 0.2 0.4 0.6 0.8 1.0 12 1.4
Annis Nominal mean z




Summary of (some!) potential instruments for photo-z training

Instrument / Telescope Collecting Area (sq. m) Field area (sq. deg.) Multiplex

AMOST 10.7 4.000 1,400
Mayall 4m / DESI 11.4 7.083 5,000
WHT / WEAVE 13.0 3.139 1,000
Magellan LASSI 32.4 1.766 5,000
Subaru / PFS 53.0 1.250 2,400
VLT / MOONS 58.2 0.139 500
Keck / DEIMOS 76.0 0.015 150
FOBOS 76.0 0.087 500
ESO SpecTel 87.9 4.9 3,333
MSE 97.6 1.766 3,249
GMT/MANIFEST + GMACS v. A 368 0.087 760
GMT/MANIFEST + GMACS v.B 368 0.087 420
TMT / WFOS 655 0.011 100
Eiber—WHRO Smpessimrisbie 55 0-022 1000
Frver=W O S=optimmstic 655 0-656 2-666
E-ELT / Mosaic Optical 978 0.009 200
E-ELT / MOSAIC NIR 978 0.009 100

Updated from Newman et al. 2015, Spectroscopic Needs for Imaging Dark Energy Experiments



Dark time (with 1/3 losses for weather + overheads)
required for each instrument

Total time (years), >75% Total time (years), >90%
Instrument / Telescope complete LSST sample complete LSST sample
AMOST 7.7 48.4
Mayall 4m / DESI 5.1 31.9
WHT / WEAVE 9.0 56.0
Magellan LASSI 1.8 11.2
Subaru/PFS 1.1 6.9
VLT /MOONS 4.0 25.0
Keck/Deimos 10.2 63.9
Keck/FOBOS 4.4 27.5
ESO SpecTel 0.66 4.1
MSE 0.60 3.7
GMT/MANIFEST + GMACS v. A 0.42 2.6
GMT/MANIFEST + GMACS v.B 0.75 4.7
TMT / WFOS 1.8 11.1
FHrer=t -G 5=pesstmistte 536 22
+Hrer—P O Goprtimstic Ot Spess
E-ELT / MOSAIC Optical 0.60 3.7
E-ELT / MOSAIC NIR 1-|.-2 71-4

Updated from Newman et al. 2015, Spectroscopic Needs for Imaging Dark Energy Experiments



If spectroscopy proves incomplete, calibration will
probably need to come from cross-correlation methods

] T T T T T T T T I T 1 T T | T T T ]

e Galaxies of all types cluster —— 500 deg’ sBOSS

-| e—a 3000 deg” DESI

together: trace same dark matter ma 7 oo calisnon speden
distribution

|
1

e Enables reconstruction of z 0.010/
distributions via spectroscopic/ ’
photometric cross-correlations
(Newman 2008)

e For LSST calibration, require >100k
objects over >100 deg?, spanning full
Z range

Error in <z>

0.001¢}

¢>500 degrees of overlap with DESI- R e
like survey would meet LSST science Nominelmesn s
requirements (>4000 sq deg of
overlap expected)

Snowmass white paper: Spectroscopic
Needs for Imaging DE Experiments
(Newman et al. 2015, http://arxiv.org/abs/
1309.5388)
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Open issues: dealing with incompleteness in training/

calibration datasets

e |In current deep spectroscopic
surveys, 25-60% of targets fail
to yield secure redshifts

e zsuccess rate depends on
galaxy properties

Estimated need 99-99.9%
completeness to prevent
systematic errors in calibration,
unless apply other methods
(e.g., cross-correlations)

Major issue for training-set
techniques

Fraction with successful z
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Equivalent 1,5 from 4 nights@GMT
22 23 24

21 25 26

1.0

0.8
0.6

0.4

0.2 M DrEP2

zCOSMOS

0.0
18 19 20 21 22 23 y

Lin

2013) and zCOSMOS (Lilly et al.
2009)



Open issues: Robust training methods
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1% incorrect-redshift rate is
sufficient to bias photo-z's
beyond tolerances

Depending on survey, up to 5%
of 'secure’ redshifts are
incorrect

If can train algorithms in a
manner robust to outlier/
wrong redshifts, could use the
broader set of less-secure
spectroscopic redshifts

ML methods that extrapolate
well would also be interesting
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Zhou, JN et al. 2018, in prep.
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Open issues: Making posteriors great again ~.

-

e CANDELS code comparison: Dahlen et al. 2013

¢ 11 code/template combinations were tested using ~600 redshifts
in GOODS-S (trained with a separate set of 600 redshifts)

¢ Generally X2 minimization, generally with some sort of prior.
e Codes with p(z)'s available are marked by %

Code Code ID  Template set bias? OLF®  o% od

Rainbow A PEGASE® -0.010 0.092 0.167 0.041

GOODZ B CWW¢, Kinney? -0.007 0.036 0.099 0.035

EAZY % C EAZYe+BX418F -0.009 0.051 0.114 0.044

SPOC D BC039 -0.030 0.147 0.197 0.073

zphot * E PEGASEv2.0° -0.007 0.041 0.104 0.037

EAZY C EAZY® -0.009 0.053 0.121 0.037

SATMC F BC039 -0.008 0.093 0.272 0.064

HyperZ G Maraston05” 0.013 0.078 0.189 0.050

LePhare % H BC039+Polletta07’ -0.008  0.048 0.132 0.038

WikZ * 1 BC039 -0.023 0.046 0.153 0.049

EAZY « C EAZY* -0.005 0.039 0.127 0.034
-0.008 0.029 0.088 0.031 median(all)
-0.009 0.031 0.079 0.029 median(5)

Dahlen et al. 2013
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Open issues: Making posteriors great again

e Many analyses assume that
photo-z codes are providing

posterior PDFs with proper Code  WFC3 H-selected

conf. int: 68.3% 95.4%

coverage (and assuming that 5A 61
they can add PDFs to get N(z); 3B 81.6 92.8
talk to Alex Malz if you want to 4C *  64.0 88.2
learn about the right way to do oD 2.9 4.2
that...) 6E * 52.0 4.7
7C 65.0 7.3
e Dahlen et al. 2013 tested the Sk 15.5 15.6
fracﬁt?n of spectrt?scopic. 191% * égg 5444..01“
redshifts that are in the inner 191 * 88.7 96.7
68% or inner 95% of their PDFs 13C *  52.0 72.7

e Coverage is all over the place;

no codes were good at both

68% and 95% points
Dahlen et al. 2013
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Open issues: Making posteriors great again

e LSST Dark Energy Science
Collaboration has done a controlled percentiles of spec-z's for Wiklind
exploration of this problem... more in
a minute

e Meanwhile, kludge in Kodra et al.
2019: modify p(z)'s for CANDELS HST
survey
e Shift p(z) by constant in z

direction; convolve with Gaussian
kernel; and take to a power
(equivalent to rescaling errors in x2

Qa’m‘.a

calculation)
e Optimize parameters by minimizing ::
total L2 norm of deviation in quantile- | v 2Hitee S o a0, ExmAG s
. . -0.2F — Wiklind, shifted + convolved, 4030, L2 norm = 0.783 : =1
quantile plot from expected line . [ idealine | |
. . . 0.0 0.2 0.4 0.6 0.8 1.0
e Quantile-quantile shows the fraction Orteor

of objects whose true redshift is
below quantile Q:heoryin the object's
photo-z PDF: ideally, unity line

Kodra, JN et al. 2019, in prep.



Open issues: Combining PDF results from multiple codes

e Dahlen et al. found that medians o —
of point estimates from multiple - z—selected 1
codes (%'s) have smaller scatter e | (Qe& o '
(relative to spec-z) than any = | s
individual code £ <k S -
§ B o ° T
= i o ° ¢ i
e All codes are run on the same S **3‘. 1
data! Current codes do not i T
make optimal use of available %‘02 | O,IO4 | o,log | 0.(

information... : :
rms(excluding outliers)

Dahlen et al. 2013
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Open issues: Combining PDF results from multiple codes

Dahlen et al. presented a hierarchical Bayesian combination
method (cf. Press & Kochanek, Lang & Hogg, etc.)

Izbicki & Lee 2016 use weighted combinations of codes

Kodra et al. (in prep) investigates using PDF that minimizes total
Fréchet distance to remaining PDFs: analogous to median

14

O 1 1 1 = .
0.40 0.45 0.50 0.55 0.60 0.65 0.70

r D. Kodra



Open issues: Combining PDF results from multiple codes

14

12F

10F

P(z)

GOODSS ID16209, spec z = 1.331

Finkelstein original
Fontana original
Salvato original
Wiklind original
Wuyts original

1.6 1.7 1.8

D. Kodra



Open issues: Combining PDF results from multiple codes

GOODSS ID16209, spec z=1.331

14 . - .
— Finkelstein original
12k — Fontana original
— Salvato original
- Wiklind original
— Wuyts original
— HB
- o * » mFDa
N
o mMFDs

;;;;;;;;;;;;

D. Kodra



Open issues: Combining PDF results from multiple codes

GOODSS ID16209, spec z = 1.331

14

— HB
»—x mFDa ||
= mFDs

D. Kodra



A related case: template-based and training-based methods .

\ II‘

have different failure modes - how best to combine? "* EDES
e .n‘"ii.l/ll 'I"v.

e |dentify potential outliers from discrepant results?

~
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Zhou, JN et al. 2016, in prep.
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Open issues: Storing p(z,a)
— ADESC

payial

Carrasco-Kind & Brunner 2014 achieved strong compression of
photo-z PDFs using sparse representation and well-chosen basis set
For many LSST applications, want 2+-dimensional PDFs

Can suitably sparse (<few hundred #s) representations be
achieved?

Are samples from PDFs OK for all science cases?

0.07 [ T T T T T T T T T ] 0-011 = T T T . T
— Original — Sparse rep. ® ® Sparse rep. fixed bases
— Multi Gaussian - - Single Gaussian A Multi Gaussian fitting
0.06 1 ;
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! \ ® o
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- 0001_. ............ ® . e |
000 - 4 . e - . . - " Il 1 1 Il ! 1 ] 1
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redshift Points per PDF

Carrasco-Kind & Brunner 2014



Open issues: Optimizing spectroscopic targeting

e Current state of the art: Masters et al. 2015
e Self-organized map of galaxy colors

20 T T T 20

Cell #8642, x =17 y =115 Cell # 8988, x = 63, y =119
21E  Photo-z estimate: 1.186 E - Photo-z estimate: 0.595

# Objects in cell: 21 # Objects in cell: 15
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Cell #B342, x = 17, y = 111
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# Objects in cell: 19

Cell #6480, x = 40, y = 86
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Masters et al. 2015
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e Prioritize cells with few redshifts for spectroscopic follow-up
e Are there better ways to do this?

Open issues: Optimizing spectroscopic targeting ~

0 1 g 6 2 3 4 5 B
Median spec-z, high confldence (--1 00%) redshlﬂs Median spec-z, conﬂdence > 95% redshifts
T, i 1 =T i T T
[ L] o Rl I+ 2 : :r-:.
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v ity R )

Masters et al. 2015



Open issues: Ideal photo-z code?

What might an ideal LSST photo-z algorithm look like?

Trained with >30,000 spectra spanning range of spectra

Develops priors & tweaks templates via hierarchical Bayesian
hyperparameters

Incorporates variations in effective filter wavelengths due to
observational conditions: requires applying algorithm to O(1000)
measurements instead of O(6)

Incorporates AGN classification and AGN photo-z determination:
colors are not constant with time for many objects!

Want algorithms to be fast: create ML-based emulators for
template photo-z's?

For bright objects, may also be useful to compare to ML
techniques to identify potential outliers



Outline

e Overview of photometric redshifts
— Template methods
— Training-based methods

e Requirements and resources for training and calibrating
photometric redshifts

e Some open issues

Spectroscopic incompleteness

Robust training

p(z) coverage

Combining results from multiple codes
p(z,a) storage

Defining ideal LSST algorithm
Optimizing spectroscopic samples

e Some examples of problems with current codes
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CANDELS code comparison: Dahlen et al. 2013 ~ AW

-

e Many tests of photo-z algorithms with deep, high-redshift dataset.
Examples:

« Test photo-z performance as degrade photometry (using same
test spectroscopic data)

- Dependence of errors on redshift, magnitude, & color

 Investigation of (lack of) consistency between photometric
zero point shifts from different codes

- Empirical test of photo-z errors using Az between close pairs
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L L | | | T ST T T T T T
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© full sample Qo Faint catalog 1
: 5 8F
shifted spec—z sample © T ]
4C 121 ]
«~ F ]
T S s 6E / 9G a
< 5 L { 71(1:H ]
= O | 1
I =t ]
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© = - i
3 < L ]
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B w [ ]
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o r .

Bright catalog
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0.03 0.04 0.05 0.06 0.07 0.08
mag(H) rms(excluding outliers) Dahlen et al. 2013
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New work: Kodra et al. 2019

e Compare predictions of codes in space of p(z | H)

o Disagreement On Where Finkelstein Fontana Salvato Wviklind

there are redshift
spikes 5
e Priors have huge effect
at low z (non- :
monotonic behavior)
e Different effective _
smoothings :
e The performance of
these codes for zpeak :
isn't all that

different. ..

lues [1, 10])

(log sp

lues [0.0, 1])

p

H

&
rTf
mag

mag{H)

D. Kodra
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New work: Kodra et al. 2019 A
— DESC

-
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e This can have large (factor of few) effects on the inferred number
of objects at a given redshift

plot of luminosity functions, z = 1.50 corresponding to distance modulus mu = 45.23

— FHnkelstein
— Fontana
— Salvato
—  Wiklind
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-26 =7 22 —20 ~18 E = 5 ~10

abs. mag = mag. H - dist. mod. = mag. H - 5*log(d L / 10pc)

D. Kodra



New work: Schmidt, Malz et al. 2019

e Testing a dozen photo-
z codes with large,
representative training
sets, and full template
knowledge and priors
passed to algorithms

o Still fail to yield p(z)
which meet the
statistical definition of
a probability
distribution (assessed
via Q-Q statistics and
Probability Integral
Transform [PIT])
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New work: Schmidt, Malz et al. 2019 ~ .\
— ADESC
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e Substantial variation
in stacked p(z) among e Y B

zspec KDE sum
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Conclusions 4DESC
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¢ Training-based methods are easier to get good results from
than template-based methods, but don't extrapolate well

e Key issues for LSST are where to get deep training sets, and
inability to get complete training sets

e A variety of interesting problems to work on in the near
future

¢ Current codes appear sufficient to meet LSST requirements, but
are clearly suboptimal. Better photo-z's will greatly increase the
value of LSST - e.g. 40% increase in Dark Energy Figure of Merit



Spectroscopic training set requirements

e Goal: make 6, and o(c,) so small that systematics are subdominant

Many estimates of training set requirements (Ma et al. 2006, Bernstein &
Huterer 2009, Hearin et al. 2010, LSST Science Book, etc.)

General consensus that roughly 20k-30k extremely faint galaxy spectra
are required to characterize:

spec-Zphot €FTOF distribution

— Typical z

— Accurate catastrophic failure rates for all objects withz |  <2.5

— Characterize all outlier islands in ZgpecZphot plane via targeted campaign

(core errors easier to determine)



What qualities do we desire in our training sets?

e Sensitive spectroscopy of faint objects (to i=25.3)
- Need a combination of large aperture and long exposure times from the
ground; >20 Keck-nights (=4 GMT-nights) equivalent per target, minimum
e High multiplexing

- Obtaining large numbers of spectra is infeasible without it

See Newman et al. 2015, Spectroscopic Needs for Imaging Dark Energy
Experiments, for details



What qualities do we desire in our training sets?

H, 6563

18000}
0,,,] 5007

Coverage of full optical

window if working from 16000
the ground <. 14000
i s
-oldeally, from below 4000 g 12000
A to ~1.5um T
. . = 10000
- Require multiple 2
features for secure 8000
redshift —
4000L 1 . o T
0.0 0.5 1.0 1.5 2.0

redshift
Comparat et al. 2013, submitted



What qualities do we desire in our training sets?

Significant resolution
(R>~4000) at red end if
working from the ground

- Allows redshifts from
[O11] 3727 A doublet
alone, key at z>1

- Not necessary if get
multiple features from
deep IR coverage

100

80

60

40

20

Percentage of [Oll] doublets resolved

Flux bins 3o

_ 20

15 |

10

N

3000 4000 5000 6000
Resolution

Comparat et al. 2013
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What qualities do we desire in our training sets?

e Field diameters > ~20 arcmin

- Need to span several correlation lengths for accurate clustering
measurements (key for galaxy evolution science and cross-correlation
techniques)

-ro~ 5 h'1 Mpc comoving corresponds to ~7.5 arcmin at z=1, 13 arcmin at
z=0.5

1000 ' L
[ w0 80 160 820 640x10
] [\ » 1/4 deg® —
e Many fields 0 1/8 deg
@ "\ 1/32 deg
e o ° ° =
- Minimizes impact of sample/ ]
cosmic variance. g
- e.g., Cunha et al. (2012) E ol
° < [
estimate that 40-150 ~0.1 deg? [
fields are needed for DES for p Cpalibinalis 16
sample variance not to impact 0 100 1000 10000
errors (unless we get clever) gals/pateh

Cunha et al. 2012



How much time would be required to complete surveys from the Najita et al. Kavli/NOAO/
LSST report on different platforms?

e This is an attempt to take the largest surveys proposed
in the Kavli report and work out how long would be
needed to do them

e  Common set of assumptions: one-third loss to
instrumental effects, weather and overheads; 4m =
Mayall/DESI; 8m = Subaru/PFS; all instrumental
efficiencies identical; equivalent # of photons will yield
equal noise; ignoring differences in seeing/image
quality and fiber/slitlet size. Only medium-resolution
fibers included. Assuming full spectral range can be
covered simultaneously (likely not true for E-ELT).

e See report (available at http://arxiv.org/abs/
1610.01661 ) for details of these surveys

e  Will give time in years on each platform; note that this
is generally dark time (very faint targets!)

e  Costs based on TSIP + inflation: $1k/m2/night

Maximizing Science in the Era of LSST:
A Community-Based Study of Needed US OIR Capabilities

KAVLI A report on the Kavli Futures Symposium organized by NOAO and 15ST @ 7\ i




