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LSST constrains dark energy in many ways… 
all will rely on redshift information

-	LSST	will	constrain	dark	energy	
via	4	major	probes:	

-	Weak	gravitaMonal	lensing	
-	Baryon	AcousMc	OscillaMons	
-	Type	Ia	supernovae	
-	Cluster	counts	
(Plus	strong	lensing,	etc.)	

-	For	all	of	these,	as	well	as	
much	galaxy	and	AGN	science,	
we	want	to	measure	some	
observable	as	a	funcMon	of	
redshi.	

LSST Science Book



Spectroscopy	provides	ideal	redshi.	
measurements	–	but	is	infeasible	for	large	samples
• Redshi.	('z')	measurements	allow	us	to	determine	how	far	back	in	

Universe's	history	we	are	looking	for	an	object		

• Study	galaxy	evoluMon,	cosmology,	etc.	by	measuring	properMes	as		
a	funcMon	of	redshi.	

• To	determine:	measure	spectrum	of	light	from	object	with	
spectrograph;	compare	observed	wavelengths	of	spectral	features	
to	rest	frame	values	to	get	z		

• At	LSST	“gold	sample”	(i<25.3)	depths,	~100	hours	on	a	10m	
telescope	to	determine	a	redshi.	(75%	of	Mme)	spectroscopically	

• With	a	next-generaMon,	5000-fiber	spectrograph	on	a	10m	
telescope,	sMll	>50,000	telescope-years	to	measure	redshi.s	for	
LSST	“gold”	weak	lensing	sample	(4	billion	galaxies)!

Credit:	ESO



Spectroscopy	provides	ideal	redshi.	
measurements	–	but	is	infeasible	for	large	samples

• AlternaMve:		use	broad	
spectral	features	to	
determine	z	:	a	
photometric	redshi.	or	
photo-z	

• Advantage:	high	
mulMplexing	

• Disadvantages:	lower	
precision,																																																	
calibraMon	uncertainMes

Credit:	ESO



Photometric	redshi.s	rely	on	the	existence	of	
broad	spectral	features	in	galaxy	spectra...

Dunlop	2012  

Important spectral features for photo-z
● 4000Å/Balmer break: absorption by H II and Ca II lines
● Lyman break at 912Å: absorption by neutral hydrogen

Dunlop 2012



but	those	features	are	stronger	in	some	galaxies	
than	others

Brammer	et	al.		2008

  

Template-%&ing method

6 spectral templates

3000 Synthetic SEDs

10̂4 mock observations

EAZY - Brammer et al. 2008

Template spectraA common photo-z code: EAZY
• Galaxies	with	older	

stellar	populaMons	
exhibit	stronger	
'breaks'	

• As	a	result,	photo-
z's	can	be	more	
precise	for	redder	
galaxies	

• At	higher	redshi.s,	
blue	galaxies	with	
young	stellar	
populaMons	
dominate	-	photo-z	
problem	gets	
harder

Oldest

Youngest



Example:	expected	photo-z	performance	for	LSST	
ugrizy

Green:	Requirements	on	actual	
performance;	grey:	requirements	on	
performance	with	perfect	template	
knowledge	(as	in	these	sims)

S.	Schmidt



• Use	galaxies	with	known	z	to	calibrate	set	of	underlying	galaxy	
spectral	energy	distribuMons	(SEDs)	and	photometric	band-passes	
– Determine	posterior	probability	distribuMon	for	z	|	ugrizy	
– Also	provides	info	on	galaxy	properMes	from	template	fit

Ti Grid 
Flexure

Needs	spectra	of	
galaxies	spanning	
full	range	of	
possible	
properMes	to	
tune	templates,	
establish	priors,	
etc.

Plot	by	Ben	Weiner

Basic	methods:	Template	fimng	photo-z's



Example of combining codes.

Dritan Kodra (UPitt) Photo-z’s with CANDELS October 2, 2015 12 / 41

Describing	photometric	redshi.	measurements

• Some	codes	simply	output	the	
best-fit	z	with	errors	

• Generally	be=er	to	use	the	
posterior	probability	
distribuMon	for	z	|	fluxes:	p(z)	

• probability	that	a	<	z	<	b									=	
∫		p(z)	dz	
• ∫		p(z)	dz	=	1	

• Various	definiMons	for	'point'/
single	esMmate	from	p(z):	
• Peak	of	distribuMon	
• ExpectaMon	value	of	z	

(possibly	only	calculaMng	
using	highest	peak)	

0

a
b

∞



Describing	photometric	redshi.	measurements

• Can	also	provide	info	on	
galaxy	properMes	from	
template	fit	

• 	E.g.,	template	index	T	or	
galaxy	parameters	αi	such	
as	stellar	mass,	star	
formaMon	rate,	etc.):	
p(z,α) Ti Grid 

Flexure

  

Posterior 
probability 
distributions
A galaxy with 
high redshi◆

Chevallard & Charlot 2016

Chevallard	&	Charlot	2016

Redshift

R
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p(z)



• Typical	algorithms:	
– Determine	likelihood	of	
colors	(=raMos	of	fluxes	
between	bands)	as	a	
funcMon	of	z	and	template	
– O.en	via	χ2(z,T)	or	
min(	{χ2(z|T)}	);	some	
algorithms	use	linear	
combinaMons	of	
templates

Ti Grid 
Flexure

Benitez	2000

– Typically	uMlize	prior	for	redshi.	or	redshi.	&	type	based	on	
magnitude	(someMmes	size/morphology	as	well)	

– Then	mulMply	to	get	posterior.	.	.		
Use	spectra	of	galaxies	spanning	full	range	of	possible	properMes	to	
tune	templates/filter	systems,	establish	priors,	etc.

Likelihood

Prior

Posterior

Basic	methods:	Template	fimng	photo-z's



• Note	that	this	is	standard	
Bayesian	language:	

• p(fluxes	|	z)	=	likelihood	
• p(z)	=	prior	
• p(z	|	fluxes)	=	posterior	
• By	Bayes'	theorem,		
p(z|fluxes)	=	p(fluxes|z)	p(z)		

• We	o.en	just	normalize	the	
integral	of	the	posterior	to	be	
1	rather	than	calculaMng	
p(fluxes)	

Ti Grid 
Flexure

Benitez	2000

Likelihood

Prior

Posterior

Basic	methods:	Template	fimng	photo-z's

p(fluxes)



• Use	galaxies	with	known	
redshi.	and	uniform/well-
understood	sampling	to	
determine	relaMonship	between	
z	and	colors/fluxes		

• Can	take	advantage	of	progress	
in	machine	learning	&	stats,	but	
generally	extrapolate	poorly;	
Training	set	MUST	span	full	
range	of	properMes	&	z	of	
galaxies

Basic	methods:	Training-based	photo-z's

Freeman,	JN	et	al.	2009

Spectroscopic	RedshiF	(z)



Basic	methods:	Training-based	photo-z's

Freeman,	JN	et	al.	2009

• Many	algorithms:	e.g.	
– Neural	networks		
– Boosted	Decision	Trees	
– Random	Forest	regression	
– k-Nearest	Neighbor	
– Diffusion	map	+	regression	

• For	bright,	nearby	galaxies,	
training	sets	are	~complete	and	
both	template-based	&	training-
set-based	algorithms	perform	
extremely	similarly	 Spectroscopic	RedshiF	(z)



• Zhou	et	al.	2018	(in	prep.):	empirical,	LSST-like	dataset:	CFHT	LS	
ugriz	+	Subaru	y	+	DEEP2/DEEP3/3D-HST	redshi.s

At	higher	redshi.s,	the	photo-z	problem	is	more	
difficult

EAZY	(template	code,	untuned) Random	Forest	Regression

Zhou,	JN	et	al.	2018,	in	prep.
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Two	spectroscopic	needs	for	photo-z	work:	training	
and	calibraMon

Zhan 2006

• Be=er	training	
(	opMmizaMon	of	
algorithms	using	sets	of	
objects	with	
spectroscopic	redshi.	
measurements)	shrinks	
photo-z	errors	for	
individual	objects

Benitez et al. 2009

– Training	datasets	will	contribute	to	calibraMon	of	photo-z's.		
~Perfect	training	sets	can	solve	calibraMon	needs.



Improved	photometric	redshi.	training	would	greatly	increase	the	
science	gains	from	LSST

• E.g.:	all	LSST	probes	of	dark	
energy	will	rely	on	measuring	
observables	as	a	funcMon	of	
photometric	redshi.	

• Smaller	photo-z	errors	from	
be=er-trained	algorithms	can	
improve	dark	energy	constraints,	
especially	for	BAO	and	clusters	

Zhan 2006

• LSST	system-limited	photo-z	accuracy	is	𝛔z~0.02-0.025(1+z)	(vs.	
𝛔z~0.05(1+z)	in	similar	samples	today):	difference	is	knowledge	of	
templates/intrinsic	galaxy	spectra	

• Perfect	training	set	would	increase	LSST	DETF	FoM	by	at	least	40%

Perfect 
Training

Today's
Training



Excellent	calibraMon	of	photo-z's	is	needed	or	else	
dark	energy	inference	will	be	wrong

• For	weak	lensing	and	
supernovae,	individual-object	
photo-z's	do	not	need	high	
precision,	but	the	calibraMon	
must	be	accurate		-	i.e.,	bias	
and	errors	need	to	be	
extremely	well-understood	or	
dark	energy	constraints	will	
be	off

– uncertainty	in	bias,	σ(δz)=	σ(<zp	–zs>),	and	in	sca=er,	σ(σz)=	σ(RMS(zp	–zs)),	must	both	
be	<~0.002(1+z)	in	each	bin	for	Stage	IV	surveys.		CalibraMon	may	be	done	via	cross-
correlaMon	methods	using	DESI/4MOST	redshi.s	(Newman	2008)

Newman et al. 2015



Requirements	for	photometric	redshi.	training	for	
LSST

• Need	highly-secure	spectroscopic	redshi.s	
for	20k-30k	galaxies	sampling	full	range	of	
galaxy	colors,	magnitudes,	and	redshi.s	

• Newman	et	al.	2015,	Spectroscopic	Needs	
for	Imaging	Dark	Energy	Experiments,	
presents	a	baseline	scenario:	
• >30,000	galaxies	down	to	LSST	weak	
lensing	limiMng	magnitude	(i~25.3)	

• 15	widely-separated	fields	at	least	20	
arcmin	diameter	to	allow	sample/cosmic	
variance	to	be	miMgated	&	quanMfied		

• Equal	cosmic	variance	to	Euclid	C3R2	
plan	but	much	lower	sky	area	

• Long	exposure	Mmes	are	needed	to	
ensure	>75%	redshi.	success	rates:	>100	
hours	at	Keck	to	achieve	DEEP2-like	S/N	
at	i=25.3	

• See	http://adsabs.harvard.edu/abs/2015APh....63...81N
Newman	et	al.	2015



Note:	even	for	100%	complete	samples,	current	
false-z	rates	would	be	a	problem

Based on simulated redshift 
distributions for ANNz-defined DES 
bins in mock catalog from Huan Lin, 
UCL & U Chicago, provided by Jim 
Annis

• Only	the	highest-
confidence	redshi.s	
should	be	useful	for	
precision	calibraMon:	
lowers	spectroscopic	
completeness	further	
when	restrict	to	only	the	
best	

• A	major	reason	why	
gemng	highly	secure	
redshi.s	is	important 

Approx LSST 

Req't



Summary	of	(some!)	potential	instruments	for	photo-z	training

Instrument / Telescope Collecting Area (sq. m) Field area (sq. deg.) Multiplex
4MOST 10.7 4.000 1,400
Mayall 4m / DESI 11.4 7.083 5,000
WHT / WEAVE 13.0 3.139 1,000
Magellan LASSI 32.4 1.766 5,000
Subaru / PFS 53.0 1.250 2,400
VLT / MOONS 58.2 0.139 500
Keck / DEIMOS 76.0 0.015 150
FOBOS 76.0 0.087 500
ESO SpecTel 87.9 4.9 3,333
MSE 97.6 1.766 3,249
GMT/MANIFEST + GMACS 368 0.087 760
GMT/MANIFEST + GMACS 368 0.087 420
TMT / WFOS 655 0.011 100
Fiber WFOS-pessimistic 655 0.022 1,000
Fiber WFOS-optimistic 655 0.056 2,000
E-ELT / Mosaic Optical 978 0.009 200
E-ELT / MOSAIC NIR 978 0.009 100

Updated	from	Newman	et	al.	2015,	Spectroscopic	Needs	for	Imaging	Dark	Energy	Experiments

v. A

v. B



Dark	Mme	(with	1/3	losses	for	weather	+	overheads)	
required	for	each	instrument

Updated	from	Newman	et	al.	2015,	Spectroscopic	Needs	for	Imaging	Dark	Energy	Experiments

Instrument / Telescope
Total time (years), >75% 
complete LSST sample

Total time (years), >90% 
complete LSST sample

4MOST 7.7 48.4
Mayall 4m / DESI 5.1 31.9
WHT / WEAVE 9.0 56.0
Magellan LASSI 1.8 11.2
Subaru/PFS 1.1 6.9
VLT/MOONS 4.0 25.0
Keck/Deimos 10.2 63.9
Keck/FOBOS 4.4 27.5
ESO SpecTel 0.66 4.1
MSE 0.60 3.7
GMT/MANIFEST + GMACS 0.42 2.6
GMT/MANIFEST + GMACS 0.75 4.7
TMT / WFOS 1.8 11.1
Fiber WFOS-pessimistic 0.36 2.2
Fiber WFOS-optimistic 0.14 0.87
E-ELT / MOSAIC Optical 0.60 3.7
E-ELT / MOSAIC NIR 1.2 7.4

+ +

v. A

v. B



If	spectroscopy	proves	incomplete,	calibraMon	will	
probably	need	to	come	from	cross-correlaMon	methods

•	Galaxies	of	all	types	cluster	
together:	trace	same	dark	ma=er	
distribuMon		

•	Enables	reconstrucMon	of	z	
distribuMons	via	spectroscopic/
photometric	cross-correlaMons	
(Newman	2008)	

•	For	LSST	calibraMon,	require	>100k	
objects	over	>100	deg2,	spanning	full	
z	range		

•>500	degrees	of	overlap	with	DESI-
like	survey	would	meet	LSST	science	
requirements	(>4000	sq	deg	of	
overlap	expected)	

Snowmass	white	paper:	Spectroscopic	
Needs	for	Imaging	DE	Experiments	

(Newman	et	al.	2015,	h=p://arxiv.org/abs/
1309.5388)
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Open	issues:	dealing	with	incompleteness	in	training/
calibraMon	datasets

• In	current	deep	spectroscopic	
surveys,	25-60%	of	targets	fail	
to	yield	secure	redshi.s 

• z	success	rate	depends	on	
galaxy	properMes 

• EsMmated	need	99-99.9%	
completeness	to	prevent	
systemaMc	errors	in	calibraMon,	
unless	apply	other	methods	
(e.g.,	cross-correlaMons)	

• Major	issue	for	training-set	
techniques	 Data from DEEP2 (Newman et al. 

2013) and zCOSMOS (Lilly et al. 
2009)



Open	issues:	Robust	training	methods

• 1%	incorrect-redshi.	rate	is	
sufficient	to	bias	photo-z's	
beyond	tolerances	

• Depending	on	survey,	up	to	5%	
of	'secure'	redshi.s	are	
incorrect	

• If	can	train	algorithms	in	a	
manner	robust	to	outlier/
wrong	redshi.s,	could	use	the	
broader	set	of	less-secure	
spectroscopic	redshi.s	

• ML	methods	that	extrapolate	
well	would	also	be	interesMng	 Zhou,	JN	et	al.	2018,	in	prep.



• CANDELS	code	comparison:	Dahlen	et	al.	2013	
• 11	code/template	combinaMons	were	tested	using	~600	redshi.s	

in	GOODS-S	(trained	with	a	separate	set	of	600	redshi.s)	
• Generally	χ2	minimizaMon,	generally	with	some	sort	of	prior.	
• Codes	with	p(z)'s	available	are	marked	by	★		

4 Dahlen et al.

Fig. 1.— Redshift and H-band magnitude distributions of the spectroscopic sample used to train and evaluate the photometric redshifts.

Table 1

Codes included in the CANDELS SED test for calculating photometric redshifts.

IDa PI Code Code ID Template set Em lines Flux shift ∆err ∆SED Inter ref.

2 G. Barro Rainbow A PEGASEb yes yes no no no j
3 T. Dahlen GOODZ B CWWc, Kinneyd yes yes yes yes yes k
4 S. Finkelstein EAZY C EAZYe+BX418f yes no no no yes l
5 K. Finlator SPOC D BC03g yes no no no no m
6 A. Fontana zphot E PEGASEv2.0b yes yes yes no no n, o
7 R. Gruetzbauch EAZY C EAZYe yes yes yes no yes l
8 S. Johnson SATMC F BC03g no no no no yes p
9 J. Pforr HyperZ G Maraston05h no no yes no no q
11 M. Salvato LePhare H BC03g+Polletta07i yes yes yes no no r
12 T. Wikind WikZ I BC03g no no yes no no s
13 S. Wuyts EAZY C EAZYe yes yes yes no yes l

Note. — Col 1: ID number of participant. Col 2: Name of photometric redshift investigator. Col 3: Name of code. Col 4: Code identifier.
Col 5: Template SED used to derive photometric redshifts. Col 6: Are emission lines included in template SEDs (yes/no). Col 7: Applies shifts
to the fluxes or templates based on spectroscopic training sample (yes/no) Col 8: Adds extra errors to the fluxes in addition to fluxes given
in the photometric catalogs (yes/no). Col 9: Adjusts template SEDs based on spectroscopic training set (yes/no). Col 10: Uses interpolations
between template SEDs. Col 11: Reference to code.
a Codes which ID 1 and 10 are not used to calculate photometric redshift in this test, however they are used to calculate masses in the accompa-
nying paper by B. Mobasher et al. (2013, in preparation), b Fioc & Rocca-Volmerange (1997), c Coleman et al. (1980), d Kinney et al. (1996),
e The EASY template set from Brammer et al. (2008) consists of six templates based on the PEGASE models (Fioc & Rocca-Volmerange
1997), f Erb et al. (2010), g Bruzual & Charlot (2003), h Maraston (2005), i Polletta et al. (2007), j Barro et al. (2011), k Dahlen et al.
(2010), l Brammer et al. (2008), m Finlator et al. (2007), n Giallongo et al. (1998), o Fontana et al. (2000), p S. Johnson et al. (2013, in
prep.), q Bolzonella et al. (2000), r S. Arnouts & O. Ilbert (2013, in prep.), and s Wiklind et al. (2008).
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Table 2

Photometric redshift results for WFC3 H-band selected catalog.

Code Objects biasaz OLFb σc
F σd

O σe
NMAD σf

dyn OLFg
dyn

2A 589 -0.010 0.092 0.167 0.041 0.038 0.038 0.107
3B 589 -0.007 0.036 0.099 0.035 0.034 0.033 0.048
4C 589 -0.009 0.051 0.114 0.044 0.040 0.042 0.061
5D 408 -0.030 0.147 0.197 0.073 0.097 0.098 0.034
6E 589 -0.007 0.041 0.104 0.037 0.033 0.033 0.065
7C 589 -0.009 0.053 0.121 0.037 0.033 0.033 0.070
8F 589 -0.008 0.093 0.272 0.064 0.077 0.074 0.051
9G 589 0.013 0.078 0.189 0.050 0.045 0.053 0.063
11H 589 -0.008 0.048 0.132 0.038 0.033 0.030 0.088
12I 589 -0.023 0.046 0.153 0.049 0.054 0.049 0.046
13C 589 -0.005 0.039 0.127 0.034 0.026 0.027 0.075

median(all) 589 -0.008 0.029 0.088 0.031 0.029 0.026 0.054
median(5) 589 -0.009 0.031 0.079 0.029 0.025 0.024 0.056

Note. — a biasz=mean[∆z/(1 + zspec)] after excluding outliers, where ∆z=zspec − zphot.
bOLF=Outlier fraction, i.e., fraction of objects

that are outliers defined as |∆z|/(1 + zspec) > 0.15. c σF = rms[∆z/(1 + zspec)]. d σO = rms[∆z/(1 + zspec)] after excluding outliers.
e σNMAD = 1.48 ×median( |∆z|

1+zspec
). f σdyn rms after excluding outliers with ∆z/(1 + zspec) > 3σdyn.

g OLFg
dyn fraction outliers defined

as objects with ∆z/(1 + zspec) > 3σdyn. The last two rows show the results after adopting the median photometric redshift of all codes, and
the median of the five codes with overall lowest scatter, when calculating the scatter versus the spectroscopic sample.

Table 3

Photometric redshift results for ACS z-band selected catalog.

ID Objects biasz OLF σF σO σNMAD σdyn OLFdyn

2A 614 -0.018 0.086 0.259 0.052 0.054 0.053 0.083
3B 614 -0.004 0.057 0.148 0.039 0.034 0.032 0.091
4C 614 -0.011 0.077 0.197 0.046 0.045 0.045 0.083
5D 446 -0.032 0.067 0.259 0.070 0.087 0.080 0.029
6E 614 -0.010 0.052 0.198 0.044 0.040 0.041 0.065
7C 614 -0.008 0.046 0.149 0.039 0.038 0.036 0.064
8F 614 -0.012 0.140 0.535 0.064 0.079 0.080 0.073
9G 614 0.015 0.121 0.269 0.053 0.057 0.059 0.096
11H 614 -0.009 0.042 0.131 0.040 0.036 0.038 0.050
12I 614 -0.022 0.064 0.173 0.055 0.063 0.059 0.042
13C 614 -0.007 0.046 0.189 0.040 0.035 0.035 0.072

median(all) 614 -0.001 0.036 0.157 0.037 0.033 0.032 0.062
median(5) 614 -0.005 0.041 0.128 0.033 0.028 0.027 0.073

Note. — See comments for Table 2.
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median(all) 589 -0.008 0.029 0.088 0.031 0.029 0.026 0.054
median(5) 589 -0.009 0.031 0.079 0.029 0.025 0.024 0.056

Note. — a biasz=mean[∆z/(1 + zspec)] after excluding outliers, where ∆z=zspec − zphot.
bOLF=Outlier fraction, i.e., fraction of objects

that are outliers defined as |∆z|/(1 + zspec) > 0.15. c σF = rms[∆z/(1 + zspec)]. d σO = rms[∆z/(1 + zspec)] after excluding outliers.
e σNMAD = 1.48 ×median( |∆z|

1+zspec
). f σdyn rms after excluding outliers with ∆z/(1 + zspec) > 3σdyn.

g OLFg
dyn fraction outliers defined

as objects with ∆z/(1 + zspec) > 3σdyn. The last two rows show the results after adopting the median photometric redshift of all codes, and
the median of the five codes with overall lowest scatter, when calculating the scatter versus the spectroscopic sample.

Table 3

Photometric redshift results for ACS z-band selected catalog.

ID Objects biasz OLF σF σO σNMAD σdyn OLFdyn

2A 614 -0.018 0.086 0.259 0.052 0.054 0.053 0.083
3B 614 -0.004 0.057 0.148 0.039 0.034 0.032 0.091
4C 614 -0.011 0.077 0.197 0.046 0.045 0.045 0.083
5D 446 -0.032 0.067 0.259 0.070 0.087 0.080 0.029
6E 614 -0.010 0.052 0.198 0.044 0.040 0.041 0.065
7C 614 -0.008 0.046 0.149 0.039 0.038 0.036 0.064
8F 614 -0.012 0.140 0.535 0.064 0.079 0.080 0.073
9G 614 0.015 0.121 0.269 0.053 0.057 0.059 0.096
11H 614 -0.009 0.042 0.131 0.040 0.036 0.038 0.050
12I 614 -0.022 0.064 0.173 0.055 0.063 0.059 0.042
13C 614 -0.007 0.046 0.189 0.040 0.035 0.035 0.072

median(all) 614 -0.001 0.036 0.157 0.037 0.033 0.032 0.062
median(5) 614 -0.005 0.041 0.128 0.033 0.028 0.027 0.073

Note. — See comments for Table 2.

★

★

★
★

★

Dahlen	et	al.	2013
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Open	issues:	Making	posteriors	great	again

• Many	analyses	assume	that	
photo-z	codes	are	providing	
posterior	PDFs	with	proper	
coverage	(and	assuming	that	
they	can	add	PDFs	to	get	N(z);	
talk	to	Alex	Malz	if	you	want	to	
learn	about	the	right	way	to	do	
that...)	

• Dahlen	et	al.	2013	tested	the	
fracMon	of	spectroscopic	
redshi.s	that	are	in	the	inner	
68%	or	inner	95%	of	their	PDFs	

• Coverage	is	all	over	the	place;	
no	codes	were	good	at	both	
68%	and	95%	points	

20 Dahlen et al.

Fig. 13.— Top panel: distribution of difference in photometric redshifts for close pairs (black line) and random pairs (red line). Bottom
panel: Overdensity of galaxy pairs with similar photometric redshifts after subtracting the random pair distribution. The red solid line is a
Gaussian fit to the data.

Table 5

Error measurement accuracies for the H-band and the z-band selected catalogs.

Code WFC3 H-selected ACS z-selected
conf. int: 68.3% 95.4% 68.3% 95.4%

2A 46.1 40.9
3B 81.6 92.8 76.1 89.1
4C 64.0 88.2 58.5 85.7
5D 2.5 4.2 2.9 5.8
6E 52.0 84.7 48.3 81.6
7C 65.0 87.3 62.9 89.1
8F 15.3 15.6 14.2 14.7
9G 16.3 44.1 15.0 39.6
11H 35.2 54.0a 30.9 46.9a

12I 88.7 96.7 80.1 96.3
13C 52.0 72.7 35.7 51.0

Note. — a This is the result for the 90% confidence interval. The table shows the fraction of galaxies with known spectroscopic redshifts
that falls inside the 68.3% and 95.4% confidence intervals calculated by the different photometric redshift codes. A number significantly lower
than 68% in the 68.3% column indicates that errors are underestimated, and vice versa.

★

★

★

★

★

Dahlen	et	al.	2013



Open	issues:	Making	posteriors	great	again

• LSST	Dark	Energy	Science	
CollaboraMon	has	done	a	controlled	
exploraMon	of	this	problem...	more	in	
a	minute	

• Meanwhile,	kludge	in	Kodra	et	al.	
2019:	modify	p(z)'s	for	CANDELS	HST	
survey	
• Shi.	p(z)	by	constant	in	z	

direcMon;	convolve	with	Gaussian	
kernel;	and	take	to	a	power	
(equivalent	to	rescaling	errors	in	χ2 

calculaMon)		
• OpMmize	parameters	by	minimizing	

total	L2	norm	of	deviaMon	in	quanMle-
quanMle	plot	from	expected	line	

• QuanMle-quanMle	shows	the	fracMon	
of	objects	whose	true	redshi.	is	
below	quanMle	Qtheory	in	the	object's	
photo-z	PDF:	ideally,	unity	line

Kodra,	JN	et	al.	2019,	in	prep.



Open	issues:	Combining	PDF	results	from	mulMple	codes

• Dahlen	et	al.	found	that	medians	
of	point	esMmates	from	mulMple	
codes	(★'s)	have	smaller	sca=er	
(relaMve	to	spec-z)	than	any	
individual	code	

• All	codes	are	run	on	the	same	
data!		Current	codes	do	not	
make	opMmal	use	of	available	
informaMon...

Results'from'CANDELS'Photo5z'Test''
Results'ACS5z'and'WFC35H'selected'

Rms'vs.'outlier'frac9on'for'ACS5z'and'WFC35H'selected'catalogs.'
Red'dots:'codes'3,'6,'7,'11,'13'
Black'star:'median(all)'
Red'star:'median(3,'6,'7,'11,'13)'
'

Dahlen	et	al.	2013



• Dahlen	et	al.	presented	a	hierarchical	Bayesian	combinaMon	
method	(cf.	Press	&	Kochanek,	Lang	&	Hogg,	etc.)	

• Izbicki	&	Lee	2016	use	weighted	combinaMons	of	codes	
• Kodra	et	al.	(in	prep)	invesMgates	using	PDF	that	minimizes	total	

Fréchet	distance	to	remaining	PDFs:	analogous	to	median	

Ways to combine codes: MFD

Minimum Fréchet Distance: Measure of dissimilarity between two
curves.(Eiter T., Mannila H., Computing Discrete Fréchet Distance,
1994)

�P(zi ) = P1(zi )� P2(zi ), FDabs =
X

i

|�P(zi )|, FDsqr =
X

i

[�P(zi )]
2
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Open	issues:	Combining	PDF	results	from	mulMple	codes
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Example of combining codes.
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Dritan Kodra (UPitt) Photo-z’s with CANDELS October 2, 2015 13 / 41

Open	issues:	Combining	PDF	results	from	mulMple	codes

D.	Kodra



Example of combining codes.
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Open	issues:	Combining	PDF	results	from	mulMple	codes
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A	related	case:	template-based	and	training-based	methods	
have	different	failure	modes	-	how	best	to	combine?

EAZY	(template	code,	untuned) Random	Forest	Regression

Zhou,	JN	et	al.	2016,	in	prep.

• IdenMfy	potenMal	outliers	from	discrepant	results?



Open	issues:	Storing	p(z,α)

• Carrasco-Kind	&	Brunner	2014	achieved	strong	compression	of	
photo-z	PDFs	using	sparse	representaMon	and	well-chosen	basis	set	

• For	many	LSST	applicaMons,	want	2+-dimensional	PDFs	
• Can	suitably	sparse	(<few	hundred	#s)	representaMons	be	

achieved?		
• Are	samples	from	PDFs	OK	for	all	science	cases?Sparse representation of photo-z PDFs 5

Figure 3. Di↵erent normalized ||dj ||2 = 1 Voigt profile basis func-
tions with the same mean, µ = 0.3, and sigma, � = 0.01, for di↵erent
values of �, which ranges from 0 (blue) to 1� (red). Note that for
� = 0, we recover the standard Gaussian distribution. In a full dic-
tionary, we create these profiles over the entire redshift range of the
galaxy sample for di↵erent values of �.

One of the primary advantages of this method is that these
dictionary entries are composed of analytic functions that can
be combined with other functional forms. There are no re-
strictions, other than computational time, on how large of a
dictionary we can use, as there is no requirement for the dictio-
nary to be permanently stored. Furthermore, a photo-z PDF
can be restored even without reconstructing the dictionary, as
long as the indices and coe�cients are e�ciently stored.

We select Nµ Gaussian functions, whose mean values span
the redshift range of our galaxy sample, which has a redshift
resolution �z. Thus, we can compute:

Nµ =

⇠
�z
�z

⇡
(7)

where �z = z2 � z1 and z2 and z1 are, respectively, the upper
and lower limits of the redshift range spanned by our galaxy
sample. We select, at each Nµ location, N� values for the stan-
dard deviation that linearly span the range from a minimum
value of �min to a maximum value �max. The minimum value
is selected in such a way that we will approximately have a
single Gaussian that fills a single redshift bin of width �z. In
practice, a Gaussian vanishes at approximately 3� from the
mean; therefore, we can select �1 = �z/6.

On the other hand, we select the broadest basis function
to approximately cover half of the full redshift range �z at
each position; therefore, we select �max = �z/12. Although
the extreme basis functions are not frequently used, they en-
sure that we cover all possibilities. Finally, we set the resolu-
tion between di↵erent values of � to be �z/2 in order to make
sure the di↵erence between two consecutive Gaussian basis
functions is on the order of �z. Setting �� = �max � �min we
have that N� is given by:

N� =

⇠
2��
�z

⇡
(8)

which can be simplified to

N� =

⇠
�z
6�z

� 1
3

⇡
⇡ Nµ

6
(9)

Figure 4. The representation of an original photo-z PDF (green)
given by three techniques: multi-Gaussian (blue), single Gaussian
(blue dashed line), and sparse basis representation (red). The inset
panel shows the final bases (in black) used to represent the photo-z
PDF while the recovered distribution is shown in red.

As some photo-z PDFs have extended wings, we also gen-
erate N� basis functions for each Gaussian basis function with
extended profiles by using a Voigt profile. Voigt profiles are
widely used in spectral line fitting, and are defined as the con-
volution between a Gaussian distribution and a Lorentzian
distribution. A Voigt profile can be written as the real part of
the Faddeeva function (Abramowitz & Stegun 1972):

V (x;�, �) =
1

�
p
2⇡

Re
h
e�z2 (1� erf(�iz))

i
(10)

where erf(�iz) is the complex error function. z = (x�µ)+i�

�
p
2

is
a complex variable, where µ is the center of the function, � is
the standard deviation from the Gaussian, and � determines
the strength of the extended wings and is a parameter from the
Lorentz distribution. As a result, if � = 0, we have a Gaussian
distribution with parameters µ and �.

We present examples of di↵erent Voigt profiles in Figure 3
given a fixed µ = 0.3 and � = 0.01, but with � varying from
zero (Gaussian) to one �. We do not, however, select pure
Lorentzian profiles, as they produce distributions that are too
extended to be practical for this analysis. In practice, we find
that an upper limit of � = 0.5� is su�cient to accurately
model any extended wings. Thus, including the Gaussian case
with � = 0, we fix N� = 6 and allow � to vary linearly from
0 to 0.5� in steps of 0.1�. Thus, in the most simple case we
would only consider basis functions with � = 0 and N� = 1.

In total, the dictionary is composed of Ntotal = Nµ⇥N�⇥
N� bases, which all have `2 norm equal to unity. By using our
previous definitions, we have the following approximate rule
of thumb for creating a dictionary:

Ntotal ⇡ N2
µ =

✓
�z
�z

◆2

(11)

Although this is an estimate, it provides a very good approx-
imation to the total number of bases needed given the reso-
lution of the original photo-z PDF. Additional bases are not
necessary and little is gained by using a finer resolution. Photo-
z codes generally provide photo-z PDFs by using roughly two
to three hundred points. According to Equation 11, we notice
that for 250 sample points in a PDF, we would need approx-

c� 2014 RAS, MNRAS 000, 1–12
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Figure 6. The median of the residual distribution as a function of
the number of fixed bases used to reconstruct each galaxy’s photo-z
PDF when using the sparse representation technique (blue dots).
For reference, the median of the multi-Gaussian residual distribu-
tion (red triangle) and the median of the sparse representation with
variable number of bases (black star) are also shown, where on av-
erage both techniques need fourteen points per photo-z PDF.

which corresponds to a median reconstruction of all one mil-
lion test galaxies at 99.82% at a resolution of �z = 0.011. Since
the original photo-z PDF contained two hundred points, this
implies a compression ratio of ten.

Clearly these results will vary depending on the galaxy
sample. In particular, the data we use in this analysis are from
the CFHTLenS, which is a representative deep survey with
galaxies that have photo-z PDFs with up to twelve peaks. The
performance of the sparse representation also depends directly
on the number of peaks in each PDF when we globally fix
the number of bases. In Figure 7, we display the median of
the residual distribution as a function of the number of peaks
in the photo-z PDF, with di↵erent curves corresponding to
di↵erent numbers of globally fixed bases. For a fixed number
of bases, the residual increases as the number of peaks increase.
Thus, a galaxy sample that consistently has a low number of
peaks will have increased performance when using a smaller
number of bases.

For example, we achieve a 99.5% reconstruction by using
only ten values for galaxies with four or fewer peaks. In Car-
rasco Kind & Brunner (2014b), we discussed the relationship
between the number of peaks and the shape of the photo-z
PDFs with the outlier fraction. With this in mind, we could
reduce the number of bases used to reconstruct a sample and
flag those with a high number of peaks, where the reconstruc-
tion is less reliable, for further investigation. In fact, we achieve
a reconstruction of 99% for photo-z PDFs with three or fewer
peaks when using only five bases for the sparse representation.
This produces a compression ratio of forty when the original
photo-z PDF has two hundred points.

For comparison, we also show the fitting residuals for the
multi-Gaussian (black dashed line) and sparse representation
(black dashed-dotted lines) where the variable number of bases
matches the number of multi-Gaussians. The performance of
the multi-Gaussian fitting is less dependent on the number of
peaks simply because the number of parameters dynamically
changes for each photo-z PDF. Overall, the multi-Gaussian
performance is fairly consistent at around 0.005, even as we

Figure 7. The median of the residual distribution as a function of
the number of peaks in the photo-z PDF when using (solid color
lines) a di↵erent number of fixed bases in the sparse basis represen-
tation, (black dashed line) when using the multi-Gaussian fitting
technique, and (black dashed-dotted line) when using the sparse
representation when the number of bases is equivalent to the num-
ber of multi-Gaussians.

increase the number of peaks. The sparse representation with a
variable number of bases, on the other hand, is less dependent
on the number of peaks and has residuals that are nearly 50%
smaller than the multi-Gaussian fitting at an approximately
constant value of 0.003.

PDF Storage

In the previous section, we discussed how the sparse represen-
tation and the multi-Gaussian fitting can accurately represent
a photo-z PDF by using only a few dozen values with a re-
construction level of 99%. In the case of the multi-Gaussian
fitting, the number of parameters to be stored will depend on
the number of peaks in each individual PDF. As discussed
previously, we will have 3(Npk + 1) parameters, which are all
floating point numbers. For this dataset we found that the av-
erage number of values (or floating point parameters) required
is fourteen; but to store these data for all galaxies, we would
need to combine the results from di↵erent galaxies in order to
take advantage of the galaxies that require fewer values so that
we can also store those galaxies that require a larger number
of parameters. Varying the number of values to store galaxy
photo-z PDFs in this manner might not be practical, as it will
likely depend strongly on the archival and storage system while
also increasing the computational di�culty in dealing with a
varying number of parameters for di↵erent photo-z PDFs. The
practical solution would be to use thirty-nine fixed values (the
maximum required for this dataset) for all galaxies and store
them independently. This result is also true for the varying
sparse representation, which we have demonstrated has a bet-
ter performance in comparison to the multi-Gaussian when
representing a photo-z PDF.

On the other hand, requiring a fixed number of basis func-
tions per galaxy alleviates this issue and also has the additional
benefit that there is no need to pad with zeros since having
more points for single peaked galaxies simply provides a more
accurate representation. We have shown that by using ten to
twenty values we are able to produce a residual on the or-

c� 2014 RAS, MNRAS 000, 1–12
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• Current	state	of	the	art:	Masters	et	al.	2015	
• Self-organized	map	of	galaxy	colors	 5

Fig. 1.— The 7-color self-organized map (SOM) generated from ∼131k galaxies from the COSMOS survey, selected to be representative
of the anticipated Euclid weak lensing sample. In the center is the 75 × 150 map itself, which encodes the empirical ugrizYJH spectral
energy distributions (SEDs) that appear in the data. The map is colored here by converting the H, i, and u band photometry of the cells to
analogous RGB values, while the brightness is scaled to reflect the average brightness of galaxies in different regions of color space. On the
sides we show examples of 8-band galaxy SEDs represented by particular cells, whose positions in the map are indicated with arrows. The
cell SEDs are shown as black squares. The actual SEDs (shifted to line up in i-band magnitude) of galaxies associated with the cells are
overlaid as green diamonds. Between 9 and 23 separate galaxy SEDs are plotted for each of the cells shown, but they are similar enough
that they are hard to differentiate on this figure. A key feature of the map is that it is topological, in the sense that nearby cells represent
objects with similar SEDs, as can be seen from the two example cells shown in the upper left. Note that the axes of the SOM do not
correspond to any physical quantity, but merely denote positions of cells within the map and are shown to ease comparison between figures.

the number of cells, the topology of the map, the num-
ber of training iterations, and the form and evolution of
the learning rate and neighborhood functions. Perhaps
most influential is the number of cells. The representa-
tive power of the map increases with more cells; however,
if too many cells are used the map will overfit the data,
modeling noise that does not reflect the true data dis-
tribution. Moreover, there is a significant computational
cost to increasing the number of cells. On the other hand,
if too few cells are used, individual cells will be forced
to represent larger volumes of color space, in which the
mapping of color to redshift is less well defined.
We explored a range of alternatives prior to settling on

the map shown throughout this work. A rectangular map
was chosen because this gives any principal component in
the data a preferred dimension along which to align. Our
general guideline in setting the number of cells was that
the map should have sufficient resolution such that the
individual cells map cleanly to redshift using standard
photo-z codes. With 11,250 cells, the map bins galaxies
into volumes, or “voxels”, of color space of comparable
size as the photometric error on the data, with the result
that variations within each color cell generally do not
result in significant change in photo-z estimates. As we
discuss in §6, the true spread in galaxy redshifts within
each color cell is an important quantity to understand

for the calibration of N(z).

4.2. Algorithm implementation

We implemented the SOM algorithm in C for computa-
tional efficiency. The number of computations required is
sizable and scales with both the total number of cells and
the number of training iterations. Optimizations are cer-
tainly possible, and may be necessary if this algorithm
is to be applied to much larger photometric datasets.
We initialized the values of the cell weight vectors with
random numbers drawn from a standard normal distribu-
tion. The number of training iterations used was 2×106,
as only minimal improvements in the map were observed
for larger numbers of iterations. At each iteration, a
random galaxy was selected (with replacement) from the
training sample to update the map.
We applied the algorithm based on seven galaxy colors:

u−g, g−r, r−i, i−z, z−Y , Y −J , and J−H , which are
analogous to the colors that will be measured by Euclid
and used for photo-z estimation. The errors in the colors
are computed as the quadrature error of the photometric
errors in the individual bands. If a training object has a
color that is not constrained due to bad photometry in
one or both of the relevant bands, we ignore that color in
the training iteration. Only the well-measured colors for
that object are used both to find the BMU and update

Open	issues:	OpMmizing	spectroscopic	targeMng

Masters	et	al.	2015



Open	issues:	OpMmizing	spectroscopic	targeMng

• PrioriMze	cells	with	few	redshi.s	for	spectroscopic	follow-up	
• Are	there	be=er	ways	to	do	this?	

10

Fig. 6.— Left: The median spectroscopic redshift of galaxies associating with each SOM cell, using only very high confidence (∼100%)
redshifts from the COSMOS master spectroscopic catalog (Salvato et al., in prep). The redshifts come from a variety of surveys that have
targeted the COSMOS field; see text for details. Gray regions correspond to parts of galaxy color space for which no high-confidence
spectroscopic redshifts currently exist. These regions will be of interest for training and calibration campaigns. Right: The same figure,
but including all redshifts above !95% confidence from the COSMOS spectroscopic catalog. Clearly, more of the color space is filled in
when the quality requirement is relaxed, but nevertheless large regions of parameter space remain unexplored.

The preceding analysis treats the photo-z calibration
as a stratified sampling problem, in which the overall
statistics of a population are inferred through targeted
sampling from relatively homogeneous subpopulations.
The gain in statistical precision from using Equation (10)
to estimate ⟨z⟩ can be attributed to the systematic way
in which the full color space is sampled, relative to blind
direct sampling. However, stratified sampling will only
outperform random sampling in the case that the sub-
populations being sampled do, in fact, have lower disper-
sion than the overall distribution–i.e., in the case that the
Pi(z) distributions for the color cells have lower redshift
dispersion than the N(z) distribution of all the galaxies
in a tomographic bin.

6.2. Simulating different sampling strategies

Now we attempt to more realistically estimate the
spectroscopic coverage needed to achieve the requirement
in our knowledge of ⟨z⟩. To begin, we assume that the
cell redshift PDFs from Le Phare are reasonably accu-
rate, and can be taken to represent the true Pi(z) distri-
butions for galaxies in each color cell. (This assumption
is, of course, far from certain, and simply serves as a
first approximation). With the known occupation den-

sity of cells of the map (Figure 3), we can then use Equa-
tion (8) to generate realistic N(z) distributions for differ-
ent tomographic bins. For this illustration, we break the
map up into photo-z-derived tomographic bins of width
∆z = 0.2 over 0 < z < 2 (although Euclid will most
likely use somewhat different bins in practice). An ex-
ample of one of the N(z) distributions modeled in this
way is shown in Figure 8.
The uncertainty in the estimated ⟨z⟩ of these N(z) dis-

tributions can then be tested for different spectroscopic
sampling strategies through Monte Carlo simulations, in
which spectroscopy is simulated by randomly drawing
from the Pi(z) distributions. (Alternatively, given our
knowledge of the individual σ⟨zi⟩ uncertainties, Equa-
tion (11) can be used directly. In fact, the results were
checked in both ways and found to be in agreement).
The results of three possible sampling strategies are

given in Table 1. The simplest strategy tested (“Strategy
1”) is to obtain one spectrum per color cell in order to
estimate the cell mean redshifts. Equation (10) is then
used to compute the overall mean of the tomographic
bin. We expect to meet the Euclid requirement, ∆⟨z⟩ ≤
0.002(1+⟨z⟩), for 3/10 bins (and come close in the others)
with this approach, which would require ∼11k spectra in

Masters	et	al.	2015



Open	issues:	Ideal	photo-z	code?

• What	might	an	ideal	LSST	photo-z	algorithm	look	like?	

• Trained	with	>30,000	spectra	spanning	range	of	spectra	

• Develops	priors	&	tweaks	templates	via	hierarchical	Bayesian	
hyperparameters	

• Incorporates	variaMons	in	effecMve	filter	wavelengths	due	to	
observaMonal	condiMons:	requires	applying	algorithm	to	O(1000)	
measurements	instead	of	O(6)	

• Incorporates	AGN	classificaMon	and	AGN	photo-z	determinaMon:	
colors	are	not	constant	with	Mme	for	many	objects!	

• Want	algorithms	to	be	fast:	create	ML-based	emulators	for	
template	photo-z's?	

• For	bright	objects,	may	also	be	useful	to	compare	to	ML	
techniques	to	idenMfy	potenMal	outliers



Outline

• Overview	of	photometric	redshi.s	
– Template	methods	
– Training-based	methods	

• Requirements	and	resources	for	training	and	calibraMng	
photometric	redshi.s	

• Some	open	issues	
• Spectroscopic	incompleteness	
• Robust	training	
• p(z)	coverage	
• Combining	results	from	mulMple	codes	
• p(z,α)	storage	
• Defining	ideal	LSST	algorithm	
• OpMmizing	spectroscopic	samples		

• Some	examples	of	problems	with	current	codes



CANDELS	code	comparison:	Dahlen	et	al.	2013

• Many	tests	of	photo-z	algorithms	with	deep,	high-redshi.	dataset.		
Examples:	
• Test	photo-z	performance	as	degrade	photometry	(using	same	

test	spectroscopic	data)	
• Dependence	of	errors	on	redshi.,	magnitude,	&	color	
• InvesMgaMon	of	(lack	of)	consistency	between	photometric	

zero	point	shi.s	from	different	codes	
• Empirical	test	of	photo-z	errors	using	Δz	between	close	pairs14 Dahlen et al.

Fig. 7.— Magnitude distribution of the spectroscopic sub-sample of GOODS-S is shown in red while the full sample is shown in blue. Gray
line shows the degraded spectroscopic sample where the flux of each object has been shifted by ∆m=3.6 mag to match the full sample. The
distributions are normalized to the total number of objects in each sample.

Fig. 8.— Photometric redshift scatter (σO) and outlier fraction when comparing to nominal spectroscopic redshift sample (∆m=0), as well
as samples where the photometry as been shifted to fainter flux levels by ∆m=1, 2, 3, 3.6, and 4 mag, respectively. Results are shown for
one participating code (Code 3B).

CANDELS photo-z investigation 15

Fig. 9.— Photometric redshift scatter (σO) and outlier fraction for individual codes. Black dots show results from the original H-band
selected catalog, while the red dots show the results after fluxes are shifted to fainter limits by ∆m=3.6. Lines connect the results from the
separate codes. Star symbols show the results when using the median of the photometric redshifts of the eight codes participating in this
test.

Fig. 10.— The magnitude dependence of the photometric redshift scatter and outlier fraction using photometric redshifts derived from a
mock catalog based on the spectroscopic redshift sample shifted to fainter magnitudes. Black dots show the scatter σO (scaling on left-hand
y-axis, error bars show bin size). Histograms show the fraction of outliers (scaling on right-hand y-axis).

Dahlen	et	al.	2013



New	work:	Kodra	et	al.	2019

• Compare	predicMons	of	codes	in	space	of	p(z	|	H)data arrays (logspace z): GOODS-S

Figure : Linear color scale, excluded objects: 417

• Disagreement	on	where	
there	are	redshi.	
spikes	

• Priors	have	huge	effect	
at	low	z	(non-
monotonic	behavior)	

• Different	effecMve	
smoothings	

• The	performance	of	
these	codes	for	zpeak	
isn't	all	that	
different.	.	.	

D.	Kodra



New	work:	Kodra	et	al.	2019

luminosity functions (z = 1.5): GOODS-S [median (3,3)]

Figure : slice of z = 1.5

• This	can	have	large	(factor	of	few)	effects	on	the	inferred	number	
of	objects	at	a	given	redshi.

D.	Kodra



New	work:	Schmidt,	Malz	et	al.	2019

• TesMng	a	dozen	photo-
z	codes	with	large,	
representaMve	training	
sets,	and	full	template	
knowledge	and	priors	
passed	to	algorithms	

• SMll	fail	to	yield	p(z)	
which	meet	the	
staMsMcal	definiMon	of	
a	probability	
distribuMon	(assessed	
via	Q-Q	staMsMcs	and	
Probability	Integral	
Transform	[PIT])

S.	Schmidt

14 LSST-DESC Photometric Redshift Working Group

Figure 2. Summary plots for all eleven photo-z codes illustrating performance for the interim posterior statistics.

The top panel of each pair shows both the Quantile-Quantile (QQ) plot (red) and the histogram of PIT values

(blue). The desired behavior is a QQ plot that matches the diagonal dashed line, and a PIT histogram that matches

a uniform distribution matching the thin horizontal black line. The bottom panel of each pair shows the difference

between the QQ quantile and the diagonal, illustrating departure from the desired performance. Histograms with

an overabundance of PIT values at the centre of the distribution indicate p(z) distributions that are overly broad,

while an excess of values at the extrema indicate p(z) distributions that are overly narrow. Values of PIT=0 and

PIT=1 indicate “catastrophic failures” where the true redshift is completely outside the support of p(z). Asymmetric

features are indicative of systematic bias in the redshift predictions. A variety of behaviors are evident, and specific

details are discussed in the text.

tions and limits on storage resources may be con-1256

sidered in future work. We will discuss this further
in Section 6.1258

Fig. 2 shows both the quantile-quantile plots
(red) and the histogram of PIT values (blue) sum-1260

marizing the results from each photo-z code. The
red line shows the measured quantiles, while the1262

black diagonal represents the ideal QQ values if
the distribution were perfectly reproduced. A sec-1264

ond panel below the main panel for each code

shows the difference between Qdata and Qtheory,1266

i. e. the departure from the diagonal, for clarity.
Biases and trends in whether the average width1268

of the p(z) values being over/under-predicted are
evident. An overall bias where the predicted red-1270

shift is systematically low manifests as the mea-
sured QQ value falling above the diagonal, as is1272

the case for BPZ and EAZY, while a system-
atic overprediction shows up as the measured QQ1274

value falling below the diagonal, as seen in TPZ. In

c� 0000 RAS, MNRAS 000, 000–000



New	work:	Schmidt,	Malz	et	al.	2019

• SubstanMal	variaMon	
in	stacked	p(z)	among	
algorithms	

S.	Schmidt

An assessment of photometric redshift PDF performance in the context of LSST 17

Figure 4. The stacked p(z) produced by each photo-z code (N̂(z), red) compared to the spectroscopic redshift

distribution (N 0(z), blue). Varying levels of small-scale structure are seen in the codes. N 0(z) is smoothed using a

single bandwidth chosen via Scott’s rule for all codes.

Figure 5. A visual representation of the Kolmogorov-Smirnoff (KS, blue diamond), Cramer-von Mises (CvM, black

star), and Anderson-Darling (AD, red asterisk) statistics for the N̂(z) distributions. The statistics are correlated,

the codes with the lowest KS statistics tend to have the lowest CvM and AD statistics. CMNN performs markedly

better than the others in reconstructing the overall N(z) distribution, while SkyNet scores poorly due to an overall

bias in its redshift predictions.

c� 0000 RAS, MNRAS 000, 000–000



Conclusions

• Training-based	methods	are	easier	to	get	good	results	from	
than	template-based	methods,	but	don't	extrapolate	well	

• Key	issues	for	LSST	are	where	to	get	deep	training	sets,	and	
inability	to	get	complete	training	sets	

• A	variety	of	interesMng	problems	to	work	on	in	the	near	
future	

• Current	codes	appear	sufficient	to	meet	LSST	requirements,	but	
are	clearly	subopMmal.		Be=er	photo-z's	will	greatly	increase	the	
value	of	LSST	-	e.g.	40%	increase	in	Dark	Energy	Figure	of	Merit



Spectroscopic	training	set	requirements

• Goal:	make	δz	and	σ(σz)	so	small	that	systemaMcs	are	subdominant 

• Many	esMmates	of	training	set	requirements	(Ma	et	al.	2006,	Bernstein	&	
Huterer	2009,	Hearin	et	al.	2010,	LSST	Science	Book,	etc.)	 

• General	consensus	that	roughly	20k-30k	extremely	faint	galaxy	spectra	
are	required	to	characterize: 

– Typical	zspec-zphot	error	distribuMon 

– Accurate	catastrophic	failure	rates	for	all	objects	with	zphot	<	2.5 

– Characterize	all	outlier	islands	in	zspec-zphot	plane	via	targeted	campaign	
(core	errors	easier	to	determine)  



What	qualiMes	do	we	desire	in	our	training	sets?

• SensiMve	spectroscopy	of	faint	objects	(to	i=25.3)	

-	Need	a	combinaMon	of	large	aperture	and	long	exposure	Mmes	from	the	
ground;	>20	Keck-nights	(=4	GMT-nights)	equivalent	per	target,	minimum 

• High	mulMplexing	

-	Obtaining	large	numbers	of	spectra	is	infeasible	without	it 

See	Newman	et	al.	2015,	Spectroscopic	Needs	for	Imaging	Dark	Energy	
Experiments,	for	details



What	qualiMes	do	we	desire	in	our	training	sets?

• Coverage	of	full	opMcal	
window	if	working	from	
the	ground	

-	Ideally,	from	below	4000	
Å	to	~1.5μm	

-	Require	mulMple	
features	for	secure	
redshi.	

Comparat et al. 2013, submitted



6 Johan Comparat et al.

Figure 6. Relative abundance of emission lines simulated vs. [Oii] flux. We
determine the relative abundance of emission lines at a given flux with the
[Oii] luminosity function at z ⌅ 1 measured by Zhu et al. (2009) on DEEP2.

The S NR is calculated with a Fisher matrix of the form given in
Eq. 9.

S NR = 1/
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4 RESULTS

4.1 Doublet detection and resolution at z ⌅ 1

The simulation contains ⌅ 15 ⇥ 106 simulated [Oii] lines sampling
the velocity dispersion, resolution, and flux range set in the above.

To statistically di⇥erentiate whether an observation of [Oii] is
identified as a doublet or a single emission line (SEL), given that
the numbers of degrees of freedom is high (35 < ndo f < 94), we
use �⌅2 = ⌅1/ndo f 1 � ⌅2/ndo f 2. A �⌅2 = 9 means the single line
emission model is ruled out at 3⇤ or with a 99.7% confidence level.
We compute the share of emission line with i < 24 (convolved by
the velocity dispersion distribution of Fig. 5 in black) detected as a
doublet at the 2 and 3 ⇤ confidence levels at redshift 1 as function
of the resolution for di⇥erent [Oii] flux detection limit, see Fig. 7.

The main trend is that the percentage of doublets increases as
a function of the resolution. In the regime of low [Oii] fluxes (be-
low the line 12), the gain is linear. It indicates we should push for
the highest resolution possible. For higher [Oii] fluxes, the marginal
increase of the doublet share is large for low resolutions and dimin-
ishes for higher resolution. This result advocates two strategies. For
a survey aiming only to observe the brightest [Oii] emitters (on Fig.
7), it is not necessary to aim for the highest resolution. R = 3300
is su⇤cient to obtain 90% of doublets. And for R > 3300, the
marginal cost of an extra percent of doublets decreases. For a sur-
vey aiming to observe all [Oii] emitters (MS-DESI line 10 on Fig.
7), it is necessary to push the resolution to its highest.

The DEEP 2 survey dealt with SEL using a neural network
(Kirby et al. 2007). They showed that given a fair spectroscopic
sample of an observed population with reliable redshifts, it is pos-
sible to infer correct redshifts to nearly 100% of the [Oii] SEL. The
H�, H⇥, and [Oiii] SEL cases are not as well handled by the neural
network with e⇤ciencies of ⌅ 90%, ⌅ 60%, and ⌅ 60% respec-
tively.

Figure 7. Share of doublets at the 3 and 2⇤ (confidence level of 99%, 95%
from top to bottom) vs. resolution for i < 24 doublets at z = 1 for di⇥erent
flux bins. Each line corresponds to a survey with a the flux detection limit
given on the right end of each line in units of 10�17erg cm�2 s�1. eBOSS
corresponds to the line 30 and MS-DESI to the line 10.

The combination of the two latter points shows it will be pos-
sible to derive robust [Oii] redshifts where [Oii] is the only emission
line available in the spectrograph, even if the fraction of 3⇤ doublet
detections is small.

4.2 Higher redshift, sky lines, completeness

The sky lines have an observed width of one resolution element,
therefore their width varies with the resolution. In the case of a
single sky line located on a doublet, it is not a problem to subtract
the sky line and obtain an accurate redshift. In the case of many
contiguous sky lines, it can cover completely a doublet and prevent
from getting any redshift in the zone or at a higher flux limit. To
quantify the impact of the sky lines obstruction as a function of
redshift, we simulate at various resolutions the observation of a sky
spectrum. The sky spectrum is taken from Hanuschik (2003).

At a given resolution, we convert the wavelength array of the
sky into a redshift array corresponding to the [Oii] redshift. We scan
the redshift array by steps of 0.0005 (it corresponds to the desired
precision of a spectroscopic redshift). At each step, we compare
the median value of the sky to the flux measured in the middle of
an [Oii] doublet with (where it is the lowest). If the median value
of the sky is greater than the value of the doublet, we consider we

c⇤ 2012 RAS, MNRAS 000, 1–8

What	qualiMes	do	we	desire	in	our	training	sets?

• Significant	resoluMon	
(R>~4000)	at	red	end	if	
working	from	the	ground	
- Allows	redshi.s	from	
[OII]	3727	Å	doublet	
alone,	key	at	z>1	

- Not	necessary	if	get	
mulMple	features	from	
deep	IR	coverage	

Comparat et al. 2013
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What	qualiMes	do	we	desire	in	our	training	sets?

• Field	diameters	>	~20	arcmin	
-	Need	to	span	several	correlaMon	lengths	for	accurate	clustering	
measurements	(key	for	galaxy	evoluMon	science	and	cross-correlaMon	
techniques)	
-	r0	~	5	h-1	Mpc	comoving		corresponds	to	~7.5	arcmin	at	z=1,	13	arcmin	at	
z=0.5

• Many	fields	

-	Minimizes	impact	of	sample/
cosmic	variance.			

-	e.g.,	Cunha	et	al.	(2012)	
esMmate	that	40-150	~0.1	deg2	
fields	are	needed	for	DES	for	
sample	variance	not	to	impact	
errors	(unless	we	get	clever) 

Cunha et al. 2012



How	much	time	would	be	required	to	complete	surveys	from	the	Najita	et	al.	Kavli/NOAO/
LSST	report	on	different	platforms?

• This	is	an	attempt	to	take	the	largest	surveys	proposed	
in	the	Kavli	report	and	work	out	how	long	would	be	
needed	to	do	them	

• Common	set	of	assumptions:	one-third	loss	to	
instrumental	effects,	weather	and	overheads;	4m	=	
Mayall/DESI;	8m	=	Subaru/PFS;	all	instrumental	
efficiencies	identical;	equivalent	#	of	photons	will	yield	
equal	noise;	ignoring	differences	in	seeing/image	
quality	and	fiber/slitlet	size.		Only	medium-resolution	
fibers	included.		Assuming	full	spectral	range	can	be	
covered	simultaneously	(likely	not	true	for	E-ELT).	

• See	report	(available	at	http://arxiv.org/abs/
1610.01661	)	for	details	of	these	surveys	

• Will	give	time	in	years	on	each	platform;	note	that	this	
is	generally	dark	time	(very	faint	targets!)	

• Costs	based	on	TSIP	+	inflation:	$1k/m2/night


