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Motivation

What models should we use for galaxy surveys?

Perturbative bias model: how well does it work?

What are the properties of the noise (stochastic part)?

The goal is to get unbiased cosmological parameters



Most of the analyses use n-point functions. Disadvantages: 

These questions have been extensively explored in the past
Desjacques, Jeong, Schmit: Large-Scale Galaxy Bias

— Cosmic variance, compromise on resolution/size of the box
— At high k hard to disentangle the nonlinearities
— Overfitting (smooth curves, many parameters)
— Only a few lowest n-point functions used 

— Difficult to isolate and study the noise 

Motivation



Advantages: 

These problems can be solved using fields rather than summary statistics

— No cosmic variance, small boxes with high resolution are enough
— High S/N at low k, no need to go to the nonlinear regime
— No overfitting, each Fourier mode (amplitude and phase) is fitted
— “All” n-point functions measured simultaneously

— It is easy to isolate and study the noise 

Motivation

Baldauf, Schaan, Zaldarriaga (2015)

Lazeyras, Schmit (2017)


Abidi, Baldauf (2018)

McQuinn,  D’Aloisio (2018)



Generate realizations using PT and simulations form the same ICs

Same initial conditions

Sim. PT

2

where � is the nonlinear dark matter field. The stochastic term ✏ in this formula must be present, since we do not
expect that the relation between dark matter and halos is perfectly deterministic [9–17]. The best possible b1 that
describes the halo density field can be found by minimizing the di↵erence (�h � b1�), leading to the usual formula

b1(k) =
h�h(k)�⇤(k)i

h|�(k)|2i
. (2)

As we explained, if the fields �h and � share the same initial conditions, the measurement of b1(k) can be done without
sample variance. Notice that the bias measured in this way is a function of k. One way to argue how well the linear
bias model works is to ask up to which scales b1(k) is a constant. A significant scale dependence is a sign that higher
order corrections must be included.

An equally relevant question is how big an error we make, using the best fit values for bias parameters (in our
simple example, b1(k)). The power spectrum of this model error, or noise (sometimes also referred to as stochasticity
[7, 18–24]), is for the linear bias model given by

Perr(k) ⌘ h|�h(k)� b1(k)�(k)|
2
i = h|✏(k)|2i = h|�h(k)|

2
i �

h�h(k)�⇤(k)i2

h|�(k)|2i
, (3)

where in the last equality we have used Eq. (2). The naive expectation for the large-scale amplitude of Perr is that it is
close to Poisson noise 1/n̄ ⌘ V/Nparticles, which is the power spectrum obtained when distributing pointlike particles
randomly in the simulation volume. However, the amplitude of the noise measured in simulations is larger than 1/n̄
for low-mass halos, and smaller than 1/n̄ for high-mass halos [7, 23, 24, 46, 47]. The noise can also have a significant
scale dependence, even at relatively large scales. In some cases, the amplitude of the noise at the mildly nonlinear
scales can di↵er from the amplitude in the low-k limit even by tens of percent. Large amplitude and large scale
dependence, if real, are dangerous, because they can significantly impact the inference of cosmological parameters.

One possible interpretation of these results is that the scale dependence of the noise is due to the higher order terms
in the bias expansion. Indeed, in definition (1), the noise field ✏ contains operators constructed from matter fields
that are not included in the model. Even though one may naively think that the higher order terms are irrelevant
at large scales, as we are going to see they can significantly change the behavior of the noise even in the low-k limit.
Therefore, a more appropriate relation between dark matter and halos on large scales is [1, 33, 48]

�h = PT[�] + ✏ , (4)

where PT[�] stands for the perturbative bias expansion. The success of the perturbative description can then be
rephrased as the question of whether or not including higher orders in perturbation theory leads to a Perr(k) that
has an amplitude closer to the Poisson noise and no significant scale dependence up to the nonlinear scale. To test
whether the noise of the perturbative bias models has these properties, we estimate ✏ as the field di↵erence between
the true halo density, obtained for example from an N-body simulation, and the perturbation theory prediction,

✏̂ ⌘ �
truth

h � PT[�] . (5)

This model error vanishes on average, h✏̂i = 0, and its power spectrum,

Perr(k) ⌘ h|✏̂(k)|2i , (6)

describes the mean-square deviation of a Fourier mode of the true halo density �
truth

h (k) from the bias model prediction
PT[�](k). For linear bias this definition coincides with Eq. (3). If the higher order operators in the bias expansion
are included in the model PT[�], the model error ✏̂ in Eqs. (5) and (6) is free from these higher order bias terms. It
only contains other higher order bias terms, which are not included in the model, and stochastic noise terms. We
are going to show that, as a consequence, the model error power spectrum becomes more flat and has an amplitude
closer to the Poisson prediction. This is because the higher order bias operators not included in the model make only
small k-dependent contributions to the model error, and k-dependent corrections to the stochastic noise become only
relevant on small scales. We will discuss all these issues in more details throughout the paper.

One technical challenge in predicting �h on the field level in perturbation theory is the treatment of large displace-
ments (bulk flows). All comparisons with simulations are naturally done in Eulerian space in the final conditions, but
the large displacements are treated perturbatively in Standard Eulerian perturbation theory. This causes significant
decorrelation of the predicted fields and simulations even on perturbative scales. To solve this problem we introduce
a bias expansion using a new basis of Eulerian bias operators that fully include the Zel’dovich displacement. We call
these operators shifted operators and define them as

Õ(k) ⌘

Z
d3q O(q) e�ik·(q+ 1(q)) , (7)
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Õ(k) ⌘

Z
d3q O(q) e�ik·(q+ 1(q)) , (7)

If PT was perfect, the two fields would be the same (all Fourier modes the same)

Motivation



Outline:

Part 1: How to do PT on the field level?

Part 2: Comparison to simulations

Conclusions



Part 1: PT on the filed level



PT on the filed level

Given ICs, one can calculate the nonlinear field using standard PT kernels

nth order solution is a convolution of n initial Fourier modes

The problem are large displacements 

(which do not cancel like for the n-point functions)

The standard Eulerian PT does not work, we need “IR resummation”

Lagrangian PT does not have this problem, but it gives only displacement…
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such that the Eulerian coordinates x of a halo at the initial position q are given by x = q +  (q). The overdensity
generated in this way is given by

1 + �h(x) =

Z
d3q (1 + �h(q)) �D(x� q � (q)) , (12)

where �D is the Dirac delta. The Fourier transform of this field in Eulerian space is

�h(k) ⌘

Z
d3x (1 + �h(x)) e

�ik·x =

Z
d3q (1 + �h(q)) e

�ik·(q+ (q))
. (13)

For simplicity, in this equation and in the rest of the paper we restrict the range of momenta to k 6= 0, so that the zero
modes or mean density do not enter our formulas. The nonlinear displacement from Lagrangian to Eulerian position
can be expanded in a perturbative series  =  1 +  2 + · · · . At first order, we have the well-known Zel’dovich
approximation [69]

 1(q) =

Z

k
e
ik·q ik

k2
�1(k) . (14)

The second-order displacement can be written as

 2(q) = �
3

14

Z

k
e
ik·q ik

k2
G2(k) . (15)

Using the perturbative description of the nonlinear displacement field and expanding the exponent e�ik· (q) in Eq. (13)
it is possible to recover the usual Standard Eulerian bias expansion. This procedure also fixes the relation between
Lagrangian bias parameters and their Standard Eulerian counterparts. Of course, this is not a surprise, as we expect
the two descriptions to agree order by order in perturbation theory.

On the other hand we do not want to expand the full nonlinear displacement. We are going to keep the largest
part  1(q) exponentiated and expand only the higher-order terms.3 In this way the largest part of the problematic
IR displacements is not expanded in perturbation theory. With this in mind, we can rewrite Eq. (13) in the following
way

�h(k) =

Z
d3q

⇣
1 + b

L
1
�1(q) + b

L
2
(�2

1
(q)� �

2

1
) + b

L
G2
G2(q) + · · ·

� ik · 2(q) + · · ·

⌘
e
�ik·(q+ 1(q)) , (16)

where the new contributions come from expanding the second (and higher) order displacement field in the exponent.
It is important to stress that at leading order this new term can be expressed through the second order operator G2

(see Eq. (15)). Therefore, at second order in perturbation theory, expanding the nonlinear terms in the displacement
field  (q) only shifts some of the standard Lagrangian bias parameters by a calculable constant. We will give more
details about higher order terms in Section VIII.

The previous expression motivates us to write down the bias expansion in Eulerian space in terms of shifted
operators, that are defined in the following way

Õ(k) ⌘

Z
d3q O(q) e�ik·(q+ 1(q)) , (17)

where O 2 {1, �1, �2 ⌘ (�2
1
� �

2
1
), G2, . . .}.4 We would like to stress again a few important advantages that this

description has: (a) The shifted operators are written in Eulerian space and therefore allow for easy comparisons
with simulations and quantification of their importance. (b) The large displacement terms  1(q) are kept resummed,
which is crucial for comparisons with simulations on the level of realizations. Notice that this also implies that in

3 Let us define W (k) to be a low-pass filter, compared to the wavelength of a Fourier mode �1(k). For a given wavenumber k, the
linear displacement can be split into the long-wavelength and short-wavelength part:  1 =  L

1 +  S
1 , where  L

1 = W (k) 1 and
 S

1 = (1�W (k)) 1. The e↵ect of  L
1 on the short modes is fixed by the Equivalence Principle. Therefore, strictly speaking, only  L

1
should be kept exponentiated and in any perturbative calculation  S

1 has to be expanded order by order in perturbation theory. The
error in our formulas introduced by keeping the full  1 in the exponent is always higher order in  S

1 than terms we calculate. Also,
this error is mainly relevant on small scales. In order to keep the formulas simple, we decide not to do the long-short splitting in our
calculation.

4 Notice that these shifted fields are not just given by a translation of the position argument because they implicitly include the inverse
of the determinant of the Jacobian @xi/@qj due to the coordinate transformation. This is similar to the Zel’dovich density, which is
given by a uniform field in Lagrangian space shifted by  1(q).

linear displacement is large

5

such that the Eulerian coordinates x of a halo at the initial position q are given by x = q +  (q). The overdensity
generated in this way is given by

1 + �h(x) =

Z
d3q (1 + �h(q)) �D(x � q � (q)) , (12)

where �D is the Dirac delta. The Fourier transform of this field in Eulerian space is

�h(k) ⌘

Z
d3x (1 + �h(x)) e

�ik·x =

Z
d3q (1 + �h(q)) e

�ik·(q+ (q))
. (13)

For simplicity, in this equation and in the rest of the paper we restrict the range of momenta to k 6= 0, so that the zero
modes or mean density do not enter our formulas. The nonlinear displacement from Lagrangian to Eulerian position
can be expanded in a perturbative series  =  1 +  2 + · · · . At first order, we have the well-known Zel’dovich
approximation [69]

 1(q) =

Z

k
e
ik·q ik

k2
�1(k) . (14)

The second-order displacement can be written as

 2(q) = �
3

14

Z

k
e
ik·q ik

k2
G2(k) . (15)

Using the perturbative description of the nonlinear displacement field and expanding the exponent e�ik· (q) in Eq. (13)
it is possible to recover the usual Standard Eulerian bias expansion. This procedure also fixes the relation between
Lagrangian bias parameters and their Standard Eulerian counterparts. Of course, this is not a surprise, as we expect
the two descriptions to agree order by order in perturbation theory.

On the other hand we do not want to expand the full nonlinear displacement. We are going to keep the largest
part  1(q) exponentiated and expand only the higher-order terms.3 In this way the largest part of the problematic
IR displacements is not expanded in perturbation theory. With this in mind, we can rewrite Eq. (13) in the following
way

�h(k) =

Z
d3q

⇣
1 + b

L
1

�1(q) + b
L
2
(�2

1
(q) � �

2

1
) + b

L
G2
G2(q) + · · ·

� ik · 2(q) + · · ·

⌘
e

�ik·(q+ 1(q)) , (16)

where the new contributions come from expanding the second (and higher) order displacement field in the exponent.
It is important to stress that at leading order this new term can be expressed through the second order operator G2

(see Eq. (15)). Therefore, at second order in perturbation theory, expanding the nonlinear terms in the displacement
field  (q) only shifts some of the standard Lagrangian bias parameters by a calculable constant. We will give more
details about higher order terms in Section VIII.

The previous expression motivates us to write down the bias expansion in Eulerian space in terms of shifted
operators, that are defined in the following way
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For simplicity, in this equation and in the rest of the paper we restrict the range of momenta to k 6= 0, so that the zero
modes or mean density do not enter our formulas. The nonlinear displacement from Lagrangian to Eulerian position
can be expanded in a perturbative series  =  1 +  2 + · · · . At first order, we have the well-known Zel’dovich
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Using the perturbative description of the nonlinear displacement field and expanding the exponent e�ik· (q) in Eq. (13)
it is possible to recover the usual Standard Eulerian bias expansion. This procedure also fixes the relation between
Lagrangian bias parameters and their Standard Eulerian counterparts. Of course, this is not a surprise, as we expect
the two descriptions to agree order by order in perturbation theory.
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part  1(q) exponentiated and expand only the higher-order terms.3 In this way the largest part of the problematic
IR displacements is not expanded in perturbation theory. With this in mind, we can rewrite Eq. (13) in the following
way

�h(k) =

Z
d3q

⇣
1 + b

L
1

�1(q) + b
L
2
(�2

1
(q) � �

2

1
) + b

L
G2
G2(q) + · · ·

� ik · 2(q) + · · ·

⌘
e

�ik·(q+ 1(q)) , (16)

where the new contributions come from expanding the second (and higher) order displacement field in the exponent.
It is important to stress that at leading order this new term can be expressed through the second order operator G2

(see Eq. (15)). Therefore, at second order in perturbation theory, expanding the nonlinear terms in the displacement
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completely uncorrelated on scales smaller than O(10) h�1Mpc.1 This is precisely what happens in Standard Eulerian
perturbation theory, making it deficient for the description of realizations of dark matter or halo density fields. We
will come back to the details of this failure of Standard Eulerian perturbation theory in Section VII.

On the other hand, in Lagrangian perturbation theory the large IR displacements are naturally taken into account.
However, this framework has a di↵erent problem. It predicts only the nonlinear displacement field  and not the
density field �. Going from one to the other is a nontrivial step. Given that the relation between � and  is very
nonlinear, even a very good knowledge of the displacement field up to some scale does not guarantee that the density
field will be correct up to the same scale with the same precision [67, 68].

In this paper we present one possible perturbative description that circumvents these problems by constructing a
bias expansion tailored to describe biased tracers at the field level. We put forward the following requirements:

(a) The bias expansion must be perturbative;

(b) The bias operators have to be written in Eulerian space, given that we are comparing theoretical predictions
and simulations of the final Eulerian density field;

(c) The large IR displacements have to be treated non-perturbatively.

Our strategy to achieve all of these goals is to combine the virtues of Eulerian and Lagrangian descriptions into a
hybrid scheme. We start with the description of biased tracers in Lagrangian space. The displacement field is then
split into the dominant linear contribution and smaller higher order corrections. The nonlinear corrections to  are
treated perturbatively, while the linear piece is kept in the exponent. In this way, the dominant part of the large
displacements can be treated exactly, and the resulting operators once written in Eulerian space are automatically
IR-resummed. In the rest of this section we give the details of this construction.

The proto-halo density field at Lagrangian position q is modeled using a bias expansion in the linear Lagrangian-
space density �1(q):

�
L
h(q) = b
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1
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, . . . are Lagrangian bias parameters, �2
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is the r.m.s. fluctuation of the linear density field
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and the operator G2(q) is defined as2

G2(q) ⌘


@i@j

@2
�1(q)

�2
� �

2

1
(q) . (10)

The representation of this operator in momentum space is given by

G2(k) =

Z

p


(p · (k � p))2

p2|k � p|2
� 1

�
�1(p) �1(k � p) . (11)

Notice that we are using notation in which
R
p ⌘

R
d3p/(2⇡)3. In the bias expansion (8) we kept only terms up to

second order in perturbation theory. We will continue to work at this order throughout this section, because it is
su�cient for introducing notation and motivating the bias model that we are going to use to make comparisons with
simulations. The higher order or higher derivative operators needed for the consistent one-loop calculation can be
straightforwardly included. We will come back to this in Section VIII.

The bias expansion in Eq. (8) is in Lagrangian space. In order to go to Eulerian space, let us start from Eq. (8) and
include the gravitational evolution. The gravitational evolution is encoded in the nonlinear displacement field  (q),

1 It is important to stress that the e↵ect of this decorrelation is much more dramatic at the field level than for the correlation functions.
This is due to the general statement that the e↵ects of bulk flows have to cancel in equal time n-point functions [58–61]. The only
exception to this theorem are cases in which there are sharp features in the correlation function, such as the BAO peak. For example,
the only e↵ect of large displacements on the power spectrum is to smooth out the BAO wiggles (or spread the BAO peak in real space
two-point function) [62–66], while the smooth part of the power spectrum at small scales remains unchanged.

2 The basis of operators at second order (and higher orders) in perturbation theory is not unique. One of the advantages of working with
{�21 ,G2} is that the auto-power spectrum of G2 and its cross-spectrum with �21 vanish in the low-k limit. This simplifies our analysis
and helps to disentangle relevant contributions to the shot noise in the low-k limit. For other common choices of the basis operators
and their relation to {�21 ,G2} see [1].
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this description the BAO wiggles are properly suppressed (the BAO peak is spread). However, the model is still
perturbative in small quantities, such as derivatives of the linear displacement �1 = �r · 1. (c) The shifted operators
are easy to generate on 3-d grids for given initial conditions, by simply displacing properly weighted particles from
Lagrangian to Eulerian space, using the Zel’dovich displacement. Also, the theoretical calculation of the power spectra
of shifted operators is quite straightforward (see Section VIIIC).

It is important to point out that the correlation functions of shifted operators have a familiar form, for instance

hÕi(k)Õj(�k)i =

Z
d
3q hOi(q)Oj(0) e

�ik·( 1(q)� 1(0))ie
�ik·q

. (18)

The expression on the r.h.s. is very common in Lagrangian perturbation theory. This connection is not surprising,
given that we start our derivation in Lagrangian space. Even though we have come to the definition of the shifted
operators using a di↵erent motivation, a lot of literature already exists on the power spectrum of biased tracers in
Lagrangian perturbation theory. In this paper we are going to use some results presented there. For some recent
developments, such as Convolution Lagrangian E↵ective Field Theory, see for example [57, 70–72] and references
therein.

One term in the previous equations that has a somewhat special role is the shift of a uniform density. This
contribution to �h(k) is equal to the Zel’dovich density field

�Z(k) ⌘

Z
d3q e�ik·(q+ 1(q)) . (19)

This term is fixed by dynamics and it is not a part of the bias expansion in the usual sense (it has no free parameters).
However, �Z(k) can be also expanded in the basis of shifted operators. We show in Appendix A that the Zel’dovich
density field can be written as

�Z(k) = �̃1(k) +
1

2
G̃2(k)�

1

3
G̃3(k) + · · · , (20)

where G̃3 is a cubic operator analogous to G̃2 (see Appendix D). In other words, �Z(k) can be absorbed in the bias
expansion by simply changing the bias parameters. Of course, this is just a choice, and there is nothing wrong in
keeping �Z explicitly in the formulas. As we are going to see later, di↵erent choices may be more appropriate for
di↵erent applications. Let us point out that in the formula (20) the displacements  1(q) are treated exactly. In other
words, the exponential e�ik· 1(q) is never expanded in  1(q). The only expansion parameter is the derivative of the
displacement, r ·  1(q) = ��1(q), which is a small quantity.5 This is consistent with the way the shifted operators
are defined.

To conclude, using the basis of shifted operators we can write the bias expansion of the halo density field in Eulerian
coordinates, up to second order in perturbation theory, in the following way

�h(k) = b1 �̃1(k) + b2 �̃2(k) + bG2 G̃2(k) + · · · . (21)

This is the main result of this section. Notice that the new bias parameters bi di↵er from the original Lagrangian
biases bLi by a constant. This di↵erence comes from expanding the nonlinear part of the displacement (Eq. (16)) and
writing the Zel’dovich density field in terms of shifted operators (Eq. (20)). We give the explicit relation of bi and b

L
i

in Section VIII. Equation (21) has a similar structure as the usual Standard Eulerian bias expansion

�h(k) = b
E
1
�(k) + b

E
2
�2(k) + b

E
G2

G2(k) + · · · , (22)

where �2(k) ⌘ �
2(k). Notice that all fields in this equation are nonlinear. Apart from the IR resummation of the large

displacements, one important di↵erence compared to the expansion in terms of Õ is that in Eq. (21) all operators are
expressed in terms of the linear field �1. As we are going to see, for the purposes of describing the biased tracers on
the field level, this is another important virtue of the expansion (21).

5 This may seem counterintuitive at the first sight, because there are no derivatives of the displacement field in Eq. (19). However, they
do appear once the momentum k in e�ik· 1(q) is written as a derivative with respect to q. A much easier derivation of Eq. (20) is in
real space, as presented in Appendix A.
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such that the Eulerian coordinates x of a halo at the initial position q are given by x = q +  (q). The overdensity
generated in this way is given by

1 + �h(x) =

Z
d3q (1 + �h(q)) �D(x � q � (q)) , (12)

where �D is the Dirac delta. The Fourier transform of this field in Eulerian space is

�h(k) ⌘

Z
d3x (1 + �h(x)) e

�ik·x =

Z
d3q (1 + �h(q)) e

�ik·(q+ (q))
. (13)

For simplicity, in this equation and in the rest of the paper we restrict the range of momenta to k 6= 0, so that the zero
modes or mean density do not enter our formulas. The nonlinear displacement from Lagrangian to Eulerian position
can be expanded in a perturbative series  =  1 +  2 + · · · . At first order, we have the well-known Zel’dovich
approximation [69]

 1(q) =

Z

k
e
ik·q ik

k2
�1(k) . (14)

The second-order displacement can be written as

 2(q) = �
3

14

Z

k
e
ik·q ik

k2
G2(k) . (15)

Using the perturbative description of the nonlinear displacement field and expanding the exponent e�ik· (q) in Eq. (13)
it is possible to recover the usual Standard Eulerian bias expansion. This procedure also fixes the relation between
Lagrangian bias parameters and their Standard Eulerian counterparts. Of course, this is not a surprise, as we expect
the two descriptions to agree order by order in perturbation theory.

On the other hand we do not want to expand the full nonlinear displacement. We are going to keep the largest
part  1(q) exponentiated and expand only the higher-order terms.3 In this way the largest part of the problematic
IR displacements is not expanded in perturbation theory. With this in mind, we can rewrite Eq. (13) in the following
way

�h(k) =

Z
d3q

⇣
1 + b

L
1

�1(q) + b
L
2
(�2

1
(q) � �

2

1
) + b

L
G2
G2(q) + · · ·

� ik · 2(q) + · · ·

⌘
e

�ik·(q+ 1(q)) , (16)

where the new contributions come from expanding the second (and higher) order displacement field in the exponent.
It is important to stress that at leading order this new term can be expressed through the second order operator G2

(see Eq. (15)). Therefore, at second order in perturbation theory, expanding the nonlinear terms in the displacement
field  (q) only shifts some of the standard Lagrangian bias parameters by a calculable constant. We will give more
details about higher order terms in Section VIII.

The previous expression motivates us to write down the bias expansion in Eulerian space in terms of shifted
operators, that are defined in the following way

Õ(k) ⌘

Z
d3q O(q) e�ik·(q+ 1(q)) , (17)

where O 2 {1, �1, �2 ⌘ (�2
1

� �
2
1
), G2, . . .}.4 We would like to stress again a few important advantages that this

description has: (a) The shifted operators are written in Eulerian space and therefore allow for easy comparisons
with simulations and quantification of their importance. (b) The large displacement terms  1(q) are kept resummed,
which is crucial for comparisons with simulations on the level of realizations. Notice that this also implies that in

3 Let us define W (k) to be a low-pass filter, compared to the wavelength of a Fourier mode �1(k). For a given wavenumber k, the
linear displacement can be split into the long-wavelength and short-wavelength part:  1 =  L

1 +  S
1 , where  L

1 = W (k) 1 and
 S

1 = (1�W (k)) 1. The e↵ect of  L
1 on the short modes is fixed by the Equivalence Principle. Therefore, strictly speaking, only  L

1
should be kept exponentiated and in any perturbative calculation  S

1 has to be expanded order by order in perturbation theory. The
error in our formulas introduced by keeping the full  1 in the exponent is always higher order in  S

1 than terms we calculate. Also,
this error is mainly relevant on small scales. In order to keep the formulas simple, we decide not to do the long-short splitting in our
calculation.

4 Notice that these shifted fields are not just given by a translation of the position argument because they implicitly include the inverse
of the determinant of the Jacobian @xi/@qj due to the coordinate transformation. This is similar to the Zel’dovich density, which is
given by a uniform field in Lagrangian space shifted by  1(q).

This motivates us to write the bias expansion using the “shifted” operators

PT prediction
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cubic bias parameters b2 and b3 are negative for low and intermediate mass halos, and become large and positive for the
more massive halos. The quadratic tidal bias parameter is positive for low masses and negative for the most massive
halos. These trends broadly agree with theoretical expectations and previous measurements of bias parameters in the
literature using di↵erent measurement techniques [7, 8, 73]. However, let us again stress that we expect b1 to be the
only bias parameter that is equal to its renormalized value, measured for example from the power spectrum. The
other bias parameters can be di↵erent from the values inferred from the correlation functions. The fact that b2 or
bG2 are close to their renormalized values indicates that our prescription for the building shifted operators is not very
sensitive to very high-k modes. It would be interesting to see if this remains true at higher orders in perturbation
theory and we leave this question for future work.

In most cases the best-fit parameters are similar with or without theoretical errors included in the fitting procedure,
and with or without absorbing �Z in the bias operators. An exception are cs and b�3 , which are fitted only from the
k-dependence of �1(k) and which vary significantly between fitting procedures. This is due to a strong degeneracy of
these two parameters when fitting only �1(k). This degeneracy could be broken by including the shifted �3 operator
in the bias expansion on the grid and measuring its transfer function. We do not attempt to do this here, noting that
the transfer functions are fitted su�ciently well for our purposes independently of the fitting method.

IX. CONNECTION TO THE IR-RESUMMATION IN STANDARD EULERIAN PERTURBATION
THEORY

So far we have argued that in order to make a perturbative prediction for the realization of the density field of
dark matter or biased tracers one has to work with shifted operators. However, on the level of the transfer functions
or predictions for the power spectra, only the correlation functions of shifted operators appear. It is then natural
to ask how these correlation functions relate to the more familiar counterparts in IR-resummed Standard Eulerian
perturbation theory where the large bulk flows are also treated nonperturbatively. This question has been explored
previously (see for instance [70]) and in this section we review the main arguments and give some further details. We
will begin with the simplest case of dark matter only and then move to biased tracers.

A. Dark Matter

The nonlinear dark matter field is given by the same expression as �h where all Lagrangian bias parameters are set
to zero

�̃ = �̃1 +
2

7
G̃2 �

3

14
[ ˜G2�] �

2

9
G̃3 +

1

6
�̃3 � S̃3 . (101)

The power spectrum of this field up to one-loop order is given by

P̃ (k) = h�̃1�̃1i+
4

7
h�̃1G̃2i+

4

49
hG̃2G̃2i �

3

7
h�̃1[ ˜G2�]i �

4

9
h�̃1G̃3i+

1

3
h�̃1�̃3i � 2h�̃1S̃3i . (102)

Let us make a few comments about some of the terms in this expression. The kernel of the G3 operator is such that
h�1G3i vanishes. This implies that the cross spectrum of shifted operators h�̃1G̃3i is non-vanishing only at the two-loop
order and we can neglect this contribution. The cross spectrum h�1[G2�]i is proportional to P11(k)

h�1[G2�]i = �
8

3
P11(k)

Z
1

0

p
2
dp

4⇡2
P11(p) . (103)

The corrections to this expression for the shifted fields are of the two-loop order and we will ignore them. In the
standard calculation of the one-loop power spectrum for biased tracers this term renormalizes the linear bias b1.
However, given that in this case we are calculating the power spectrum of the dark matter field, this contribution has
to cancel. Indeed, the cancellation is ensured by the contribution from S̃3. The symmetrized kernel of this operator
is such that

F
s
S̃3
(k,p,�p)

���
k!0

=
4

21
+O

✓
k
2

p2

◆
. (104)

This implies that the low-k limit of the correlator h�̃1S̃3i is given by

h�̃1S̃3i

���
k!0

=
4

7
P11(k)

Z
1

0

p
2
dp

4⇡2
P11(p) . (105)
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This precisely cancels the contribution from h�̃1[ ˜G2�]i in the power spectrum. Therefore, the nontrivial terms that
survive at one-loop order are

P̃ (k) = h�̃1�̃1i+
4

7
h�̃1G̃2i+

4

49
hG̃2G̃2i+

1

3
h�̃1�̃3i � 2h�̃1S̃

new

3
i . (106)

where S̃
new
3

is derived from the S̃3 operator by subtracting the constant 4/21 contribution from the kernel. This is
the prediction for the one-loop IR-resummed power spectrum from a realization of the shifted fields.

Fig. 20 shows the di↵erent contributions to the power spectrum. The thin blue line is the power spectrum of the
shifted linear field. The thick brown line is the sum of all four terms in the previous equation which represent the
one-loop contributions.15 One interesting point to notice is that the total one-loop contribution is at least an order of
magnitude smaller than the leading term in the power spectrum on all scales. This result is not surprising, since the
expansion of the nonlinear density field in terms of shifted operators is closely related to the expansion of the nonlinear
displacement field in Lagrangian perturbation theory, and it is well known that the one-loop power spectrum of the
displacement field is smaller than the linear prediction on all scales.

Figure 20. Di↵erent contributions to the one-loop dark matter power spectrum evaluated using Eq. (106). The thin blue
solid line is the power spectrum of the shifted linear density field. Di↵erent dotted and dashed lines are di↵erent one-loop
contributions. The solid brown thick line is the sum of all one-loop terms.

In what follows we are going to compare P̃ (k) to the usual one-loop IR-resummed power spectrum in Standard
Eulerian perturbation theory. Before showing the details let us make some general comments. The shifted power
spectrum P̃ (k) contains all terms of the Standard Eulerian perturbation theory up to one-loop. Therefore, the
di↵erence can be only two-loop and higher order contributions. Secondly, the large IR-displacements are resummed in
P̃ (k) in the same way as in the usual IR-resummation, using the Zel’dovich displacement field  1. This implies that
the BAO wiggles must be suppressed in the same way. Indeed, we are going to show that both these expectations are
correct.

Let us begin with a brief summary of how the IR-resummed power spectrum is calculated. The starting point is
to split the linear power spectrum in the smooth (non-wiggly) part P nw

11
(k) and the wiggly part that comes from the

BAO oscillations Pw
11
(k). Algorithms to do this splitting e�ciently can be found in [101, 102]. The e↵ects of the large

displacements exactly cancel in the equal-time correlation functions if the power spectrum is smooth. Therefore, the
non-wiggly part of the linear power spectrum can be used to evaluate the loop integrals in the usual way. On the
other hand, the BAO wiggles are damped by the large displacements (the BAO peak is broadened in the real space
correlation function). For this reason the wiggle part of the one-loop power spectrum evaluated using P

w
11
(k) has to

be suppressed by the appropriate exponential factor (for more details see [62–66]). The final formula is given by

P
IR(k) = P
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11
(k) + P
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1�loop
(k) + e
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�kk
2)Pw

11
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2

P
w

1�loop
, (107)

15 Notice that there is a one-loop contribution in h�̃1�̃1i as well, which we do not write explicitly.
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where

⌃2

⇤
=

1

6⇡2

Z
⇤

0

dp P11(p) (1� j0(p`BAO) + 2j2(p`BAO)) . (108)

The parameter � in ⌃2

�k is usually chosen to be smaller than 1, in order to ensure that the displacements with a
given wavenumber a↵ect only the fluctuations on shorter scales. However, in our definition of shifted operators such a
condition is not imposed, and for the purposes of the comparison we will use the k-independent ⌃2

1
. In a ⇤CDM-like

cosmology the di↵erence between the two definitions is small.

Figure 21. Comparison of the IR resummation and shifted fields, for the power spectrum (left) and correlation function (right).

Figure 21 shows the comparison of the one-loop dark matter power spectrum calculated using the shifted operators
and the standard formula for the IR-resummation. The agreement between the two is reasonably good. The left panel
shows di↵erent power spectra normalized to the standard one-loop non-wiggle power spectrum. The thin dashed and
solid gray lines are the estimate for the typical relative size of the one- and two-loop corrections respectively at z = 0.6.
We can see that the wiggles in the non-IR-resummed one-loop power spectrum are irregular, unlike the case with the
IR-resummation. As expected, the di↵erence between the broadband of P̃ (k) and the Standard Eulerian prediction
is of the order of two-loop terms (within a factor of 2). Figure 21 also shows that the wiggles in P

IR(k) and P̃ (k) are
identical since the relative di↵erence (P̃ (k)� P

IR(k))/P nw(k) is smooth (thick blue line).

The other way to see that the wiggles in P
IR(k) and P̃ (k) are the same is to look at the correlation function in

real space and focus on the BAO peak. This comparison is shown in the right panel of Fig. 21. The correlation
functions calculated using P̃ (k) and P

IR(k), labeled by ⇠̃(r) and ⇠
IR(r) respectively, are almost identical. They

correctly predict the broadening of the BAO peak, compared to the linear theory prediction ⇠11(r). As expected, the
correlation function that corresponds to the one-loop power spectrum without the IR-resummation ⇠(r) has a very
irregular peak. For reference we also plot the prediction based on the Zel’dovich power spectrum, ⇠Zel(r), which is
known to be in good agreement with simulations.

In conclusion, the dark matter one-loop power spectrum calculated with shifted operators is indeed, up to two-loop
corrections, identical to the IR-resummed one-loop Standard Eulerian prediction. This remains true for the halo
one-loop power spectrum, as we discuss next.

B. Halos

Let us now turn to the halo density field. Using results from the previous section we can rewrite it as

�h = b1 �̃ + b2 �̃2 +

✓
bG2 �

2

7
b1

◆
G̃2 + b3 �̃3 +

✓
bG2� +

3

14
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◆
[ ˜G2�] +

✓
bG3 +

2

9
b1

◆
G̃3 +

✓
b�3 �

1

6
b1

◆
�̃3 . (109)

Notice that b1 multiplies the nonlinear shifted density field. For this reason the S̃3 operator is absent from the bias
expansion and some bias parameters are modified. This expression is very similar to the Standard Eulerian bias

The same results as in the standard PT approach with IR resummation
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B. Promoting Bias Parameters to Transfer Functions

So far we wrote the bias expansion in terms of shifted operators keeping only terms up to second order in perturbation
theory. If we want to describe the density field of biased tracers deeper in the nonlinear regime, we have to include
higher order terms. For instance, even for the evaluation of the one-loop power spectrum one has to keep all cubic
operators. Let us take a closer look at this example

�h(k) = b1 �̃1(k) + b2 �̃2(k) + bG2 G̃2(k) +
X

i

b
i
3
Õ

i
3
, (23)

where Õ
i
3
is a set of cubic operators and b

i
3
are the corresponding bias parameters. At lowest order in perturbation

theory the cubic operators correlate only with �̃1. We can split the cubic operators into parts parallel and orthogonal
to �̃1,
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In this way, allowing for a scale-dependent bias parameter b1(k), we can write

�h(k) = b1(k) �̃1(k) + b2 �̃2(k) + bG2 G̃2(k) +
X

i

b
i
3
Õ

i?
3

. (25)

At one-loop order, the new cubic operators are orthogonal to all other fields. This implies that even the bias expansion
up to second order in the fields, with the appropriate b1(k), is su�cient to describe the density field with the correct
one-loop power spectrum. Allowing for scale-dependent bias parameters e↵ectively allows us to reduce the order in
perturbation theory that we need to describe the density field of biased tracers at a given order in perturbation theory.

This example provides motivation to promote all bias parameters to k-dependent functions

�h(k) = b1(k) �̃1(k) + b2(k) �̃2(k) + bG2(k) G̃2(k) + · · · , (26)

in order to take into account as much nonlinearity as possible. This expression can be compared to realizations of N-
body simulations. Calculating the operators with the same initial conditions, the sample variance can be canceled [67].
The bias functions can be measured from the condition that the di↵erence between realizations in simulations and
theory is minimal. This procedure allows us to ask a very general question: How much of the real halo density
field can be described with a few leading-order operators, even beyond the perturbative regime? In a setup this
general, a perturbation-theory-inspired model can be considered successful if it leads to small (close to Poisson) and
scale-independent mean-square model error.

When fitting the above model to a halo density at the field level, the bias coe�cients bi are correlated with each
other because the shifted fields �̃1, �̃2 and G̃2 are correlated among themselves (they are defined using the same initial
conditions and the same displacement field  1). When interpreting the bias parameters, it is useful to change the
basis to avoid this correlation. We therefore rotate the shifted operators to mutually orthogonal fields using the
Gram-Schmidt algorithm:

�̃
?

1
(k) = �̃1(k) , (27)

�̃
?

2
(k) = �̃2(k) +M10(k)�̃1(k) , (28)

G̃
?

2
(k) = G̃2(k) +M20(k)�̃1(k) +M21(k)�̃2(k) . (29)

The Gram-Schmidt rotation matrix Mij(k) is M10(k) = �P�̃2�̃1
(k)/P�̃1�̃1

(k) etc., and can be computed using a

Cholesky decomposition of the 3⇥ 3 correlation matrix between the three shifted fields {�̃1, �̃2, G̃2} in every k-bin as
described in Appendix C. The bias expansion in this orthogonal basis is then

�h(k) = �1(k) �̃1(k) + �2(k) �̃
?

2
(k) + �G2(k) G̃

?

2
(k) + · · · . (30)

These new bias parameters, or transfer functions, �i(k) are independent from each other. We can therefore add
higher-order operators using the same procedure without changing any of the lower-order bias parameters, which is
a useful property. In our framework, where transfer functions are determined by minimizing the mean-square model
error at the field level, the change of basis, i.e., going from bi to �i, does not change the predicted halo density; it
merely provides a more convenient way to interpret the numerical values of bias parameters. Also notice that the
first parameter remains unchanged, �1(k) = b1(k). In Section VIII we will present one-loop perturbation theory
predictions for �i(k) and compare against measurements of �i(k) from N-body simulations.
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At one-loop order, the new cubic operators are orthogonal to all other fields. This implies that even the bias expansion
up to second order in the fields, with the appropriate b1(k), is su�cient to describe the density field with the correct
one-loop power spectrum. Allowing for scale-dependent bias parameters e↵ectively allows us to reduce the order in
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body simulations. Calculating the operators with the same initial conditions, the sample variance can be canceled [67].
The bias functions can be measured from the condition that the di↵erence between realizations in simulations and
theory is minimal. This procedure allows us to ask a very general question: How much of the real halo density
field can be described with a few leading-order operators, even beyond the perturbative regime? In a setup this
general, a perturbation-theory-inspired model can be considered successful if it leads to small (close to Poisson) and
scale-independent mean-square model error.

When fitting the above model to a halo density at the field level, the bias coe�cients bi are correlated with each
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basis to avoid this correlation. We therefore rotate the shifted operators to mutually orthogonal fields using the
Gram-Schmidt algorithm:

�̃
?

1
(k) = �̃1(k) , (27)

�̃
?

2
(k) = �̃2(k) +M10(k)�̃1(k) , (28)

G̃
?

2
(k) = G̃2(k) +M20(k)�̃1(k) +M21(k)�̃2(k) . (29)

The Gram-Schmidt rotation matrix Mij(k) is M10(k) = �P�̃2�̃1
(k)/P�̃1�̃1

(k) etc., and can be computed using a

Cholesky decomposition of the 3 ⇥ 3 correlation matrix between the three shifted fields {�̃1, �̃2, G̃2} in every k-bin as
described in Appendix C. The bias expansion in this orthogonal basis is then

�h(k) = �1(k) �̃1(k) + �2(k) �̃
?

2
(k) + �G2(k) G̃

?

2
(k) + · · · . (30)

These new bias parameters, or transfer functions, �i(k) are independent from each other. We can therefore add
higher-order operators using the same procedure without changing any of the lower-order bias parameters, which is
a useful property. In our framework, where transfer functions are determined by minimizing the mean-square model
error at the field level, the change of basis, i.e., going from bi to �i, does not change the predicted halo density; it
merely provides a more convenient way to interpret the numerical values of bias parameters. Also notice that the
first parameter remains unchanged, �1(k) = b1(k). In Section VIII we will present one-loop perturbation theory
predictions for �i(k) and compare against measurements of �i(k) from N-body simulations.

No contribution

at 1-loop

Keep the second order fields, promote biases to k-dependent functions 



Bias expansion on the field level

What are the operators that we need for the one-loop prediction?
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B. Promoting Bias Parameters to Transfer Functions

So far we wrote the bias expansion in terms of shifted operators keeping only terms up to second order in perturbation
theory. If we want to describe the density field of biased tracers deeper in the nonlinear regime, we have to include
higher order terms. For instance, even for the evaluation of the one-loop power spectrum one has to keep all cubic
operators. Let us take a closer look at this example

�h(k) = b1 �̃1(k) + b2 �̃2(k) + bG2 G̃2(k) +
X
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, (23)

where Õ
i
3
is a set of cubic operators and b

i
3
are the corresponding bias parameters. At lowest order in perturbation

theory the cubic operators correlate only with �̃1. We can split the cubic operators into parts parallel and orthogonal
to �̃1,

Õ
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In this way, allowing for a scale-dependent bias parameter b1(k), we can write

�h(k) = b1(k) �̃1(k) + b2 �̃2(k) + bG2 G̃2(k) +
X

i

b
i
3
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. (25)

At one-loop order, the new cubic operators are orthogonal to all other fields. This implies that even the bias expansion
up to second order in the fields, with the appropriate b1(k), is su�cient to describe the density field with the correct
one-loop power spectrum. Allowing for scale-dependent bias parameters e↵ectively allows us to reduce the order in
perturbation theory that we need to describe the density field of biased tracers at a given order in perturbation theory.

This example provides motivation to promote all bias parameters to k-dependent functions

�h(k) = b1(k) �̃1(k) + b2(k) �̃2(k) + bG2(k) G̃2(k) + · · · , (26)

in order to take into account as much nonlinearity as possible. This expression can be compared to realizations of N-
body simulations. Calculating the operators with the same initial conditions, the sample variance can be canceled [67].
The bias functions can be measured from the condition that the di↵erence between realizations in simulations and
theory is minimal. This procedure allows us to ask a very general question: How much of the real halo density
field can be described with a few leading-order operators, even beyond the perturbative regime? In a setup this
general, a perturbation-theory-inspired model can be considered successful if it leads to small (close to Poisson) and
scale-independent mean-square model error.

When fitting the above model to a halo density at the field level, the bias coe�cients bi are correlated with each
other because the shifted fields �̃1, �̃2 and G̃2 are correlated among themselves (they are defined using the same initial
conditions and the same displacement field  1). When interpreting the bias parameters, it is useful to change the
basis to avoid this correlation. We therefore rotate the shifted operators to mutually orthogonal fields using the
Gram-Schmidt algorithm:

�̃
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2
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The Gram-Schmidt rotation matrix Mij(k) is M10(k) = �P�̃2�̃1
(k)/P�̃1�̃1

(k) etc., and can be computed using a

Cholesky decomposition of the 3 ⇥ 3 correlation matrix between the three shifted fields {�̃1, �̃2, G̃2} in every k-bin as
described in Appendix C. The bias expansion in this orthogonal basis is then

�h(k) = �1(k) �̃1(k) + �2(k) �̃
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2
(k) + �G2(k) G̃
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2
(k) + · · · . (30)

These new bias parameters, or transfer functions, �i(k) are independent from each other. We can therefore add
higher-order operators using the same procedure without changing any of the lower-order bias parameters, which is
a useful property. In our framework, where transfer functions are determined by minimizing the mean-square model
error at the field level, the change of basis, i.e., going from bi to �i, does not change the predicted halo density; it
merely provides a more convenient way to interpret the numerical values of bias parameters. Also notice that the
first parameter remains unchanged, �1(k) = b1(k). In Section VIII we will present one-loop perturbation theory
predictions for �i(k) and compare against measurements of �i(k) from N-body simulations.
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Õ
i
3
=

h�̃1Õ
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In this way, allowing for a scale-dependent bias parameter b1(k), we can write
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At one-loop order, the new cubic operators are orthogonal to all other fields. This implies that even the bias expansion
up to second order in the fields, with the appropriate b1(k), is su�cient to describe the density field with the correct
one-loop power spectrum. Allowing for scale-dependent bias parameters e↵ectively allows us to reduce the order in
perturbation theory that we need to describe the density field of biased tracers at a given order in perturbation theory.

This example provides motivation to promote all bias parameters to k-dependent functions

�h(k) = b1(k) �̃1(k) + b2(k) �̃2(k) + bG2(k) G̃2(k) + · · · , (26)

in order to take into account as much nonlinearity as possible. This expression can be compared to realizations of N-
body simulations. Calculating the operators with the same initial conditions, the sample variance can be canceled [67].
The bias functions can be measured from the condition that the di↵erence between realizations in simulations and
theory is minimal. This procedure allows us to ask a very general question: How much of the real halo density
field can be described with a few leading-order operators, even beyond the perturbative regime? In a setup this
general, a perturbation-theory-inspired model can be considered successful if it leads to small (close to Poisson) and
scale-independent mean-square model error.

When fitting the above model to a halo density at the field level, the bias coe�cients bi are correlated with each
other because the shifted fields �̃1, �̃2 and G̃2 are correlated among themselves (they are defined using the same initial
conditions and the same displacement field  1). When interpreting the bias parameters, it is useful to change the
basis to avoid this correlation. We therefore rotate the shifted operators to mutually orthogonal fields using the
Gram-Schmidt algorithm:
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Cholesky decomposition of the 3 ⇥ 3 correlation matrix between the three shifted fields {�̃1, �̃2, G̃2} in every k-bin as
described in Appendix C. The bias expansion in this orthogonal basis is then
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These new bias parameters, or transfer functions, �i(k) are independent from each other. We can therefore add
higher-order operators using the same procedure without changing any of the lower-order bias parameters, which is
a useful property. In our framework, where transfer functions are determined by minimizing the mean-square model
error at the field level, the change of basis, i.e., going from bi to �i, does not change the predicted halo density; it
merely provides a more convenient way to interpret the numerical values of bias parameters. Also notice that the
first parameter remains unchanged, �1(k) = b1(k). In Section VIII we will present one-loop perturbation theory
predictions for �i(k) and compare against measurements of �i(k) from N-body simulations.This is the model that we compare against simulations
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How much of the true halo density field correlates with these operators?
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B. Promoting Bias Parameters to Transfer Functions

So far we wrote the bias expansion in terms of shifted operators keeping only terms up to second order in perturbation
theory. If we want to describe the density field of biased tracers deeper in the nonlinear regime, we have to include
higher order terms. For instance, even for the evaluation of the one-loop power spectrum one has to keep all cubic
operators. Let us take a closer look at this example
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Õ

i
3
, (23)

where Õ
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In this way, allowing for a scale-dependent bias parameter b1(k), we can write
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At one-loop order, the new cubic operators are orthogonal to all other fields. This implies that even the bias expansion
up to second order in the fields, with the appropriate b1(k), is su�cient to describe the density field with the correct
one-loop power spectrum. Allowing for scale-dependent bias parameters e↵ectively allows us to reduce the order in
perturbation theory that we need to describe the density field of biased tracers at a given order in perturbation theory.

This example provides motivation to promote all bias parameters to k-dependent functions

�h(k) = b1(k) �̃1(k) + b2(k) �̃2(k) + bG2(k) G̃2(k) + · · · , (26)

in order to take into account as much nonlinearity as possible. This expression can be compared to realizations of N-
body simulations. Calculating the operators with the same initial conditions, the sample variance can be canceled [67].
The bias functions can be measured from the condition that the di↵erence between realizations in simulations and
theory is minimal. This procedure allows us to ask a very general question: How much of the real halo density
field can be described with a few leading-order operators, even beyond the perturbative regime? In a setup this
general, a perturbation-theory-inspired model can be considered successful if it leads to small (close to Poisson) and
scale-independent mean-square model error.

When fitting the above model to a halo density at the field level, the bias coe�cients bi are correlated with each
other because the shifted fields �̃1, �̃2 and G̃2 are correlated among themselves (they are defined using the same initial
conditions and the same displacement field  1). When interpreting the bias parameters, it is useful to change the
basis to avoid this correlation. We therefore rotate the shifted operators to mutually orthogonal fields using the
Gram-Schmidt algorithm:
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The Gram-Schmidt rotation matrix Mij(k) is M10(k) = �P�̃2�̃1
(k)/P�̃1�̃1

(k) etc., and can be computed using a

Cholesky decomposition of the 3 ⇥ 3 correlation matrix between the three shifted fields {�̃1, �̃2, G̃2} in every k-bin as
described in Appendix C. The bias expansion in this orthogonal basis is then

�h(k) = �1(k) �̃1(k) + �2(k) �̃
?

2
(k) + �G2(k) G̃
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2
(k) + · · · . (30)

These new bias parameters, or transfer functions, �i(k) are independent from each other. We can therefore add
higher-order operators using the same procedure without changing any of the lower-order bias parameters, which is
a useful property. In our framework, where transfer functions are determined by minimizing the mean-square model
error at the field level, the change of basis, i.e., going from bi to �i, does not change the predicted halo density; it
merely provides a more convenient way to interpret the numerical values of bias parameters. Also notice that the
first parameter remains unchanged, �1(k) = b1(k). In Section VIII we will present one-loop perturbation theory
predictions for �i(k) and compare against measurements of �i(k) from N-body simulations.
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come from �̃3 and S̃3. The other operators give constant contributions, which are degenerate with b1.14 Once this is
taken into account, �1(k) becomes

�1(k) = b1 + b2
h�̃1�̃2i

h�̃1�̃1i
+ bG2
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h�̃1S̃3i

h�̃1�̃1i
. (85)

Notice that b1 in this formula is di↵erent from its starting value due to the degenerate contributions from cubic
operators. The new value corresponds to the so called renormalized bias b1. The important point is that we kept
the same parameter multiplying the operator S̃3. Even though this may not be obvious from just a few leading
orders in perturbation theory, this choice is imposed by the fact that S̃3 comes from the shift of the halo density field
by the second order displacement. This term is fixed and has no extra free parameters, even when renormalization
is taken into account. Finally, we have to add a k

2 term to the transfer function �1(k) with a free coe�cient. In
analogy with the EFT counterterm for the one-loop matter power spectrum we label this parameter c2s even though
this counterterm is there to absorb all UV contributions from correlation functions of the form h�̃1Õ3i and the bias
coe�cients from the higher-derivative bias operators such as r2

�.

Let us now turn to the second transfer function. This expression can be further simplified. The first step is to write
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which implies that at one loop h�̃
?
2
�̃
?
2
i = h�̃2�̃2i because the second term is higher order in perturbation theory. For

the same reason, at large scales we can replace h�̃
?
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2
i with h�̃2G̃2i. As a result, we can write the transfer function

�2(k) as follows

�2(k) = b2 + bG2

h�̃2G̃2i

h�̃2�̃2i
. (87)

In the limit k ! 0 the numerator of the second term scales like O(k2) while the denominator approaches a constant.
Therefore, the second term vanishes on very large scales. Notice that this contribution is not suppressed by loop
factors because both numerator and denominator are of the same order in perturbation theory. For this reason, when
the transfer functions are measured at not-so-large scales where the scaling O(k2) is not valid, the second term is
not necessarily negligible. However, because of the large constant contribution to h�̃2�̃2i, the second term turns out
always to be small enough, given the size of the higher loop corrections that we are neglecting and final error bars
with which we determine the bias parameters.

To summarize, we use the following minimal model to fit the k-dependent transfer functions

�1(k) = b1 + c
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sk
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h�̃1�̃2i

h�̃1�̃1i
+ bG2

h�̃1G̃2i

h�̃1�̃1i
+ b�3

h�̃1�̃3i

h�̃1�̃1i
� b1

h�̃1S̃3i

h�̃1�̃1i
, (88)

�2(k) = b2 , and �G2(k) = bG2 . (89)

This model has 5 free parameters, the same as the one-loop power spectrum. When we use the cubic bias model, we
add one extra parameter, b3, which is fitted from the low-k limit of �3(k).

C. Power Spectra of Shifted Fields from Theory and on a Grid

To fit the transfer functions with Eq. (88) we need to calculate the power spectra hÕaÕbi of shifted operators that
enter Eq. (88). As we already mentioned, this calculation is the same as in [57, 70], and more details can be found
there. Here we summarize only the main steps. Let us start from the definition

hÕaÕbi(k) =

Z
d
3q e

�ik·q
⌦
Oa(q) Ob(0) e

�ik·( 1(q)� 1(0))
↵
. (90)

14 Note that this degeneracy is exact with standard fields. With shifted fields there can be some k-dependence due to the nontrivial e↵ects
of the displacement field. However, any such k-dependent contribution must be at higher order in perturbation theory and thus we
neglect it.
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In the limit k ! 0 the numerator of the second term scales like O(k2) while the denominator approaches a constant.
Therefore, the second term vanishes on very large scales. Notice that this contribution is not suppressed by loop
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with which we determine the bias parameters.

To summarize, we use the following minimal model to fit the k-dependent transfer functions

�1(k) = b1 + c
2

sk
2 + b2

h�̃1�̃2i

h�̃1�̃1i
+ bG2

h�̃1G̃2i

h�̃1�̃1i
+ b�3

h�̃1�̃3i

h�̃1�̃1i
� b1

h�̃1S̃3i

h�̃1�̃1i
, (88)

�2(k) = b2 , and �G2(k) = bG2 . (89)

This model has 5 free parameters, the same as the one-loop power spectrum. When we use the cubic bias model, we
add one extra parameter, b3, which is fitted from the low-k limit of �3(k).

C. Power Spectra of Shifted Fields from Theory and on a Grid

To fit the transfer functions with Eq. (88) we need to calculate the power spectra hÕaÕbi of shifted operators that
enter Eq. (88). As we already mentioned, this calculation is the same as in [57, 70], and more details can be found
there. Here we summarize only the main steps. Let us start from the definition

hÕaÕbi(k) =

Z
d
3q e

�ik·q
⌦
Oa(q) Ob(0) e

�ik·( 1(q)� 1(0))
↵
. (90)

14 Note that this degeneracy is exact with standard fields. With shifted fields there can be some k-dependence due to the nontrivial e↵ects
of the displacement field. However, any such k-dependent contribution must be at higher order in perturbation theory and thus we
neglect it.

The number of parameters is the same as in the standard 1-loop power spectrum
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C. Relation to Renormalized Bias Parameters

Before we close this section listing all bias models that we use in the paper, we get back to an important point
that we have only briefly mentioned in the introduction: The low-k limit of the transfer functions �i(k) does not
necessarily approach the values of physical (renormalized) bias parameters. This means that the bias parameters we
measure at the field level are not generally expected to be the same as the bias parameters measured from correlation
functions of the halo density field. In the terminology of renormalization, what we measure on the field level is closer
to “bare” bias parameters. These biases depend on the cuto↵ scale, or the way the small scales are regulated. For
example, as we are going to see, using the linear or the nonlinear matter density field to construct bias operators leads
to very di↵erent transfer functions in the low-k limit. One easy way to see why this happens is to take a look at the
expression for a transfer function obtained using the minimization described above. If we assume that the basis of
operators is orthogonal, we can write

�i(k) =
h�

truth

h Õ
?

i i

hÕ?

i Õ
?

i i
. (31)

The power spectrum in the denominator in general involves loops, and therefore it is obviously dependent on how the
high-k modes are treated. The usual way to deal with this issue is to renormalize the bias operators, subtracting the
cuto↵-dependent counterterms [54]. Away from the perturbative regime and on the field level this becomes challenging.
Take for example the operator �2. The power spectrum of this operator is constant in the low-k limit. This constant
comes from integrating very short scales and can be always absorbed by the free amplitude of the shot noise in the
power spectrum. However, this is not possible on the field level. If we add an independent field with constant power
spectrum to the model with the hope to fix the problem, it can only give a positive definite contribution to the model
error power spectrum, making the model worse.

At this point it is important to clarify the relation to other works (see for example [8, 73]) where similar techniques
were exploited to measure the physical bias parameters. The idea is that the bias parameters can be measured
projecting the halo density field on the basis of bias operators, leading to equations very similar to Eq. (31). One
major di↵erence is that the bias operators in [8, 73] are constructed from the smoothed density field. The smoothing
scale R is chosen to ensure that only the Fourier modes in the perturbative regime contribute and it is typically
R ⇠ O(10) Mpc at z = 0.6 In this way it is indeed possible to measure the low-k limit of the transfer functions and
rigorously prove that they can be identified with the renormalized bias parameters.

However, this program is somewhat orthogonal to our goals in this paper. We do not necessarily restrict to the
perturbative regime k ⌧ kNL, but we want to test how well we can reproduce the halo density field even around the
nonlinear scale. Using the smoothed density field to construct the basis operators would imprint the smoothing scale
in all our calculations and lead to significant decorrelation with the halo density field already around k ⇠ 0.1 hMpc�1.
In this context, keeping the short scales in the bias operators seems to lead to better results. We therefore do not
apply any smoothing to the fields.7 The price that we have to pay for this choice is that the low-k limit of the transfer
functions does not correspond to bias parameters defined in the usual way.

Let us finish by saying that one important exception in this discussion is the linear bias. In this case

�1(k) =
h�

truth

h �̃1i

h�̃1�̃1i
. (32)

The low-k limit of this expression coincides with the usual definition of the renormalized linear bias, since the power
spectrum in the denominator approaches P11(k). Therefore, we do expect to find that b1 = �1(k ! 0) is indeed the
same as inferred from the power spectrum or separate universe simulations.

D. List of Bias Models

When comparing against simulations we will mostly use the bias expansion in terms of shifted operators described
above, but sometimes we will also show comparisons with other bias expansions. The following list provides an
overview over all bias models that we will use for the analysis.

6 In principle, the bigger the smoothing scale R, the less sensitive are results to the nonlinear corrections. In practice, the choice of the
smoothing scale is dictated by the volume of N-body simulations and convergence tests.

7 The only exception is �3(q), which, as we discuss below, is smoothed with a sharp k filter at kmax = 0.5 hMpc�1. There is also an
implicit smoothing of all fields due to the cell size �x ' 1 h�1Mpc of the Eulerian grid, but this is only relevant on very small scales.

More generally, for orthogonal fields:

How do we choose transfer functions (bias parameters)?

Fitting the bias model on the entire field, instead n-point functions

An example:
2

consider the simplest model with the linear bias b1

�
truth

h = b1� + ✏ , (1)

where � is the nonlinear dark matter field. The stochastic term ✏ in this formula must be present, since we do not
expect that the relation between dark matter and halos is perfectly deterministic [9–17]. The best possible b1 that
describes the halo density field can be found by minimizing the mean-square di↵erence h|�truthh � b1�|

2
i, leading to the

usual formula

b1(k) =
h�

truth

h (k)�⇤(k)i

h|�(k)|2i
. (2)

If the fields �
truth

h and � share the same initial conditions, the measurement of b1(k) can be done without sample
variance. Notice that the bias measured in this way is a function of k. One way to argue how well the linear bias
model works is to ask up to which scales b1(k) is a constant. A significant scale dependence is a sign that higher order
corrections must be included.

An equally relevant question is how big an error we make, using the best fit values for bias parameters (in our
simple example, b1(k)). The power spectrum of this model error, or noise (sometimes also referred to as stochasticity
[7, 18–24]), is for the linear bias model given by

Perr(k) ⌘ h|�
truth

h (k)� b1(k)�(k)|
2
i = h|✏(k)|2i = h|�

truth

h (k)|2i �
h�

truth

h (k)�⇤(k)i2

h|�(k)|2i
, (3)

where in the last equality we have used Eq. (2). The naive expectation for the large-scale amplitude of Perr is that it is
close to Poisson noise 1/n̄ ⌘ V/Nparticles, which is the power spectrum obtained when distributing pointlike particles
randomly in the simulation volume. However, the amplitude of the noise measured in simulations is larger than 1/n̄
for low-mass halos, and smaller than 1/n̄ for high-mass halos [7, 23, 24, 46, 47]. The noise can also have a significant
scale dependence, even at relatively large scales. In some cases, the amplitude of the noise on mildly nonlinear scales
can di↵er from the amplitude in the low-k limit even by tens of percent. Large amplitude and large scale dependence,
if real, are dangerous, because they can significantly impact the inference of cosmological parameters.

One possible interpretation of these results is that the scale dependence of the noise is due to the higher order terms
in the bias expansion. Indeed, in definition (1), the noise field ✏ contains operators constructed from matter fields
that are not included in the model. Even though one may naively think that the higher order terms are irrelevant
at large scales, as we are going to see they can significantly change the behavior of the noise even in the low-k limit.
Therefore, a more appropriate relation between dark matter and halos on large scales is [1, 33, 48]

�
truth

h = �
model

h [�] + ✏ , (4)

where �model

h [�] stands for the model based on perturbative bias expansion.1 The success of the perturbative description
can then be rephrased as the question of whether or not including higher orders in perturbation theory leads to a
Perr(k) that has an amplitude closer to the Poisson noise and no significant scale dependence up to the nonlinear
scale. To test whether the noise of the perturbative bias models has these properties, we estimate ✏ as the field
di↵erence between the true halo density, obtained for example from an N-body simulation, and the perturbation
theory prediction,

✏̂ ⌘ �
truth

h � �
model

h . (5)

This model error vanishes on average, h✏̂i = 0, and its power spectrum,

Perr(k) ⌘ h|✏̂(k)|2i , (6)

describes the mean-square deviation of a Fourier mode �
truth

h (k) from the bias model prediction �
model

h (k). For linear
bias this definition coincides with Eq. (3). If the higher order operators in the bias expansion are included in the
model �model

h [�], the model error ✏̂ in Eqs. (5) and (6) is free from these higher order bias terms. It only contains other
higher order bias terms, which are not included in the model, and stochastic noise terms. We are going to show that,

1 For simplicity, throughout the paper we will also use the notation �h ⌘ �model
h when the confusion with the simulated halo density field

is not possible.
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logM [h�1M�] n̄ [(h�1Mpc)�3] n̄ is comparable to

10.8� 11.8 4.3⇥ 10�2 LSST [80, 81], Billion Object Apparatus [82]
11.8� 12.8 5.7⇥ 10�3 SPHEREx [83, 84]
12.8� 13.8 5.6⇥ 10�4 BOSS CMASS [85], DESI [86, 87], Euclid [88–90]
13.8� 15.2 2.6⇥ 10�5 Cluster catalogs

Table I. Simulated halo populations at z = 0.6.

unchanged. The shifted squared density �̃2 and shifted tidal field G̃2 are computed similarly, using �
2
1
(q) or G2(q) for

the particle mass.

Next, the fields entering the model are orthogonalized using the Gram-Schmidt procedure in Eq. (27). Details
specific to this orthogonalization procedure are described in Appendix C. Finally, we compute all power spectra
between these orthogonalized model contributions and the true halo density obtained from an N-body simulation
started from the same linear density, get the optimal model transfer functions �i(k) using linear regression (40), and
sum up the model contributions weighted by the transfer functions.

B. Phase-Matched N-body Simulations

The phase-matched N-body simulations are generated as follows. Using the same initial linear Gaussian density as
above, initial particle positions and velocities at z = 99 are set up using the Zel’dovich approximation for 15363 dark
matter particles in a L = 500 h

�1Mpc box. These particles are evolved to redshift z = 0.6 using the TreePM N-body
code MP-Gadget [76, 77], with Nmesh = 3072 for the particle-mesh (PM) grid. The code makes about 4200 time steps
to reach z = 0.6. The mass of each dark matter particle is 2.94⇥ 109

h
�1M�.

In the resulting dark matter snapshot we identify halos using the standard friends-of-friends (FOF) algorithm with
linking length of 0.2 using nbodykit [78, 79]. We require halos to have at least 25 dark matter particles, corresponding
to a minimum halo mass of 7.4⇥ 1010

h
�1M�; the heaviest halo weighs about 1.3⇥ 1015

h
�1M�. We define four halo

mass bins with number densities roughly corresponding to di↵erent future experiments as indicated in Table I. For
each mass bin we compute the halo density on a 5123 grid using standard CIC painting.

To estimate uncertainties, we generate five independent realizations of the linear density using di↵erent random
seeds, and generate the bias expansion density and simulations for each of these five realizations. Whenever we
compare model and simulations we first compute their di↵erence for each random seed and then average the result
over the five realizations, to avoid sample variance.

We will refer to these simulations as the ground truth, and we will ask how well the analytic halo bias expansion
can describe them. Of course, the simulations could be made more realistic by populating the halos with galaxies and
including redshift space distortions, but we will restrict ourselves to halos in real space in this work.

C. Determining Bias Transfer Functions

To compute the bias transfer functions �i(k) we minimize the mean-square model error defined in Eq. (6),

Perr(k) =
1

Nmodes(k)

X

k,|k|⇡k

|�
truth

h (k)� �
model

h (k)|2, (37)

in every k bin. This minimization is meaningful because Perr is non-negative and vanishes if and only if the amplitude
and phases of all Fourier modes match perfectly,

Perr(k) = 0 , �
truth

h (k) = �
model

h (k) for all k with |k| ⇡ k. (38)

Since all bias expansions that we consider are of the form

�
model

h (k) = c(k) +
X

i

�i(k)Oi(k), (39)
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Figure 4. Same as Fig. 3 but using the cubic bias model. This provides a better description of the one-point pdf of the
simulated halos than the linear model in Fig. 3, showing that nonlinear bias terms improve the description of the one-point pdf
as expected.

the linear Standard Eulerian bias model evaluated on the 3-d grid, while Fig. 4 compares against the cubic bias
model. We focus on the halos corresponding to Fig. 2 where we found clearly visible di↵erences between models and
simulations. The variance, skewness and kurtosis of the densities shown in the histograms are listed in Table II for
the full simulated and modeled densities, and in Table III for the model error.

The linear Standard Eulerian bias model tends to underpredict troughs and overpredict peaks of the halo density,
as shown in Fig. 3. The model error is not Gaussian for any of the shown smoothing scales; in particular its kurtosis
is larger than 1 for all smoothing scales.

The cubic model provides a more accurate description of the halo density pdf, as shown in Fig. 4. This emphasizes
the importance of using nonlinear bias terms even on rather large scales. Still, the cubic model tends to underpredict
the peaks of the true halo density, especially on small scales. This agrees with Fig. 2 where the model also underpredicts
the simulated density in more regions than it overpredicts it (considering only overdense regions that are easiest to
pick up by eye). Related to this, the variance, skewness and curtosis of the cubic model halo density are similar to that
of the true simulated density, especially for large smoothing scale (see Table II). The model error of the cubic model
looks most Gaussian for large smoothing scales, but it is never completely Gaussian, with a skewness of 0.13 and a
kurtosis of 0.68 even for R = 10 h

�1Mpc smoothing. Most of this is caused by the tails of the distribution, i.e. by
outliers of ✏. Quantifying the non-Gaussianity of the error in more detail, for example by measuring bispectra, would
be interesting, but we do not address this here, noting that improved bias models should reduce both the Gaussian
and non-Gaussian components of the model error.

V. SIMULATION RESULTS IN FOURIER SPACE

A shortcoming of comparing the one-point pdf or histogram is that it does not test the spatial coherence of model
and simulation, because it merely counts how many times the model and simulation density have the same value,
without checking if model and simulation agree in each pixel. To test this, we proceed by computing the model error
power spectrum Perr(k) as defined in Eq. (6), and the cross-correlation coe�cient

rcc(k) =
h�model(k)�⇤truth(k)i

(h|�model(k)|2ih|�truth(k)|2i)1/2
. (41)

between the model and simulated halo density in Fourier space. Both statistics are useful to quantify the performance
of the model, but they are not independent because Perr(k) = Ptruth(1 � r

2
cc) and (Pmodel/Ptruth)1/2 = rcc for the

best-fit model, as we show in Appendix B. As described in the introduction, our measurements di↵er quantitatively
from previous measurements of stochasticity because we work at the field level and include nonlinear bias terms in
the perturbative model.
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model looks most Gaussian for large smoothing scales, but it is never completely Gaussian, with a skewness of 0.13
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�1Mpc smoothing. Most of this is caused by the tails of the distribution,
i.e. by outliers of ✏. Quantifying the non-Gaussianity of the error in more detail, for example by measuring bispectra,
would be interesting. In what follows we will only consider the power spectrum of the error however.

V. SIMULATION RESULTS IN FOURIER SPACE

The one-point pdf and histograms shown above quantify the number of pixels where model and simulation density
have the same value, but they do not check that the densities agree pixel by pixel and are spatially coherent. To test
this, we turn to Fourier space and compute two performance measures quantifying the size of the model error mode
by mode: First, in Section VA1, we compute the model error power spectrum Perr(k) = h|�

truth

h (k) � �
model

h (k)|2i
for the simulated halos as introduced in the introduction. Second, in Section VA2, we discuss the cross-correlation
coe�cient

rcc(k) ⌘
h�

model

h (k)[�truth

h (k)]⇤i
�
h|�model

h (k)|2ih|�truth

h (k)|2i
�1/2

(41)

between Fourier modes of the model and simulated (truth) halo density. As we are going to see in Section VA3, the
size of the model error Perr and the cross-correlation coe�cient rcc are directly related to the amount of cosmological
information that can be extracted when using the model to describe a measurement of the halo density. (Also, Perr

and rcc are closely related to each other by relations given in Appendix B.)

Following these results on the size of the model error and the cosmological constraining power, we proceed in Section
VB to investigate the scale dependence of the model error, which, if ignored, can lead to biases of cosmological
parameter measurements. In particular, we determine the maximum wavenumber kmax up to which it is safe to
assume a scale-independent model error power spectrum or shot noise.

We end the section by showing how large the contribution from the di↵erent bias terms is to the total model as a
function of wavenumber, demonstrating the importance of including nonlinear bias terms.

Throughout the section, Pmodel and Ptruth refer to the halo power spectrum of the model and simulations, re-
spectively. As described in the introduction, our measurements di↵er quantitatively from previous measurements of
stochasticity because we work at the field level and include nonlinear bias terms in the perturbative model.

A. Size of the Model Error

1. Model Error Power Spectrum

Fig. 5 shows the broadband power spectra of the four halo mass bins of simulated halos, and the best-fit model
for one of the bias models introduced above (the quadratic bias model). The mean-square di↵erence between the
simulation and model density, given by the error power spectrum Perr(k), is shown in orange. It is rather flat as a
function of k, and it deviates from the Poisson prediction by up to a factor of 2, depending on halo mass.

Our goal is to study the amplitude and the scale dependence of the model error in more detail and also for the
other halo bias models introduced previously in Section IID. For this purpose we show Perr divided by the Poisson
prediction 1/n̄ in Fig. 6.

Let us first discuss the low-mass halos, M  1012.8
h
�1M�. We find that for the linear bias models, the mean-

square model error is larger than the Poisson prediction by a factor of a few, and it is rather scale-dependent, even
on large scales. In contrast, the mean-square model error of the quadratic bias model deviates only by a few tens
of percent from the Poisson prediction, and is rather scale-independent, with some scale dependence only visible at
k & 0.2 hMpc�1. This shows that including the quadratic bias terms �̃2 and G̃2 reduces the mean-square model error
on large scales by a factor of 4 to 6 and reduces its scale dependence.

For more massive halos and clusters, M > 1012.8
h
�1M�, we find that the mean-square model error of the quadratic

and cubic bias models is smaller than the Poisson prediction 1/n̄ by up to a factor of two, which is about 30% smaller
than the mean-square model error of the linear bias models for these halos. Qualitatively similar sub-Poissonian

The power spectrum of the model error 
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describes the halo density field can be found by minimizing the mean-square di↵erence h|�

truth

h � b1�|
2
i, leading to the

usual formula

b1(k) =
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truth

h (k)�⇤(k)i

h|�(k)|2i
. (2)

If the fields �
truth

h and � share the same initial conditions, the measurement of b1(k) can be done without sample
variance. Notice that the bias measured in this way is a function of k. One way to argue how well the linear bias
model works is to ask up to which scales b1(k) is a constant. A significant scale dependence is a sign that higher order
corrections must be included.

An equally relevant question is how big an error we make, using the best fit values for bias parameters (in our
simple example, b1(k)). The power spectrum of this model error, or noise (sometimes also referred to as stochasticity
[7, 18–24]), is for the linear bias model given by
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where in the last equality we have used Eq. (2). The naive expectation for the large-scale amplitude of Perr is that it is
close to Poisson noise 1/n̄ ⌘ V/Nparticles, which is the power spectrum obtained when distributing pointlike particles
randomly in the simulation volume. However, the amplitude of the noise measured in simulations is larger than 1/n̄

for low-mass halos, and smaller than 1/n̄ for high-mass halos [7, 23, 24, 46, 47]. The noise can also have a significant
scale dependence, even at relatively large scales. In some cases, the amplitude of the noise on mildly nonlinear scales
can di↵er from the amplitude in the low-k limit even by tens of percent. Large amplitude and large scale dependence,
if real, are dangerous, because they can significantly impact the inference of cosmological parameters.

One possible interpretation of these results is that the scale dependence of the noise is due to the higher order terms
in the bias expansion. Indeed, in definition (1), the noise field ✏ contains operators constructed from matter fields
that are not included in the model. Even though one may naively think that the higher order terms are irrelevant
at large scales, as we are going to see they can significantly change the behavior of the noise even in the low-k limit.
Therefore, a more appropriate relation between dark matter and halos on large scales is [1, 33, 48]
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truth

h = �
model

h [�] + ✏ , (4)

where �
model

h [�] stands for the model based on perturbative bias expansion.1 The success of the perturbative description
can then be rephrased as the question of whether or not including higher orders in perturbation theory leads to a
Perr(k) that has an amplitude closer to the Poisson noise and no significant scale dependence up to the nonlinear
scale. To test whether the noise of the perturbative bias models has these properties, we estimate ✏ as the field
di↵erence between the true halo density, obtained for example from an N-body simulation, and the perturbation
theory prediction,

✏̂ ⌘ �
truth
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model

h . (5)

This model error vanishes on average, h✏̂i = 0, and its power spectrum,

Perr(k) ⌘ h|✏̂(k)|2i , (6)

describes the mean-square deviation of a Fourier mode �
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h (k) from the bias model prediction �
model

h (k). For linear
bias this definition coincides with Eq. (3). If the higher order operators in the bias expansion are included in the
model �

model

h [�], the model error ✏̂ in Eqs. (5) and (6) is free from these higher order bias terms. It only contains other
higher order bias terms, which are not included in the model, and stochastic noise terms. We are going to show that,

1 For simplicity, throughout the paper we will also use the notation �h ⌘ �model
h when the confusion with the simulated halo density field

is not possible.
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Common expectations:

The noise is always close to Poisson and scale-independent

Linear bias model is good enough, if DM from simulation is used

PT completely beaks down at the nonlinear scale (rcc goes to zero)
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logM [h�1M�] n̄ [(h�1Mpc)�3] n̄ is comparable to

10.8� 11.8 4.3⇥ 10�2 LSST [80, 81], Billion Object Apparatus [82]
11.8� 12.8 5.7⇥ 10�3 SPHEREx [83, 84]
12.8� 13.8 5.6⇥ 10�4 BOSS CMASS [85], DESI [86, 87], Euclid [88–90]
13.8� 15.2 2.6⇥ 10�5 Cluster catalogs

Table I. Simulated halo populations at z = 0.6.

unchanged. The shifted squared density �̃2 and shifted tidal field G̃2 are computed similarly, using �
2
1
(q) or G2(q) for

the particle mass.

Next, the fields entering the model are orthogonalized using the Gram-Schmidt procedure in Eq. (27). Details
specific to this orthogonalization procedure are described in Appendix C. Finally, we compute all power spectra
between these orthogonalized model contributions and the true halo density obtained from an N-body simulation
started from the same linear density, get the optimal model transfer functions �i(k) using linear regression (40), and
sum up the model contributions weighted by the transfer functions.

B. Phase-Matched N-body Simulations

The phase-matched N-body simulations are generated as follows. Using the same initial linear Gaussian density as
above, initial particle positions and velocities at z = 99 are set up using the Zel’dovich approximation for 15363 dark
matter particles in a L = 500 h

�1Mpc box. These particles are evolved to redshift z = 0.6 using the TreePM N-body
code MP-Gadget [76, 77], with Nmesh = 3072 for the particle-mesh (PM) grid. The code makes about 4200 time steps
to reach z = 0.6. The mass of each dark matter particle is 2.94 ⇥ 109

h
�1M�.

In the resulting dark matter snapshot we identify halos using the standard friends-of-friends (FOF) algorithm with
linking length of 0.2 using nbodykit [78, 79]. We require halos to have at least 25 dark matter particles, corresponding
to a minimum halo mass of 7.4⇥ 1010

h
�1M�; the heaviest halo weighs about 1.3⇥ 1015

h
�1M�. We define four halo

mass bins with number densities roughly corresponding to di↵erent future experiments as indicated in Table I. For
each mass bin we compute the halo density on a 5123 grid using standard CIC painting.

To estimate uncertainties, we generate five independent realizations of the linear density using di↵erent random
seeds, and generate the bias expansion density and simulations for each of these five realizations. Whenever we
compare model and simulations we first compute their di↵erence for each random seed and then average the result
over the five realizations, to avoid sample variance.

We will refer to these simulations as the ground truth, and we will ask how well the analytic halo bias expansion
can describe them. Of course, the simulations could be made more realistic by populating the halos with galaxies and
including redshift space distortions, but we will restrict ourselves to halos in real space in this work.

C. Determining Bias Transfer Functions

To compute the bias transfer functions �i(k) we minimize the mean-square model error defined in Eq. (6),

Perr(k) =
1

Nmodes(k)

X

k,|k|⇡k

|�
truth

h (k) � �
model

h (k)|2, (37)

in every k bin. This minimization is meaningful because Perr is non-negative and vanishes if and only if the amplitude
and phases of all Fourier modes match perfectly,

Perr(k) = 0 , �
truth

h (k) = �
model

h (k) for all k with |k| ⇡ k. (38)

Since all bias expansions that we consider are of the form

�
model

h (k) = c(k) +
X

i

�i(k)Oi(k), (39)

5 boxes, L = 500 Mpc/h, N = 15363, m = 3*109 Msun/h, z = 0.6

Halos identified using the standard FOF algorithm
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In real space things look decent
12

Figure 1. 2-d slices of the overdensity �h(x) of simulated 1010.8 � 1011.8 h�1M� halos (top), compared with the cubic bias
model (center), and the linear Standard Eulerian bias model (bottom). Each panel is 500 hMpc�1 wide and 110 hMpc�1 high,
and each density is smoothed with a R = 2 h�1Mpc Gaussian, WR(k) = exp[�(kR)2/2]. The colorbar indicates the values of
this smoothed overdensity �h(x).

Variance[�h] Skewness[�h] Kurtosis[�h]
R Linear Cubic Truth Linear Cubic Truth Linear Cubic Truth

10 0.29 0.3 0.31 0.97 0.33 0.35 1.9 -0.051 0.0012
5 0.5 0.53 0.56 2.0 0.78 0.83 8.3 0.53 0.7
2 0.91 1.1 1.2 5.2 1.6 2.0 70 3.6 5.4
1 1.3 1.7 2.4 11 2.7 3.9 320 12 20

Table II. Variance, skewness, and kurtosis of the halo density from the linear Standard Eulerian bias model, the cubic model,
and the simulations (“Truth”), for 1011.8 � 1012.8 h�1M� halos, after smoothing the density with di↵erent smoothing scales R
(given in units of h�1Mpc). The skewness and kurtosis are computed as h�3i/h�2i3/2 and h�4i/h�2i2 � 3, respectively; both
vanish for a Gaussian distribution.

A. Two-Dimensional Slices

Fig. 1 shows 2-d slices of the 3-d overdensity of halos �h(x) in one of the simulations, compared with two of the
bias models. This shows that the cubic bias model provides an accurate description of the density contrast of these
halos, with minor di↵erences only visible on rather small scales. The linear Standard Eulerian bias provides a less
accurate description, but still gets most of the structure on large scales right.

For more massive and less abundant halos, we obtain Fig. 2. The cubic model is less successful for these halos,
especially on small scales. For example, the model predicts a large spherical overdensity up from the center of the
slice, but this does not exist for these halos in the simulation; in many other regions the model tends to underpredict
the peaks of the true halo density. This is even more severe for the linear Standard Eulerian bias model, and for more
massive halo populations. On large scales, however, the models work still well, as we will see more clearly when we
turn to Fourier space later.

B. One-Point Probability Distribution

To get a more global view of the position-space halo density we estimate its one-point probability distribution by
computing the histogram of the halo density for di↵erent smoothing scales. Fig. 3 compares the simulations against

5

such that the Eulerian coordinates x of a halo at the initial position q are given by x = q +  (q). The overdensity
generated in this way is given by

1 + �h(x) =

Z
d3q (1 + �h(q)) �D(x � q � (q)) , (12)

where �D is the Dirac delta. The Fourier transform of this field in Eulerian space is

�h(k) ⌘

Z
d3x (1 + �h(x)) e

�ik·x =

Z
d3q (1 + �h(q)) e

�ik·(q+ (q))
. (13)

For simplicity, in this equation and in the rest of the paper we restrict the range of momenta to k 6= 0, so that the zero
modes or mean density do not enter our formulas. The nonlinear displacement from Lagrangian to Eulerian position
can be expanded in a perturbative series  =  1 +  2 + · · · . At first order, we have the well-known Zel’dovich
approximation [69]

 1(q) =

Z

k
e
ik·q ik

k2
�1(k) . (14)

The second-order displacement can be written as

 2(q) = �
3

14

Z

k
e
ik·q ik

k2
G2(k) . (15)

Using the perturbative description of the nonlinear displacement field and expanding the exponent e�ik· (q) in Eq. (13)
it is possible to recover the usual Standard Eulerian bias expansion. This procedure also fixes the relation between
Lagrangian bias parameters and their Standard Eulerian counterparts. Of course, this is not a surprise, as we expect
the two descriptions to agree order by order in perturbation theory.

On the other hand we do not want to expand the full nonlinear displacement. We are going to keep the largest
part  1(q) exponentiated and expand only the higher-order terms.3 In this way the largest part of the problematic
IR displacements is not expanded in perturbation theory. With this in mind, we can rewrite Eq. (13) in the following
way

�h(k) =

Z
d3q

⇣
1 + b

L
1

�1(q) + b
L
2
(�2

1
(q) � �

2

1
) + b

L
G2
G2(q) + · · ·

� ik · 2(q) + · · ·

⌘
e

�ik·(q+ 1(q)) , (16)

where the new contributions come from expanding the second (and higher) order displacement field in the exponent.
It is important to stress that at leading order this new term can be expressed through the second order operator G2

(see Eq. (15)). Therefore, at second order in perturbation theory, expanding the nonlinear terms in the displacement
field  (q) only shifts some of the standard Lagrangian bias parameters by a calculable constant. We will give more
details about higher order terms in Section VIII.

The previous expression motivates us to write down the bias expansion in Eulerian space in terms of shifted
operators, that are defined in the following way

Õ(k) ⌘

Z
d3q O(q) e�ik·(q+ 1(q)) , (17)

where O 2 {1, �1, �2 ⌘ (�2
1

� �
2
1
), G2, . . .}.4 We would like to stress again a few important advantages that this

description has: (a) The shifted operators are written in Eulerian space and therefore allow for easy comparisons
with simulations and quantification of their importance. (b) The large displacement terms  1(q) are kept resummed,
which is crucial for comparisons with simulations on the level of realizations. Notice that this also implies that in

3 Let us define W (k) to be a low-pass filter, compared to the wavelength of a Fourier mode �1(k). For a given wavenumber k, the
linear displacement can be split into the long-wavelength and short-wavelength part:  1 =  L

1 +  S
1 , where  L

1 = W (k) 1 and
 S

1 = (1�W (k)) 1. The e↵ect of  L
1 on the short modes is fixed by the Equivalence Principle. Therefore, strictly speaking, only  L

1
should be kept exponentiated and in any perturbative calculation  S

1 has to be expanded order by order in perturbation theory. The
error in our formulas introduced by keeping the full  1 in the exponent is always higher order in  S

1 than terms we calculate. Also,
this error is mainly relevant on small scales. In order to keep the formulas simple, we decide not to do the long-short splitting in our
calculation.

4 Notice that these shifted fields are not just given by a translation of the position argument because they implicitly include the inverse
of the determinant of the Jacobian @xi/@qj due to the coordinate transformation. This is similar to the Zel’dovich density, which is
given by a uniform field in Lagrangian space shifted by  1(q).
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Figure 18. Same as Fig. 17 but for bias model where �Z is kept explicitly in the expansion of the halo field. This changes the
transfer functions at high k, because contributions to �Z that are not absorbed by the bias terms through Eq. (20) become
relevant. The theory fit of �1(k) captures this well though. The model error, shown in Fig. 6 above, is the same with or
without �Z in the model, except for the lowest halo mass bin, where the model error is small enough that correction terms from
expanding �Z become visible. We add 1 and 1/2 to �1 and �G2 for easier comparison against bias model without �Z , noting
that �h = �Z + �1�̃1 + · · · ⇡ (�1 + 1)�̃1 + �2�̃

?
2 + (�G2 + 1/2)G̃?

2 + �̃3�̃
?
3 .

Given that in our perturbative model �1(k) is calculated up to one-loop, we use the two-loop error in the fit. For fitting
the other transfer functions, we use the one-loop contributions to the covariance. Finally, the parameter �k is the
coherence length of the transfer functions. In other words, this is the typical scale at which the transfer functions vary
with k. Given that they are quite smooth, we choose �k = 0.2 hMpc�1. Our fits are not sensitive to the choice of �k

as long as it remains in a reasonable range of values. We choose kmax = 0.5 hMpc�1 for �1 and kmax = 0.2 hMpc�1

for all other transfer functions. Given our theoretical errors, the values of the best fitted bias parameters saturate
well before kmax.

The result of fitting the transfer functions using the procedure described so far is shown in Fig. 17 (red lines). The
k dependence of �1(k) is well described at k  0.3�0.4 hMpc�1 when using theoretical errors in the fitting procedure.
The constant pieces of the nonlinear bias transfer functions �2(k), �G2(k), and �3(k) are in reasonable agreement with
those measured from simulations at low k. The typical relative error of the fitted parameters is roughly 1% for b1

and roughly 10% for all other parameters. As we have shown in Fig. 6 above, the model error changes only minimally
when using the theory fits instead of the full transfer functions from simulations for the cubic model, confirming that
a perturbative description of the transfer functions is su�ciently accurate for our purposes.

If the Zel’dovich density is kept explicitly and not absorbed by shifted bias operators using Eq. (20), the transfer
functions remain unchanged at low k (except for the expected o↵set of 1 for �1 and 1/2 for �G2), but they change
their shape at high k, as shown in Fig. 18. This is because the higher order corrections to Eq. (20) become important
at high k. However, the theory prediction for the transfer functions with theoretical errors are flexible enough to
capture this di↵erence.

So far we have used the perturbation theory predictions in a rigorous way, accompanied with the appropriate
estimate of the neglected higher order corrections. This e↵ectively restricts the range of applicability of perturbative
results to k  0.4 h/Mpc, which is a bit smaller than the rough estimate for the nonlinear scale kNL at z = 0.6.
In what follows we use the perturbation theory prediction for �1(k) in a di↵erent way—just as an ansatz for the

Transfer functions
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Linear Std. Eul. bias

Linear bias

Cubic bias

Phh

Poisson prediction

Quadr. bias

Figure 6. Mean-square model error Perr(k) = h|�truth(k) � �model(k)|2i of di↵erent halo bias models, divided by the Poisson
prediction 1/n̄. Di↵erent panels show di↵erent halo mass bins; di↵erent colors represent di↵erent bias models. For all mass bins
the quadratic and cubic bias models have the smallest large-scale model error and the smallest scale dependence. Shaded areas
represent the 1� credibility interval if bias transfer functions are allowed to be free functions of k, with uncertainty estimated
from the scatter between five independent simulations. If we instead fit these transfer functions using five k-independent
parameters b1, cs, b�3 , b2, and bG2 , we obtain the dashed curves for the quadratic and cubic bias models. For the densest halo
sample (top left panel), keeping �Z as an extra field in the quadratic model without a transfer function yields the grey dashed
curve when fitting the other transfer functions with the theory model. For the two most massive halo samples (lower panels),
we include the cubic bias model with �̃3(k), which can help to describe these halos. The small suppression of all curves at high
k is due to the CIC window used to paint particles to the grid.

�i(k) of the bias models are allowed to be free functions of k, obtained using linear regression in each k-bin as described
in Section III C above. If we instead restrict the functional form of these transfer functions to a theory prediction by
fitting the linear regression transfer functions �i(k) using five k-independent parameters b1, cs, b�3 , b2, and bG2 (see
Section VIIID below for details), we obtain the black dashed curves in Fig. 6 in the case of the quadratic and cubic
bias model (for the latter we fit b3(k) with a constant sixth parameter). This more conservative model error is only
minimally larger than before, which reflects the fact that the transfer functions can be well described with a 5- or
6-parameter fit as we are going to see in Section VIIID below.

For the lowest halo mass bin, shown in the top left panel of Fig. 6, we show two dashed lines corresponding to
the quadratic bias model. The di↵erence between them is whether or not �Z is absorbed in the bias expansion using
Eq. (20). The gray dashed curve is obtained keeping �Z explicitly in the bias expansion as an extra field with the
fixed transfer function. In this case the noise is somewhat di↵erent with respect to the standard second order bias
model, which implies that G̃3 and higher-order terms in the expansion of the Zel’dovich field become important. This
is not surprising, since the amplitude of the noise for the lowest halo mass bin is very small and comparable to
h|G̃3(k)|2i around k ⇠ 0.1 hMpc�1. Our results suggest that in the limit of very low shot noise it is better to keep
�Z explicitly in the bias expansion because this leads to an error with smaller amplitude and scale dependence. One
may wonder whether this is consistent, given that we are anyway neglecting higher order bias operators. One way to
justify keeping the Zel’dovich density field explicitly is to note that the coe�cients in the expansion of �Z in terms of
shifted operators are possibly significantly larger than typical Lagrangian bias parameters. It would be interesting to
further explore this question. However, in cases with realistic halo masses the di↵erence between the two approaches
is very small compared to the amplitude of the shot noise.
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Figure 7. Mean-square model error Perr(k) = h|�truthh (k)��model
h (k)|2i divided by the true halo power spectrum from simulations

(upper subpanels), and cross-correlation coe�cient rcc = rcc(�
truth
h , �model

h ) between simulations and model (lower subpanels).
This demonstrates that the correlation between model density and halo density in simulations is similar to that expected from
the Poisson prediction on all scales, but it is somewhat smaller than that for low-mass halos and somewhat larger for high-mass
halos, because Perr deviates from 1/n̄ as shown previously. The curves in the upper subpanels coincide with 1 � r2cc, and the
curves in the lower panel are equal to

p
Pmodel/Ptruth, because the transfer functions minimize Perr (see Appendix B). The

cubic bias model is only shown for the two heaviest halo samples because they are identical to the quadratic bias model for the
other halo samples.

also that the broadband shape of the modeled halo power spectrum agrees well with that from simulations on large
scales, but it underpredicts the power on small scales by tens of percent, especially for the most massive and rare
halos, because it does not include the stochastic noise.

C. Relation to Cosmological Information Content

MS: New section; check if we all agree with this.

In the last sections we have characterized the model error ✏̂ = �truth � PT[�] and the cross-correlation coe�cient
rcc. But how is this related to the cosmological information one would get when modeling a measurement of the halo
density with the bias expansion? We address this question in this section.

First, recall that the model error ✏̂ contains both higher order bias terms not included in the bias model PT[�] and
stochastic noise terms. The model error therefore has a small cosmology dependence because the higher order bias
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density with the bias expansion? We address this question in this section.

First, recall that the model error ✏̂ contains both higher order bias terms not included in the bias model PT[�] and
stochastic noise terms. The model error therefore has a small cosmology dependence because the higher order bias
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±1% of Phh

Expanding �Z

Quadratic bias

Cubic bias

Linear Std.

Eul. bias

Figure 9. Deviation of the model error power spectrum Perr(k) from a constant in k, relative to the halo power spectrum
Ptruth = hP̂hhi, for the linear Standard Eulerian bias (black) and cubic bias model (orange). The blue band shows ±1% of
hP̂hhi. This shows that by including nonlinear bias terms the deviation of the model error from a constant in k becomes relevant
compared to Phh at higher k than for linear bias, allowing smaller scales to be included in an analyses that assumes a constant
model error power spectrum. The cubic model shown in solid orange includes the full �Z . Expanding �Z gives a slightly larger
error at k ' 0.2 � 0.3 hMpc�1 for the halos in the top left panel (as expected theoretically for such low levels of noise; see
Section VA), but does not visibly a↵ect the curves for the halos in the other panels. Dropping the cubic �̃3 term from the
model increases the scale dependence of Perr at k & 0.1 hMpc�1 for the halos in the lower left panel, but does not visibly a↵ect
Perr for the halos in the other panels.

kmax [hMpc�1]
logM [h�1M�] n̄ [(h�1Mpc)�3] Lin. Std. Eul. Cubic

10.8� 11.8 4.3⇥ 10�2 0.1 (0.14) 0.3 (0.37)
11.8� 12.8 5.7⇥ 10�3 0.08 (0.1) 0.18 (0.24)
12.8� 13.8 5.6⇥ 10�4 0.07 (0.1) 0.13 (0.18)
13.8� 15.2 2.6⇥ 10�5 0.1 (0.14) 0.24 (0.32)

Table IV. Maximum wavenumber kmax when a scale dependence of the model error can be detected with 1� in a 10h�3Gpc3

volume (or in a 0.5h�3Gpc3 volume, shown in brackets), for the linear Standard Eulerian and the cubic bias models. These
values carry a significant uncertainty due to the noise in our measurement of the model error, as shown in Fig. 11.

scale dependence of the model error is determined by the size of the scale dependence relative to the amplitude of
the measured halo power spectrum (shown in Fig. 9), and it increases with the survey volume and with the highest
included wavenumber kmax, because these determine the number of 3-d Fourier modes. Importantly, this is the best-
case scenario for the model error because we assume all bias parameters to be perfectly known (by matching the field
level prediction against the simulations).

We evaluate Eq. (47) for Vsurvey = 1h�3Gpc3 as a function of kmax in Fig. 10. This shows that the scale dependence
of Perr(k) cannot be detected for kmax < 0.1 hMpc�1, but it becomes a 1� e↵ect around kmax ' 0.1 hMpc�1 for the
linear Standard Eulerian bias model and at higher kmax for the cubic model.

Fig. 11 shows this critical value of kmax when a deviation from a scale-independent model error becomes a 1� e↵ect

The scale-dependence of the noise is relevant for data analysis 
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Figure 14. Left panel: Model error power spectrum for Standard Eulerian bias models, for the lowest halo mass bin. Using the
nonlinear dark matter �NL from simulations as the input for the Standard Eulerian bias model (purple) creates a large error on
large scales because it involves squaring �NL, which is rather UV-sensitive. Alternatively, using the perturbative dark matter
density as the input to the bias model (dark orange) is treating large bulk flows perturbatively, which causes a decorrelation
between the model and the true halo density that shows up as a bump in the model error at k & 0.1 hMpc�1. The quadratic
model with shifted bias operators (bright orange) avoids both of these issues by squaring the linear density in Lagrangian
space, where this operation is less UV sensitive, and then shifting the resulting field to Eulerian space to achieve coherence
with the Eulerian-space halo density of the simulations. Right panel: Similar, but with Gaussian smoothing applied to �NL

before computing the quadratic bias operators. For larger smoothing scale R, the model error becomes larger because we keep
less of the small-scale modes in �2NL that describe the large-scale halo density.

Let us compute the r.h.s. of this equation using Standard Eulerian perturbation theory. On large scales we expect
�

E
1
(k) to be close to b

E
1
with corrections of order Ploop/P11. However, at next-to-leading order, we find that the transfer

function is

�
E
1
(k) = b

E
1

✓
1 +

P13(k)

P11(k)

◆
, (64)

where P13 is one of the two contributions to the matter power spectrum at one loop Ploop ⌘ 2P13+P22 [100]. Famously,
due to a large contribution from the IR shift terms, P13 is much larger than Ploop [62], and being large and negative
causes a significant decay of the transfer function even on scales larger than the nonlinear scale. This decorrelation
means that even in the perturbative regime our model fails to predict the halo density field. As a result, the residual
noise becomes large and strongly scale-dependent. We find

Perr(k) = h|✏̂(k)|2i ⌘ h|�h(k)� �
E
1
(k)�1(k)|

2
i =

↵

n̄
+ (bE

1
)2P22(k) . (65)

Of course, the residual noise gets corrections from higher-order loop contributions too. However, the P22 term is
already much larger than the naive expectation—the one-loop power spectrum. To conclude, if Standard Eulerian
perturbation theory is used to predict the realization of the halo density field, we expect to find a model error which
becomes large and strongly scale dependent around the nonlinear scale.

To test this expectation we use the model in Eq. (58) and compare it to simulations. The plot of the power
spectrum of the model error normalized to Poisson prediction is shown in Fig. 14. As we expect, this model works
very well at large scales, and in the limit k ! 0 the noise is close to the Poisson expectation. However, already
around k ⇠ 0.1 hMpc�1 the noise becomes scale-dependent and sharply rises. This is due to the decorrelation of the
predicted and simulated halo density fields at these scales. In the high k limit, when the transfer functions approach
zero, the power spectrum of the model error by definition approaches the halo power spectrum (black dotted curve).
This creates a characteristic bump in the noise curve. Notice that the same quadratic model written in terms of
shifted operators performs much better and has the constant noise practically all the way to k ⇠ 1 hMpc�1.

Small scales produce a lot of power if nonlinear DM field is used

Keeping the small scales is crucial to minimize the model error

Why not using the nonlinear DM field form simulations?

Comparison to simulations
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Figure 23. Impact of mass weighting on the mean-square model error divided by the Poisson expectation, h|�obsh (k) �
�model
h (k)|2i/(1/n̄). Here �obsh is a weighted sum of halo number and mass density, �obsh (k) = ↵h(k)�

truth
h (k) + ↵M (k)�?M (k),

extracted from simulations. The model is the cubic bias model as before but without �Z , i.e. �
model
h =

P
i2{1,2,G2,3} �i(k)�̃

?
i (k).

The light grey curve asssumes that the halo mass is known perfectly (as measured by the FOF halo finder), the green curves
include a random scatter �M in the halo masses, and the dark grey curve assumes no mass weighting, corresponding to the
no-mass-weighting result presented previously in the paper. Transfer functions ↵µ(k) and �i(k) are optimized as free functions
of k, with ↵µ satisfying the normalization condition (127). At low k, the width of the curves represents the uncertainty of Perr

estimated from the scatter between the five independent simulations; at high k, the estimated uncertainty is smaller.

To be more realistic, green curves in Fig. 23 include a log-normal scatter added to the FOF halo masses.24 We find
that for a 0.4 dex (i.e., factor 2.5) mass scatter, mass weighting is not e↵ective and the model error is only marginally
reduced compared to using just the halo number density. For 0.2 dex (i.e., 60%) mass scatter, however, the large-scale
Perr is reduced relative to no mass weighting by a factor of 1.5� 2 for the three low- and intermediate halo mass bins,
and by a factor of 1.3 for the most massive halos. For 0.1 dex (i.e., 26%) mass scatter, the large-scale Perr is reduced
by a factor of 3 � 5 for the low- and intermediate mass halos, and by a factor of 1.6 for the most massive halos. So
if we can determine halo masses with a scatter of ⇠ 60% or less, this could reduce Perr by factors of a few for halo
samples like ours.

What is the scale dependence of the model error after mass weighting? Fig. 23 shows essentially no scale dependence
for k . 0.1 hMpc�1, but there is a clear scale dependence at higher k, and this tends to be stronger than the scale
dependence of Perr(k) without mass weighting. This could be caused by two-loop terms that are missing in the model
and therefore contribute to the measured Perr(k); after mass weighting, the stochastic noise contribution P✏0✏0 to Perr

might be so small that the missing two-loop terms could be the dominant contribution to Perr at high k, especially
when using a high number density of halos and assuming perfectly known halo mass. Alternatively, the k

2 corrections
to Perr might be larger after mass weighting. Resolving this question is beyond the scope of this paper. Note that in
order to make use of the reduced model error on small scales, one would have to model this increased scale dependence
of the model error or modify the bias model or mass weighting scheme to obtain a flatter Perr.

Fig. 24 shows the cross-correlation coe�cient rcc(k) between the mass-weighted halo field �
obs

h and the best-fit cubic
bias model, and the fractional mean-square model error 1 � r

2
cc. Using exact FOF halo masses with no scatter, the

correlation coe�cient at k ' 0.02 hMpc�1 is between 99.995% and 99.9% (1 � r
2
cc between 0.01% and 0.2%) for

all but the most massive halo bin. This is a substantial improvement over no mass weighting where the correlation

24 I.e., for each halo we replace lnM ! lnM + "� �2
"/2, where " is drawn from a normal distribution with zero mean and variance �2

" ; we

subtract �2
"/2 to ensure that the scatter does not change the average mass hMi of the halo population (note he"i = e�

2
"/2).

Comparison to simulations

Mass-weighting reduces the noise



Conclusions

Comparison on the field level is very useful, no CV, all n-point functions

No bias model (linear or nonlinear) with simulation DM field is optimal

The PT bias model has the noise close to Poisson and scale-independent

Small scale-dependence of the noise (~1%) relevant around the nonlinear scale

How well the perturbative bias model works for galaxies in redshift space?

Applications to the reconstruction of the initial conditions

A smooth forward model, useful for the likelihood on the field level

Good news is that the simple quadratic bias works quite well



Backup slides



Open questions 

All results presented so far are UV-dependent

Low-k limits of the transfer functions are not renormalized bias parameters

8

C. Relation to Renormalized Bias Parameters

Before we close this section listing all bias models that we use in the paper, we get back to an important point
that we have only briefly mentioned in the introduction: The low-k limit of the transfer functions �i(k) does not
necessarily approach the values of physical (renormalized) bias parameters. This means that the bias parameters we
measure at the field level are not generally expected to be the same as the bias parameters measured from correlation
functions of the halo density field. In the terminology of renormalization, what we measure on the field level is closer
to “bare” bias parameters. These biases depend on the cuto↵ scale, or the way the small scales are regulated. For
example, as we are going to see, using the linear or the nonlinear matter density field to construct bias operators leads
to very di↵erent transfer functions in the low-k limit. One easy way to see why this happens is to take a look at the
expression for a transfer function obtained using the minimization described above. If we assume that the basis of
operators is orthogonal, we can write

�i(k) =
h�

truth

h Õ
?

i i

hÕ?

i Õ
?

i i
. (31)

The power spectrum in the denominator in general involves loops, and therefore it is obviously dependent on how the
high-k modes are treated. The usual way to deal with this issue is to renormalize the bias operators, subtracting the
cuto↵-dependent counterterms [54]. Away from the perturbative regime and on the field level this becomes challenging.
Take for example the operator �2. The power spectrum of this operator is constant in the low-k limit. This constant
comes from integrating very short scales and can be always absorbed by the free amplitude of the shot noise in the
power spectrum. However, this is not possible on the field level. If we add an independent field with constant power
spectrum to the model with the hope to fix the problem, it can only give a positive definite contribution to the model
error power spectrum, making the model worse.

At this point it is important to clarify the relation to other works (see for example [8, 73]) where similar techniques
were exploited to measure the physical bias parameters. The idea is that the bias parameters can be measured
projecting the halo density field on the basis of bias operators, leading to equations very similar to Eq. (31). One
major di↵erence is that the bias operators in [8, 73] are constructed from the smoothed density field. The smoothing
scale R is chosen to ensure that only the Fourier modes in the perturbative regime contribute and it is typically
R ⇠ O(10) Mpc at z = 0.6 In this way it is indeed possible to measure the low-k limit of the transfer functions and
rigorously prove that they can be identified with the renormalized bias parameters.

However, this program is somewhat orthogonal to our goals in this paper. We do not necessarily restrict to the
perturbative regime k ⌧ kNL, but we want to test how well we can reproduce the halo density field even around the
nonlinear scale. Using the smoothed density field to construct the basis operators would imprint the smoothing scale
in all our calculations and lead to significant decorrelation with the halo density field already around k ⇠ 0.1 hMpc�1.
In this context, keeping the short scales in the bias operators seems to lead to better results. We therefore do not
apply any smoothing to the fields.7 The price that we have to pay for this choice is that the low-k limit of the transfer
functions does not correspond to bias parameters defined in the usual way.

Let us finish by saying that one important exception in this discussion is the linear bias. In this case

�1(k) =
h�

truth

h �̃1i

h�̃1�̃1i
. (32)

The low-k limit of this expression coincides with the usual definition of the renormalized linear bias, since the power
spectrum in the denominator approaches P11(k). Therefore, we do expect to find that b1 = �1(k ! 0) is indeed the
same as inferred from the power spectrum or separate universe simulations.

D. List of Bias Models

When comparing against simulations we will mostly use the bias expansion in terms of shifted operators described
above, but sometimes we will also show comparisons with other bias expansions. The following list provides an
overview over all bias models that we will use for the analysis.

6 In principle, the bigger the smoothing scale R, the less sensitive are results to the nonlinear corrections. In practice, the choice of the
smoothing scale is dictated by the volume of N-body simulations and convergence tests.

7 The only exception is �3(q), which, as we discuss below, is smoothed with a sharp k filter at kmax = 0.5 hMpc�1. There is also an
implicit smoothing of all fields due to the cell size �x ' 1 h�1Mpc of the Eulerian grid, but this is only relevant on very small scales.

Relation to similar methods to measure physical biases Lazeyras, Schmit (2017)

Abidi, Baldauf (2018)

The key difference is the smoothing (not including the short modes)

sensitive to high k and

definition of operators 

R ~ 10-20 Mpc



Open questions

Standard bias expansion is well-defined and rigorous on large scales

It relays on integrating out the short scales, this leads to higher noise

Minimization on the field level is another way to define biases

The results depend on the UV completion

The noise is smaller and more well-behaved

Which procedure leads to tighter constraints on cosmological parameters?



Open questions

Power spectrum analysis:

The constant low-k part of the power spectrum is treated as noise

Large fraction of the constant low-k part of the power spectrum 

is treated as signal

b2 is measured only from the k dependence of the power spectrum

b2 is measured from the k dependence of the power spectrum

and the constant part


