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Mutations
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Hardy-Weinberg equilibrium

• Sexual reproduction, diploid genome
• Notation: A, a variant alleles at one locus (ultimately, DNA
subsequences)

• Genotypes: AA & aa homozygotes, Aa heterozygote (same as
aA)

• Population of size N , with genotype frequency vector
(xAA, xAa, xaa)

• Then p = 2xAA + xAa is the frequency of the A allele, and
q = 2xaa + xAa that of the a allele
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Hardy-Weinberg equilibrium

• Hardy-Weinberg theorem: Assume
• Large population (fluctuations are neglected)
• Neutral genotypes (fitness equal for everybody)
• Mating is random (panmictic population)

• Then, at the next generation:

xAA = p2 xAa = 2pq xaa = q2

• Allele frequencies determine the genotype frequencies!
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Hardy-Weinberg equilibrium

De Finetti diagram:
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Nature of mutations

• Sequence mutations are changes in the offspring DNA wrt that
of its parent(s)

• According to their nature, small (point) mutations are:
Transitions: A ⇋ G or C ⇋ T

Transversions: A ⇋ C, T or G ⇋ C, T

Indels: Insertion or deletion of a short nucleotide
sequence
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Mutations in coding sequences

• In coding sequences each nucleotide triplet codes for a codon
• According to their effects mutations are:
Synonymous or silent: The mutated codon corresponds to the

same amino acid (weakest effect)
Non-synonymous or missense: The mutated codon corresponds

to a different amino acid (stronger effect)
Nonsense: The replacement changes the codon into one of

the stop ones (much stronger effect)
• Indels with a length which is not a multiple of 3 produce
reading frame shifts: all codons after the indel are affected
(strongest effect)
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Mutation rates

• Mutations are a stochastic process, due both to the effect of
the environment and of the organism’s internal workings

• Mutation rates can be estimated by comparing orthologous
sequences in two related life forms and counting changes

• One assumes a simple mutation model and estimates its
parameters by making the comparison
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Mutation rates

t

ACCGAGTCCTA ACCGACTCCTG

     *    *     *    *

ACCGA?TCCT?

Jukes’ rule: the time separation between the two sequence is 2t

Assumes that backward evolution is the same as forward evolution
(reversibility)
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Mutation rates

• The comparison evaluates substitution rates, rather than
mutation rates

• However, for neutral mutations the rates are equal (see later)
(Kimura)

• The estimate is based on four general assumptions (all of them
false!):
1. The rates are uniform (do not depend on the position in the

genome)
2. They are constant in time
3. They are the same for the two branches
4. The equilibrium frequencies of the nucleotides are the same for

the ancestral sequence and for the two “evolved” ones
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Model for nucleotide substitution

• Substitution matrix W = (µji): rate of substitution j ←− i,
i, j ∈ {A, G, C, T}

• Frequency of base i: fi(t)

• Evolution equation for fi:

dfi
dt

=
∑
j (̸=i)

′
[µijfj − µjifi]

• Equilibrium frequencies: f eq
i :

∑
j (̸=i)

[
µijf

eq
j − µjif

eq
i

]
= 0

• Evolution matrix P(t) = (pji(t)): conditional probability to find
nucleotide j at time t, given that nucleotide i was in that
position at t = 0

• Observed data: Divergence matrix X(t) = (xji(t)): joint pdf to
find nucleotide j in the first sequence and nucleotide i at the
same position in the second sequence
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Model for nucleotide substitution

• Equation for P(t):

dpij
dt

=
∑
k (̸=i)

′
[µikpkj − µkipkj ] pij(0) = δij

• Divergence matrix:

X(t) = P(t)X(0)PT(t) xij(0) = f eq
i δij

• Symmetry: XT = X, i.e., xji(t) = xij(t) (not exactly satisfied
due to sampling errors)

• Normalization constraint on the diagonal elements:
2xii = 2fi −

∑
i (̸=j)

′
xij −

∑
j (̸=i)

′
xji

• Thus the divergence matrix X (16 entries) has only 6
independent parameters
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Model for nucleotide substitution

Jukes-Cantor model

All substitutions are equally probable:
µij = α, ∀(i ̸= j)

• f eq
i = 1

4 , ∀i;
pij(t) =

1
4

(
1− e−4αt + 4δije

−4αt
)

• Probability of observing the same
nucleotide in the two sequences:

I(t) = 1

4

(
1 + 3e−8αt

)
• Thus αt = − 1

8 ln
(
4I−1

3

)

αt

0.25

0.5

0.75

1

0 0.2 0.4 0.6 0.8 1

I

0

I

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1
α
t

0

8



Model for nucleotide substitution

General 6-parameter model

• A substitution A←− C implies the corresponding substitution
T←− G in the opposite strand

• Thus wAC = wTG, ecc.
• Thus we have only 6 independent rates from stable sequences:

µ6

G

C

A

T

µ2

µ6

µ5

µ 1

µ
1

µ3

µ 4 µ
4

µ2

8



Reversibility vs. detailed balance

O. Zagordi and J.-L. Lobry, 2005

• Detailed balance: µijf
ex
j = µjif

ex
i , ∀i ̸= j

• Reversibility: P(−t) = P(t) (needed by Jukes’ rule)
• Theorem: Reversibility ⇔ Detailed balance
• Problem: A model which fits the data is reversible?
• Answer: Chargaff rule: fA = fT, fG = fC (no strand bias)
• There are only five independent observable quantities in X!
• One can impose an additional constraint on the model, e.g.,
µ1µ6 = µ2µ4 (reversibility)
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Infinite allele and infinite site model

• We often want to model mutations starting from a given wild
type

• Infinite allele model: Each mutation produces a wholly new
genotype

• No structure in the mutants: all mutants are as different from
the wild type as from each other

• Infinite site model: Each mutation hits a different site
• Mutants can be binned in k-classes: Classes with k mutations
wrt wild type
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Mutations and selection
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A simple model

• Population with two types: A and B
• Selection coefficient s = fA − fB

• Mutation: A
µ
⇋ B

Evolution equation:

dx

dt
= sx(1− x) + µ(1− x)− µx = sx(1− x) + µ(1− 2x)
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A simple model
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A simple model

Fixed point x∗:

x∗ =
s− 2µ+

√
s2 + 4µ2
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Optimization?

• ⟨f⟩x = fAx+ fB(1− x) is not maximal at x∗

• But define
Φ(x) = ⟨f⟩x︸︷︷︸

−“energy”

+µ log [x(1− x)]︸ ︷︷ ︸
“entropy”

• Then

dΦ

dt
= s

dx

dt
+ µ

1− 2x

x(1− x)

dx

dt

= x(1− x)

[
s+ µ

1− 2x

x(1− x)

]2
≥ 0

• Φ increases and reaches its maximum at the fixed point
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Multiple alleles

• r alleles: α
µ
⇋ β α, β = 1, . . . , r µ(α −→ β) = µβ

• Set xr = 1−
∑r−1

j=1 xj

• Define:

sj = fj − fr =
∂ ⟨f⟩x
∂xj

, j = 1, . . . , r − 1

Γjk(x) =

{
−xjxk, if j ̸= k

xj(1− xj), if j = k
Γ positive definite

• Evolution equation for x = (x1, . . . , xr−1):

dxj

dt
=

r−1∑
k=1

Γjk(x)sk + µj(1− xj)− xj

∑
α(̸=j)

′
µk
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Optimization II

• Define
M(x) =

∑
α

µα log xα

• Then∑
k

Γjk(x)
∂M

∂xk
= µj(1− xj)− xj

∑
α( ̸=j)

′
µα = µj − xj

∑
α

µα

and
dxj

dt
=

∑
k

Γjk(x)
∂

∂xk
[⟨f⟩x +M(x)] =

∑
k

Γjk(x)
∂Φ

∂xk

Φ(x) = ⟨f⟩x +M(x)

• Thus
dΦ

dt
=
∑
j,k

∂Φ

∂xj
Γjk(x)

∂Φ

∂xk
≥ 0

Notice that since the stationary frequency is given by x∗
α = µα/µ

tot

M(x) = µtot [DKL(x
∗∥x)−H(x∗)] 15



The quasispecies (QS) model

M. Eigen, 1971

• Nonoverlapping generations; large number of alleles

• Mutation rate k
Qkℓ⇋ ℓ depending on “distance” of alleles

• Evolution equation for x = (x1, . . . , xr):

xj(t+ 1) =
1

⟨W ⟩x

r∑
k=1

QjkWkxk(t)

where ⟨W ⟩x =
∑

j Wjxj
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Asymptotic behavior of the QS model

• Define the unnormalized population vector y(t):

y(0) = x(0)

yj(t+ 1) =

r∑
k=1

QjkWkyk(t) =

r∑
k=1

Tjkyk(t)

• Decompose y according to the right eigenvectors of
T = (QjkWk):

y =
∑
κ

cκξ
(κ)

T · ξ(κ) = λ(κ)ξ(κ)

• Perron-Frobenius theorem: the largest eigenvalue λ(0) is
positive and has a unique right eigenvector ξ(0), ξ(0)i > 0, ∀i

• Thus, for n≫ 1

Tn · y =
∑
κ

(
λ(κ)

)n
cκξ

(κ) ≃
(
λ(0)

)n
c0ξ

(0)
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The composition vector x

Since
x(t) =

y(t)∑
j yj(t)

we have
lim
t→∞

x(t) = ξ(0)

independently of the initial condition
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The error threshold

• One optimal genotype 0: W0 > Wk = W , ∀k ̸= 0, r ≫ 1

• Mutation probability µ −→ 0: µr = u

• Define W/W0 = 1− s

• Then
x0(t+ 1) =

W0(1− u)x0

W0x+W (1− x0)
=

(1− u)x0

1− s+ sx0
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The error threshold

Fixed point:
x∗
0 = 1− u

s
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Interpretation of the error threshold

• Hypothetical self-replicating molecule of length L, mutation
rate µ per base

• Total mutation rate: u = 1− (1− µ)L = 1− e−µL

• Selection: W0 = 1, W = 1− s

• To keep wild type in population, u < s, i.e

L <
|log(1− s)|

µ

Can L be large enough to encode efficiently replicating molecules?
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Error classes

xk: fraction of individuals with k “errors” with respect to selected
type
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Error classes

xk: fraction of individuals with k “errors” with respect to selected
type
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Error threshold vs. extinction

J. Bull et al., 2005; C. O. Wilke, 2005

• Simple model with three genotype classes:
• Class 0: Fitness W0 > 1, mutation probability u0 to Class 1
• Class 1: Fitness W1 < W0, mutation probability u1 < u0 to Class 2
• Class 2: Fitness W2 = 0 (does not reproduce)
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Error threshold vs. extinction
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Error threshold vs. extinction

Evolution equation for the population vector n = (n0, n1, n2):

n(t+ 1) = Tn(t)

T =

(1− u0)W0 0 0

u0W0 (1− u1)W1 0

0 u1W1 0


The total population is given by N(t) =

∑
j nj
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Error threshold vs. extinction

Eigenvalues and eigenvectors:

λ(0) = W0(1− u0)

n(0) =

(
(1− u0)(W0(1− u0)−W1(1− u1))

W0u0u1
,
(1− u0)W0

W1u1
, 1

)
λ(1) = W1(1− u1)

n(1) =

(
0,

1− u1

u1
, 1

)
N(t) ∼ (λmax)

t: extinction if λmax < 1
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Error threshold vs. extinction

Error threshold:
(1− u0)W0 = (1− u1)W1

Extinction threshold:

λmax(W0,W1, u0, u1) = 1
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The transitions
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The transitions
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The transitions
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The transitions
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Drift
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The Population Genetics Triad

Sewall Wright Ronald A. Fisher Motoo Kimura
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Finite population

The Wright-Fisher model

• Population size N , number nk of individuals of type k,
k = 1, . . . , r, with fitness wk

• Nonoverlapping generations
• Given the composition vector x = (xi), xi = ni/N , the numbers
n′
k in the next generation are distributed according to

Prob(n′
1, . . . , n

′
r) =

N !

n′
1! · · ·n′

r!
ξ
n′
1

1 · · · ξ
n′
r

r

where
ξk =

xkwk∑
j xjwj

• Thus n′
k is approximately distributed as a Gaussian with mean

Nξk and variance Nξk(1− ξk)
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Finite population

The Wright-Fisher model
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Finite population

The Wright-Fisher model: one realization (neutral)
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Finite population

The Wright-Fisher model: several realizations (neutral)
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Finite population

The Wright-Fisher model: one realization (selective: N = 10 000,
wk ∈ {1.0, 1.1}, xk(0) = 0.1)
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Finite population

The Wright-Fisher model: several realizations (selective: N = 500,
s = 0.01, x(0) = 0.1)
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Drift

…it is often convenient to consider a natural population
not so much as an aggregate of living individuals as an
aggregate of gene ratios. Such a change of viewpoint is
similar to that familiar in the theory of gases…

R. A. Fisher, 1953
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Drift

We will start our discussion from the simplest situation
where the gene frequency fluctuates from generation to
generation because of the random sampling of gametes in
a finite population. Since Wright’s work, the term drift
has become quite popular among biologists. However, in
the mathematical theory of Brownian motion, the term
drift originally connotes directional movement of the
particle; therefore in our context the adjective random
should be attached to it.

M. Kimura, 1964 (abridged)
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Drift

• Finite population implies different outcomes for different
experiments in the same conditions (lack of self-averaging)

• Necessity to describe an ensemble of populations
• Use of the theory of Markov processes
• Simplification by means of diffusion equations
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Random drift in the neutral case

• Population of N haploid individuals, 2 neutral alleles: A, a
• Frequency of the A allele: x = nA/N

• Wright-Fisher model: At each time step, each individual i of
the new generation picks up a parent at random and copies it
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Random drift in the neutral case

The Wright-Fisher model

t+1

t
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Random drift in the neutral case

• Probability that nA(t+ 1) = n, given nA(t) = Nx(t):

pn(t+ 1) =

(
N

n

)
(x(t))n(1− x(t))N−n

• Assume N ≫ 1, 1
N ≪ x≪ 1− 1

N , then

Prob (x(t+ 1)=x) ∝ exp

(
− (x− x(t))2

2Nx(t)(1− x(t))

)
• ∆x(t) = x(t+ 1)− x(t):

⟨∆x(t)⟩ = 0
⟨
(∆x(t))2

⟩
=

x(t)(1− x(t))

N
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The diffusion equation

Fokker-Planck equation:

∂

∂t
p(x, t) = − ∂

∂x
(⟨∆x⟩x p(x, t)) +

1

2

∂2

∂x2

(⟨
∆x2

⟩
x
p(x, t)

)
In our case

∂p

∂t
=

1

2N

∂2

∂x2
(x(1− x) p(x, t))
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The solution in the neutral case

• Set p(x, t | x0, 0) =
∑

n cn(x0)χn(x) e
−λnt/(2N)

• Eigenvalue equation:

x(1− x)χ′′
n(x) + (1− 2x)χ′

n(x) + λnχn(x) = 0

• Boundary conditions: x = 0, 1 are singular points; we require
χn(0, 1) finite ∀n

• Initial condition:

p(x, 0 | x0, 0) =
∑
n

cn(x0)χn(x) = δ(x− x0)

• Solution in terms of hypergeometric functions:

χn(x) = F (1− n, n+ 2, 2, x) λn = n(n+ 1)

30



The solution in the neutral case
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The solution in the neutral case
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The solution in the neutral case
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The solution in the neutral case
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The solution in the neutral case
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The solution in the neutral case
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Initial condition x(0) = 0.1
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Initial condition x(0) = 0.1
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Initial condition x(0) = 0.1
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Initial condition x(0) = 0.1
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Results

• p(x, t) decays exponentially: p(x, t) ≃ 6x(0)(1− x(0))e−t/N for
t≫ N

• Probability that A and a coexist at generation t:
Ω(t) =

∫ 1

0
dx p(x, t) decays with the same rate (p(x, t) is flat)

• However, p(x, t) becomes flat later when x(0) ̸= 1
2

• What is the probability of fixation of allele A as a function of
x(0)?

32



The backward equation

• p(x, t | x0, t0): Conditional probability that x(t) = x given that
x(t0) = x0

• Consider the effect of a single-generation sampling near t0:
x(t0 + 1) = x0 +∆x0

• Equation for p(x, t | x0, t0):

− ∂p

∂t0
= ⟨∆x0⟩x0

∂p

∂x0
+

1

2

⟨
∆x2

0

⟩
x0

∂2p

∂x2
0

• In our case
− ∂p

∂t0
=

x0(1− x0)

2N

∂2p

∂x2
0
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The fixation probability

• P (t, x0, t0) = p(1, t | x0, t0): probability of being fixed by time t

• “Ultimate” fixation probability: pfix(x0) = limt→∞ P (t, x0, t0)

• From the backward equation we obtain

d2pfix

dx2
0

= 0 x ∈ [0, 1]

• Boundary conditions: pfix(x0=0) = 0 and pfix(x0=1)

• Solution:
pfix(x0) = x0
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Wright-Fisher model with selection

• Population of N haploid individuals, two alleles A and a
• Fitnesses: wA, wa

• Probability that an individual with allele A is chosen as a
parent:

ξA =
nAwA∑N
j=1 wj

=
nAwA

nAwA + nawa
=

xwA

xwA + (1− x)wa

• Probability that nA(t+ 1) = n:

pn(t+ 1) =

(
N

n

)
ξnA (1− ξA)

N−n

• Average and variance:

⟨xA(t+ 1)⟩ = ξA⟨
(xA(t+ 1)− ⟨xA(t+ 1)⟩)2

⟩
= ξA (1− ξA) /N
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Selection and drift

If the first human infant with a gene for levitation
were struck by lightning in its pram, this would not prove
the new genotype to have low fitness, but only that the
particular child was unlucky.

John Maynard Smith
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Selection and drift

• Set wA = 1 + s, wa = 1, s≪ 1

• Then ξA = xwA/(xwA + wa(1− x)) = (1 + s)x/(1 + sx)

• Then ⟨∆x⟩x = ⟨x(t+ 1)⟩ − x = sx(1− x)/(1 + sx) ≃ sx(1− x)

and
⟨
∆x2

⟩
≃ (x(1− x)/N)

• Diffusion equation for p(x, t):

∂p

∂t
= −s ∂

∂x
(x(1− x)p) +

1

2N

∂2

∂x2
(x(1− x)p)

• Solution in terms of spheroidal functions…
• Asymptotically p(x, t) ∝ χ(x) e−λt/N
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Solution with selection

The long-living eigenfunction:

0.4 0.6 0.8

Ns = 1.0

1

χ
(x
)

Ns = 2.0

x

1

2

3

4

0 0.2

Ns = 0.1

The leading eigenfunction χ(x) for several values of s
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Solution with selection

The decay rate:

s

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8

λ

0

Leading eigenvalue λ as a function of Ns; decay rate: λ/N
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The fixation probability with selection

• The backward equation:

∂p

∂t0
= sx0(1− x0)

∂p

∂x0
+

x0(1− x0)

2N

∂2p

∂x2
0

• Stationary solution:

∂pfix

∂x0
= C1e

−2Nsx0

pfix(x0) = C0 − C1e
−2Nsx0

=
1− e−2Nsx0

1− e−2Ns

• In particular, for s→ 0, pfix → x0
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The fixation probability with selection
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Fixation probability of a single mutant

• For a single mutant x0 = 1
N

• Thus

pfix =
1− e−2s

1− e−2Ns

• Limits:
• s > 0, Ns ≫ 1: pfix ≃ 1− e−2s (for s ≪ 1, pfix ≃ 2s)
• s < 0, |Ns| ≫ 1, pfix ≃ 0

• |Ns| ≲ 1, pfix ≃ 1
N
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Fixation probability of a single mutant
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Frequency needed to obtain fixation

• How large must be x to be “almost sure” that a beneficial
mutant fixes?

• Solve
pfix(x∗) = 1− γ

• For Ns≫ 1 we have pfix(x) ≃ 1− e−2Nsx, thus

x∗ = − log γ

2Ns
or n∗ = − log γ

2s

• The fate of the mutant is determined in its initial phase, where
it undergoes a branching process—the size of N is irrelevant!
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Substitution rate

• For a new mutant, x0 = 1
N

• For a neutral mutant, s = 0, thus pfix = x0 = 1
N

• If u is the mutation probability per genome and generation,
the expected number of mutants per generations is uN

• Of these, only a fraction 1
N reaches fixation, i.e., produces a

substitution
• Therefore the rate ν of neutral substitutions in a population
with mutation rate u is equal to u:

substitution rate = mutation rate

independently of the population size N
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The Moran model

Overlapping generations individual-based model:

Select for death

Initial population Select for reproduction

Replace
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The Moran model

• Selection: pkill(A) = 1− s, pkill(a) = 1

• ∆t = 1
N ; ∆nA ∈ {−1, 0,+1}

• Probabilities:

P−1 =
na

N︸︷︷︸
Probrepr(a)

(1− s)
nA

N︸ ︷︷ ︸
Probkill(A)

= (1− s)x(1− x)

P+1 =
nA

N

na

N
= x(1− x)

P0 = 1− (P+1 + P−1)
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The Moran model

• Thus, for ∆t = 1
N , s≪ 1:

⟨∆nA⟩ = P+1 − P−1 = sx(1− x)⟨
(∆nA)

2
⟩

= P+1 + P−1 = (2− s)x(1− x) ≃ 2x(1− x)

• The diffusion equation for the Moran model:

∂p

∂t
= − ∂

∂x
(sx(1− x)p) +

1

N︸︷︷︸
= 1/2N for WF

∂2

∂x2
(x(1− x)p)

• The devil (or God?) is in the details…
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Adaptation and drift

Mustonen and Lässig, 2005–2010

Finite population of size N , r alleles, Moran model. Effects of
mutation and selection:

dxj

dt
=
∑
k

Γjk
∂Φ

∂xk
; Φ = ⟨f⟩x +

∑
α

µα log xα

Γjk(x) =

{
−xjxk, if j ̸= k

xj(1− xj), if j = k
Γ positive definite
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Adaptation and drift

Mustonen and Lässig, 2005–2010

• Random drift: x −→ x+ ξ

⟨
ξj
⟩
x
= 0;

⟨
ξjξk

⟩
= 2

Γjk(x)

N

• Fokker-Planck equation for the pdf P (x):

∂P

∂t
=

∑
jk

∂

∂xj

[
− ∂Φ

∂xk
(ΓjkP ) +

1

N

∂

∂xk
(ΓjkP )

]

=
∑
jk

∂

∂xj
Γjk

(
− ∂Φ̃

∂xk
P +

1

N

∂P

∂xk

)

43



Adaptation and drift

Mustonen and Lässig, 2005–2010

• Φ̃ = Φ− 1
N log det Γ; det Γ =

∏
α xα

• Stationary solution:

P eq(x) ∝ eNΦ̃ = (det Γ)−1 eNΦ = P0 e
N⟨f⟩x

P0(x) ∝
∏
α

x−1+Nµα

• Thus, for a static fitness function f ,

[N ⟨f⟩x]
eq
av

=

∫
dx P eq(x) log

P eq(x)

P0(x)
= DKL (P

eq∥ P0)︸ ︷︷ ︸
Kullback-Leibler divergence

DKL(p∥q) =
∑
k

pk log
pk
qk

(1)
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cAMP-response protein binding loci in E. Coli

Mustonen and Lässig, 2005

• Factor binding sites are short DNA sequences which bind
activating factors

• Small mutation rates: µN ≪ 1 ⇒ Population becomes
monomorphic (x = (xα)→ δαβ)

pβ = Prob
(
x = δαβ

)
∝ eNfβ

• It is reasonable to assume that their fitness depends on their
binding energy E

• One can expect a linear model for E(σ), σ = (σ1, . . . , σℓ),
σi ∈ {A, T, G, C}

E(σ) =

ℓ∑
i=1

ϵi(σi) with ϵi(σ) = ϵ0 log
qi(σ)

p0(σ)

p0(σ): background nucleotide frequency
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cAMP-response protein binding loci in E. Coli

Mustonen and Lässig, 2005

Log histogram P (E) of binding energy E for 520 729 CRP-binding
loci in E. Coli. Compared with
P (E) = (1− λ)P0(E) + λP0(E)e2NF (E). The inferred form of
2NF (E) is also plotted. (W-F model) 44



Thank you!
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