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Genealogies

• How far in the past must we go to reach the last common
ancestor of n individuals? of the whole population?

• How many different genotypes can we expect to find by
sampling n individuals?

• How do the times to the last common ancestor depend on the
particular chosen sample? on the population size?

• How do they fluctuate as the population evolves in time?
• How are they affected by selection?

These questions can be addressed by using the concept of the
Coalescent
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The Coalescent
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JFC Kingman
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The Wright-Fisher model

Two ways of looking at the Wright-Fisher model:

t+1

t
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The Wright-Fisher model

Two ways of looking at the Wright-Fisher model:

t+1

t
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Iterating the process

MRCA
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Iterating the process

Neutral Wright-Fisher process:

• Set t = 0 for the present, and count generations backward from
the present

• Individual labels: {1, . . . , N}
• At each generation, define the application p : i 7→ pt(i) from i to
its parent

• pt(i) is extracted at random, independently for each i and each t

• Ancestor: at(i) = pt(pt−1(· · · p2(p1︸ ︷︷ ︸
t times

(i))))

• Lineage: L(i) = (a0(i) = i, a1(i), a2(i), . . .)

• Lineage coalescence: at(i) = at(j), i ̸= j

• Coalescence time: τ(i, j): aτ (i) = aτ (j), aτ−1(i) ̸= aτ−1(j)
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Iterating the process

Disclaimer:

In this [lecture] gene genealogies will sometimes be
referred to simply as genealogies. It should be understood
that this refers to the genetic ancestry of a sample at some
locus in the genome and not to the usual definition of a
genealogy, being the family relationship of a set of
individuals.

J. Wakeley, 2009
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Iterating the process

Questions:

• How many generations to the MRCA?
• What is the distribution of τ(i, j)?
• What are the consequences for quantities we can measure?

N.B.: When treating diploids, set N = 2 · population size
Discussion of the effective population size: later!
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Coalescent statistics

Hypotheses:

1. Equal fitness for all types (neutral process)
2. No subdivisions in the population (geographical or otherwise)
3. Constant population size

Assumptions 1. and 2. lead to exchangeability: the number of
offspring of any individual is statistically the same random variable
as for any other individual
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Coalescent statistics

• Probability that n individuals have all different parents:

wn =

(
1− 1

N

)(
1− 2

N

)
· · ·

(
1− n− 1

N

)
≃ 1− n(n− 1)

2N
n ≪ N

• Πn(t): probability of n independent lineages at time t

Πn(t+ 1) = wnΠn(t) ≃
(
1− n(n− 1)

2N

)
Πn(t)

• Πn(t) =
(
1− n(n−1)

2N

)t

≃ e−n(n−1)t/(2N)

• In particular Π2(t) ≃ e−t/N
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Coalescent statistics

• Averages over the process are expressed by . . .

• Averages over the population are expressed by ⟨. . .⟩
• Thus τ(i, j) = N

• Mutation rate u per genome and generation, infinite site model
• Expected # of mutations wrt the common ancestor: Nu

• Expected # of mutations between i and j: 2Nu = θ
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Distribution of coalescent times
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Distribution of coalescent times
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Distribution of coalescent times

t = 400

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

ν
(τ
)

τ

0

N = 50

10



Distribution of coalescent times
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Universality of the coalescent

• Reproduction model: Distribution of offspring size m: πm

WF model: πm = e−1/m! (Poisson)

Moran model: π0 = π2 =
1

N

(
1− 1

N

)
, π1 = 1− 2

N

(
1− 1

N

)
• m =

∑
m mπm = 1

• Probability of coalescence for n lineages:

1− wn =

(
n

2

)
1

N

∑
m

m(m− 1)πm =
n(n− 1)

2N

(
m2 − 1

)
• Define m(m− 1) = m2 − 1 = κ

• Thus wn = 1− n(n−1)
2

κ
N

• If m2 < ∞, all results hold, up to a time rescaling
• Choose time units so that wn = 1− n(n−1)

2
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Probability of a genealogy

τ4

τ2

τ3

τ7

τ6

τ5

P (τ2, . . . , τ7) = exp

{
−1

2
[7 · 6 · τ7 + 6 · 5 · τ6 + · · ·+ 2 · 1 · τ2]

}
Each τk is independent, with distribution Pk(τ) =

(
k
2

)
e−(

k
2 )τ
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Coalescence and mutations

The probability of a mutation occurring is uniform per unit length of
the genealogy
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Coalescence and mutations

• Assume mutation rate u per genome and generation, infinite
allele model

• Two individuals carry the same allele if they encounter no
mutation before their last common ancestor

• The probability of not having a mutation in a generation in a
lineage is 1− u

• The probability that neither lineage exhibits a mutation is
(1− u)2τ(i,j) ≃ exp (−2uτ(i, j))

• Thus the probability that two individuals have the same allele is

psame =
1

N

∫ ∞

0

dτ e−2uτ−τ/N

=
1

1 + 2uN
=

1

1 + θ
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Ewens’ sampling formula

• Infinite-allele model
• Take n samples from a large population with θ = 2Nu

• Samples belong to the same group if they exhibit the same
allele

• What is the probability that there are b1 groups with 1 element,
b2 groups with 2 elements,… bk with k elements,… ?
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Ewens’ sampling formula

n =

n∑
k=1

k bk # of samples

P (b1, . . . , bn) =
n!

θ(θ + 1) · · · (θ + n− 1)

1

1b1 · 2b2 · · ·nbn

θ
∑

k bk

b1!b2! · · · bn!
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The Chinese Restaurant Process
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The Chinese Restaurant Process

At each step, when there are n customers:

• The customer sits at a new empty table with probability
θ/(θ + n), or

• The customer picks up one of the customers at random and sits
at the same table
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The Chinese Restaurant Process

• At each step, we get a factor 1/(θ + n) (n = 0, 1, . . .)
• Each new table gets a factor θ
• In going from k to k + 1, each table gets a factor k
• Thus the probability that the (labeled) customers sit at ℓ tables,
i = 1, . . . , ℓ of size ki,

∑ℓ
i=1 ki = n is given by

P lab(k1, . . . , kℓ) =
θℓ

θ(θ + 1) · · · (θ + n− 1)

ℓ∏
i=1

(ki − 1)!

• There are n!/(k1! · · · kℓ!) distributions of the customers
compatible with (k1, . . . , kℓ), thus

P (k1, . . . , kℓ) =
n!

k1! · · · kℓ!
θℓ

θ(θ + 1) · · · (θ + n− 1)

ℓ∏
i=1

(ki − 1)!

=
n! θℓ

θ(θ + 1) · · · (θ + n− 1)

ℓ∏
i=1

1

ki
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The Chinese Restaurant Process

• Labelling the tables has introduced an overcounting: only the
sizes of the tables matter! Thus defining

bj =

ℓ∑
i=1

δki,j

we obtain

P (b1, . . . , bn) =
n! θℓ

θ(θ + 1) · · · (θ + n− 1)

1

1b1 · · ·nbn

1

b1! · · · bn!︸ ︷︷ ︸
Table permutations
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Observables

• Distribution of the number k of segregating alleles:

pk(n+ 1) =
n

θ + n
pk(n) +

θ

θ + n
pk−1(n)

k(n+ 1) = k(n) +
θ

θ + n
= θ

n−1∑
j=1

1

θ + j

∆k2(n+ 1) = k2(n)− k(n)
2
= ∆k2(n) +

nθ

(θ + n)2

• Distribution of the number ν of singletons:

pν(n+ 1) =
θ

θ + n
pν−1(n) +

ν

θ + n
pν+1(n) +

n− ν

θ + n
pν(n)

ν(n) =
nθ

θ + n− 1
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Observables

10

〈∆k2〉

15 20 25 30

〈k
〉,

〈∆
k
2
〉,

〈ν
〉

n

〈ν〉
0

1

2

3

4

5

6

7

8

0 5

〈k〉

Average k, variance ∆k2 of segregating alleles and average ν of
singletons vs. n for θ = 3.1
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Observables
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Distribution pν of the number of singletons for n = 200 and θ = 12.6,
together with the asymptotic distribution for n → ∞ and simulation
data over 1000 samples
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Observables
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Distribution pk of the number of segregating alleles for n = 300 and
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Frequency spectrum

k
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Average number bk of groups of size k with n = 1000 and θ = 3.5. The
average is taken over 3000 realizations of the process.

The line corresponds to bk = b1e
−θk/n/k, with b1 = nθ/(θ + n− 1)
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Effective population size Ne

The effective population size Ne can be different from the census
population N :

• In sexual populations, because only some males actually
reproduce(leks)

• Generally due to fluctuating population size:

1

Ne
≃ 1

N
>

1

N

• If fitness is nonuniform Ne is reduced wrt N :

Ne =
N

1 + var(#offspring)
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Effective population size Ne

In practice, Ne is chosen to fit the data:

• For several human genes, TMRCA ≃ 400 000 yrs

• One generation ≃ 20 yrs

• Assuming neutrality, Ne ≃ 10 000 (diploidy!)
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The Coalescent with selection
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The Coalescent in the presence of selection

Brunet, Derrida et al., 2006–2012

Neutral genealogy: N = 100, TMRCA = 125

20



The Coalescent in the presence of selection

Brunet, Derrida et al., 2006–2012

Genealogy with selection: N = 100, TMRCA = 10
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Coalescent models

A general coalescence model (Λ-coalescent):

• One starts with N points: in each interval of duration dt there is
a probability πk dt for every subset of k points to coalesce into
one

• Then for some measure Λ one has

πk =

∫ 1

0

xk Λ(dx)

• Rate λb,k at which k (2 ≤ k ≤ p) points out of p coalesce into one
is given by

λp,k =

∫ 1

0

xk−2(1− x)p−kλ(dx) =

p−k∑
n=0

(p− k)!

n!(p− k − n)!
(−1)nπn+k

• rp(ℓ) dt: probability of having ℓ lineages at time t+ dt if there
are p lineages at time t:

rp(ℓ) =
p!

(ℓ− 1)!(p− ℓ+ 1)!
λp,p−ℓ+1
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Coalescent models

• The Kingman coalescent:

π2 ̸= 0 πk = 0, ∀k > 2

• The Bolthausen-Sznitman coalescent:

πk =
π2

k − 1
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Selection models

Brunet et al., 2006–2012

• Each individual has two potential offspring
• The fitness of each offspring is shifted by z wrt to the parent’s
one, with pdf ρ(z) (flat in the simulations)

• Selection modes:
• Perfect selection: The best N are retained
• Fuzzy selection: Random choice among the 3N/2 best
• Two-parent selection: Each individual chooses two parents, but
only the better one is kept
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Selection models

Brunet et al., 2006–2012

T2: coalescence time for 2 lineages

22



Selection models

Brunet et al., 2006–2012

Tp: coalescence time for p lineages

• Kingman: ⟨T4⟩ / ⟨T2⟩ = 3/2; ⟨T3⟩ / ⟨T2⟩ = 4/3

• Bolthausen-Sznitman: ⟨T4⟩ / ⟨T2⟩ = 25/18; ⟨T3⟩ / ⟨T2⟩ = 5/4
22



Selection models

Brunet et al., 2006–2012

Coalescence time scale: T2 ∼ log3 N

Phenomenological theory

• The population looks like an advancing Kolmogorov-Fisher wave
in “fitness” space

• Most of the time its motion is deterministic
• At intervals ∼ log3 N exceptionally “adapted” individuals arise
• These individual “sweep” a finite fraction of the population in a
short time (multiple coalescence!)

• The distribution of the “sweep” sizes corresponds to the
Bolthausen-Sznitman coalescent
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Recombination
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Thomas Hunt Morgan
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Recombination

• Recombination is a process leading to different assortments of
genetic materials in life forms undergoing sexual reproduction

• It takes place in meiosis via the exchange of DNA segments
between homologous chromosomes
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Linkage equilibrium

• Two loci, A and B, two alleles: A, a and B, b, random mating, no
selection

• Allele frequencies: xi (i ∈ {A,a,B,b})
• Recombination does not change allele frequencies
• Change in genotype frequencies in one generation, e.g.:

x′
AB = (1− r)xAB︸ ︷︷ ︸

no recombination

+ r xAxB︸ ︷︷ ︸
recombination

• Linkage Equilibrium: set x′
AB = xAB

xAB = xAxB
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Linkage disequilibrium

• Deviation from equilibrium: xAB = xAxB +D, xAb = xAxb −D, etc.

D = xABxab − xAbxaB

• After one round of mating, one has

D′ = (1− r)D

• Thus D(t) = (1− r)tD0 ≈ e−rtD0

• Empirical measure of linkage disequilibrium (LD) (unfortunately
also denoted by r):

r2 =
D2

xABxabxAbxaB
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LD decay

LD r2 vs. distance along the genome in Anopheles arabiensis

Marsden et al. 2014

The recombination rate r between two loci increases (roughly
linearly) with the distance
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Hitchhiking

Hitchhiking: Effect of positive selection of one allele at one locus
has on alleles at neighboring loci

• Two loci, two alleles: A, a and B, b
• Fitness table (haploid):

B b
A 1 + s 1 + s

a 1 1
• Genotype frequency: xαβ , α ∈ {A, a}, β ∈ {B,b}
• Allele frequency: xα =

∑
β xαβ , xβ =

∑
α xαβ

• Conditional allele frequency: ξαβ = xαβ/xα

• Genotype frequencies (haploid) (forget about
dominance/recessivity!!!):

B b
A xAξAB xAξAb
a xaξaB xaξab

• Mean fitness: ⟨w⟩ = 1 + xAs
29



Hitchhiking

• Evolution equation for xA: x′
A = xA(1 + s)/(1 + xAs) ⇒

xA(t) = xA(0)(1 + s)t/(1− xA(0)(1− (1 + s)t))

• Evolution equation for xAB:

(1 + xAs)
2x′

AB = (1 + s) [xAB(1 + xAs) + r (xAxaB − xaxAB)]

• Evolution equation for xaB:

(1 + xAs)
2x′

aB = (1 + xAs)xAB + r(1 + s) (xaxAB − xAxaB)

• This implies
ξ′AB − ξ′aB = (1− r)(ξAB − ξaB)

• Assume that initially ξAB = 0, i.e., that A originates in a b
background, then when A is fixated, we have

ξAB(∞) = rξaB(0)(1− xA(0))

∞∑
t=0

(1− r)t

1− xA(0) + xA(0)(1 + s)t+1

29



Hitchhiking

Heterozygosity 4xB(∞)xb(∞) as a function of r/s for s = 0.1,
xB(0) = 0.5 and xA(0) = 10−6
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Genetic draft

• Which allele hitchhikes on an advantageous allele going to
fixation is “chosen” at random

• This introduces an additional random factor called Genetic draft
• Assume r = 0 (for simplicity) and an initial frequency xB(0) = p

• Then xB = 1 with probability p and 0 with prob. 1− p

• We have of course ⟨xB⟩ (∞) = p,
⟨
∆x2

B(∞)
⟩
= p(1− p)

• If the “sweep” takes place with prob. ρ we have the same
average, but

⟨
∆x2

B(∞)
⟩
= ρp(1− p)

• This is reminiscent of neutral drift, with effective population
Ne = 1/2ρ
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Genetic draft

• Assume fixation takes place in a time short wrt the time
between fixations

• Then successive sweeps are independent (Bernoulli) and
fixation times are Poissonian

• Recombination: mutation arises in a single copy of the genome,
that eventually reaches frequency y

• Then we have

xB(∞) =


p, with probability 1− ρ no sweep
p(1− y) + y, with probability ρp
p(1− y), with probability ρ(1− p)

• These effects tend to increase variability, i.e., to reduce the
effective population size

• For large population, genetic draft dominates: the effective
population size due to draft is given by

Ne =
N

1 + 2Nρ ⟨y2⟩ 30



Recombination and Epistasis

• Deviations from linkage equilibrium arise due to selective
effects involving two (or more) loci

• Set, e.g., σA = +1, σa = −1, σB = +1, σb = 1, and assume wαβ

has the form

wαβ = f0 + fασα + fβσβ + fαβσασβ︸ ︷︷ ︸
epistasis

• Then selection introduces correlations between loci
• Define

R =
x++x−−

x+−x−+

then one can show that

⟨w⟩∆logR = 4f12 − r(R− 1)H,

where
H =

x+−w+−x−+w−+

⟨w⟩2
∑
σασβ

1

xαβ
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Recombination and Epistasis

• If 0 < f12 ≪ r R will reach values close to 1 very quickly, and
then evolve slowly on the scale of f12

• If R ≈ 1 then H ≈ 1 and we obtain a quasi-stationary state with

R ≈ 1 +
f12
r

• This state has been called Quasi-linkage equilibrium
• It has been generalized to many interacting loci by Neher and
Shraiman
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Thank you!
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