Population Genetics and Evolution - IV

The Coalescent - Recombination

Luca Peliti
Sado Paulo / January 2019

SMRI (Italy)
lucaapeliti.org



Outline

Introduction

The Coalescent

The Coalescent with selection

Recombination



Introduction



Genealogies

- How far in the past must we go to reach the last common
ancestor of n individuals? of the whole population?

- How many different genotypes can we expect to find by
sampling n individuals?

- How do the times to the last common ancestor depend on the
particular chosen sample? on the population size?

- How do they fluctuate as the population evolves in time?

- How are they affected by selection?

These questions can be addressed by using the concept of the
Coalescent



The Coalescent
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The Wright-Fisher model

Two ways of looking at the Wright-Fisher model:
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Iterating the process

t-family



Iterating the process

Neutral Wright-Fisher process:
- Set t = 0 for the present, and count generations backward from
the present
- Individual labels: {1,...,N}

- At each generation, define the application p : i+ p(i) from i to
its parent

- pt(i) is extracted at random, independently for each i and each ¢
* Ancestor: a;(i) = pi(pe—1(- - - p2(p1(3))))
t times
+ Lineage: L(i) = (ao(i) = i, a1(i), az(i), .. .)
- Lineage coalescence: a;(i) = as(j), i # j
- Coalescence time: 7(i,§): a. (1) = ar(j), ar—1(2) # ar—1(j)



Iterating the process

Disclaimer:

In this [lecture] gene genealogies will sometimes be
referred to simply as genealogies. It should be understood
that this refers to the genetic ancestry of a sample at some
locus in the genome and not to the usual definition of a
genealogy, being the family relationship of a set of
individuals.

J. WAKELEY, 2009



Iterating the process

Questions:

- How many generations to the MRCA?
- What is the distribution of 7(, 5)?
- What are the consequences for quantities we can measure?

N.B.. When treating diploids, set N = 2 - population size
Discussion of the effective population size: later!



Coalescent statistics

Hypotheses:

1. Equal fitness for all types (neutral process)
2. No subdivisions in the population (geographical or otherwise)
3. Constant population size

Assumptions 1. and 2. lead to exchangeability: the number of

offspring of any individual is statistically the same random variable
as for any other individual



Coalescent statistics

- Probability that n individuals have all different parents:

<1;£>_§;—§)"'<1‘"N1)

W,

1-— n<<N

- II,,(¢): probability of n independent lineages at time ¢

I, (t + 1) = wpIL,(t) ~ (1 - ”(’;]\; ”) 1L, ()

I (t) = (1 _ n(n—l))t ~ o—n(n—1)t/(2N)
n\l) = N =

- In particular My (¢) ~ e~ 4/N



Coalescent statistics

- Averages over the process are expressed by ...

- Averages over the population are expressed by (...)

- Thus 7(i,j) = N

- Mutation rate u per genome and generation, infinite site model
- Expected # of mutations wrt the common ancestor: Nu

- Expected # of mutations between i and j: 2Nu = ¢



Distribution of coalescent times
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Distribution of coalescent times
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Distribution of coalescent times
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Distribution of coalescent times
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Universality of the coalescent

- Reproduction model: Distribution of offspring size m: «,,

WF model: m,, = e '/m! (Poisson)
1 1 2 1
Moran model: 7y = wz_N<1—N>,7r1_1_N<1_N)

A= =

- Probability of coalescence for n lineages:

T T T

- Definem(m —1)=m2 —1=x

n(n—1) g
o ThEuznzl—i(2 )N
- If m2 < oo, all results hold, up to a time rescaling

n(n—1)

- Choose time units so that w, =1 — =5

1



Probability of a genealogy

1
P(Tg,...,ﬁ):exp{—Q[7-6~7’7—|—6-5-7'6—|—

Each 7 is independent, with distribution Py (1) =



Coalescence and mutations

The probability of a mutation occurring is uniform per unit length of
the genealogy



Coalescence and mutations

- Assume mutation rate u per genome and generation, infinite
allele model

- Two individuals carry the same allele if they encounter no
mutation before their last common ancestor

- The probability of not having a mutation in a generation in a
lineage is 1 —u

- The probability that neither lineage exhibits a mutation is
(1 —w)?7(9) ~ exp (—2ur(i,§))

- Thus the probability that two individuals have the same allele is

1 oo
Psame — ﬁ /0 dr 672UT77/N

1 1
14+2uN  1+96




Ewens’ sampling formula

- Infinite-allele model

- Take n samples from a large population with § = 2Nu

- Samples belong to the same group if they exhibit the same
allele

- What is the probability that there are b; groups with 1 element,
by groups with 2 elements,... b, with k elements,... ?

14



Ewens’ sampling formula

n:Zkbk # of samples
k=1

P(by,. ..

7bn):

n! 1

QZk b

OO+ 1)+ (0 +mn—1)10 .20

oombn bylby! - by,

14



The Chinese Restaurant Process
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The Chinese Restaurant Process

At each step, when there are n customers:
- The customer sits at a new empty table with probability
8/(6 +n), or

- The customer picks up one of the customers at random and sits
at the same table



The Chinese Restaurant Process

- At each step, we get a factor 1/(0 +n) (n =0,1,...)

- Each new table gets a factor ¢

- In going from k to k + 1, each table gets a factor k

- Thus the probability that the (labeled) customers sit at ¢ tables,
i=1,...,00of size k;, Zle k; = n is given by

9! £
0@ +1)---(0+n—1)-

=

PR (ky, .. ke) =

(k; — 1)1

- There are n!/(ky!-- - ko!) distributions of the customers
compatible with (kq, ..., k), thus

n! ot

Pky,...,ke) =
(K1 ke) Eleo kel 004+1)---(0+n—1)

L
(k; — 1)!

=1




The Chinese Restaurant Process

- Labelling the tables has introduced an overcounting: only the
sizes of the tables matter! Thus defining

£
bj = Ok
i=1

we obtain

n! 6t 1 1
(0 +1)---(0+n—1)1b1...pdn  byl...p,!

Table permutations

P(by,... by) =



Observables

- Distribution of the number k of segregating alleles:

n 0
pr(n+1) = mpk(n)+9+ﬂpk 1(n)
0 — 1
AR ET) = M) - k) = AEm) + —
(0 4+ n)?
- Distribution of the number v of singletons:
0 v n—v
p(n+1) = mpy—l(n) + mpu+1(n) + mpu(n)

— nb
T o f0+n-—1

16



Observables
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Average k, variance Ak2 of segregating alleles and average v of
singletons vs. n for # = 3.1
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Observables
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Distribution p, of the number of singletons for n = 200 and 6 = 12.6,
together with the asymptotic distribution for n — co and simulation
data over 1000 samples
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Observables
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Distribution py of the number of segregating alleles for n = 300 and
6 = 3.1, together with simulation data averaged over 1000 samples
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Frequency spectrum

0.1
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Average number by, of groups of size k with n = 1000 and § = 3.5. The

average is taken over 3000 realizations of the process.
The line corresponds to by, = bje=%%/" /k, with by = nf/(0 +n — 1)



Effective population size N,

The effective population size N, can be different from the census
population N:
- In sexual populations, because only some males actually
reproduce(leks)
- Generally due to fluctuating population size:

- If fitness is nonuniform N, is reduced wrt N:

B N
1+ var(#offspring)

e



Effective population size N,

In practice, N, is chosen to fit the data:

- For several human genes, Tvrca = 400000 yrs
- One generation ~ 20 yrs
- Assuming neutrality, N. ~ 10000 (diploidy!)



The Coalescent with selection

19



The Coalescent in the presence of selection

BRUNET, DERRIDA et al., 2006-2012

oo Aall e B b

Neutral genealogy: N = 100, Tyirca = 125

20



The Coalescent in the presence of selection

BRUNET, DERRIDA et al., 2006-2012

i

Genealogy with selection: N = 100, Tyirca = 10

20



Coalescent models

A general coalescence model (A-coalescent):

- One starts with N points: in each interval of duration dt there is
a probability 7, dt for every subset of k points to coalesce into
one

- Then for some measure A one has

1
Tk :/ zF A(dx)
0

- Rate A\ at which & (2 < k < p) points out of p coalesce into one

is given by
1 p—k
_ k—2 -k o (p B k)' n
Ap.k —/0 2" (1 = 2)P7 A (dz) = ;:o: m(—l) Ttk

- rp(0) dt: probability of having ¢ lineages at time ¢ + dt if there
are p lineages at time t:

_ P!
rp(f) = l—-D(p—L+ 1)!’\“"“rl

21



Coalescent models

- The Kingman coalescent:
mg # 0 mm =0, Vk>2

- The Bolthausen-Sznitman coalescent:

2
k—1

T =

21



Selection models

BRUNET ET AL., 2006-2012

- Each individual has two potential offspring

- The fitness of each offspring is shifted by z wrt to the parent’s
one, with pdf p(z) (flat in the simulations)
- Selection modes:

- Perfect selection: The best N are retained

- Fuzzy selection: Random choice among the 3N/2 best

- Two-parent selection: Each individual chooses two parents, but
only the better one is kept

22



Selection models

T,: coalescence time for 2 lineages
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Selection models

BRUNET ET AL., 2006-2012

T,: coalescence time for p lineages

144 mr——— T T
1.42 - ./—é i
(my 1A0E :
T,y 138 F B i
1.36 Fuzzy selection —s— 7|
1.34 - Perfect selection —e—
132 | Two parent selection —a— |
1.30 - 4
1.28 - ]
1.26 -, o g
<T3) 1.24 w1 | I 1 1
(Tz) oo 10%10* 107 10?
N

- Kingman: (Ty) / (Ta) = 3/2; (I3) / (T2) = 4/3
- Bolthausen-Sznitman: (Ty) / (Ts) = 25/18; (T5) / (T2) = 5/4

22



Selection models

BRUNET ET AL., 2006-2012

Coalescence time scale: T, ~ log® N
Phenomenological theory

- The population looks like an advancing Kolmogorov-Fisher wave
in “fitness” space

- Most of the time its motion is deterministic

- At intervals ~ log® N exceptionally “adapted” individuals arise

- These individual “sweep” a finite fraction of the population in a
short time (multiple coalescence!)

- The distribution of the “sweep” sizes corresponds to the
Bolthausen-Sznitman coalescent

22



Recombination
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Thomas Hunt Morgan
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Recombination

- Recombination is a process leading to different assortments of
genetic materials in life forms undergoing sexual reproduction

- It takes place in meiosis via the exchange of DNA segments
between homologous chromosomes

Patemal Chromosome

} {/ Matemal Chromosome

¥ DNA replication Crossing Over
- -~ &%

Recombination between 2 homologous chromosomes

25



Linkage equilibrium

- Two loci, A and B, two alleles: A, a and B, b, random mating, no
selection

- Allele frequencies: z; (i € {A,a,B,b})
- Recombination does not change allele frequencies
- Change in genotype frequencies in one generation, e.g.:

z/AB: (1 —=7)zag + 7 zazp
N—— N——

no recombination  recombination

- Linkage Equilibrium: set z)g = zap

TAB = TATB

26



Linkage disequilibrium

- Deviation from equilibrium: xzag = xaxg + D, 2pp = zazH — D, €tC.
D = zppTap — TapTas
- After one round of mating, one has
D'=(1-r)D

- Thus D(t) = (1 — r)!Dg ~ e~ "t Dy
- Empirical measure of linkage disequilibrium (LD) (unfortunately
also denoted by r):

2
r? = 71)
TABLabTAbLaB

27



LD decay

LD r? vs. distance along the genome in Anopheles arabiensis
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MARSDEN ET AL. 2014

The recombination rate » between two loci increases (roughly
linearly) with the distance



Hitchhiking

Hitchhiking: Effect of positive selection of one allele at one locus
has on alleles at neighboring loci

- Two loci, two alleles: A, a and B, b
- Fitness table (haploid):

| B b
All+s 1+s
a |l 1

- Genotype frequency: z.5, o € {A,a}, 8 € {B,b}
- Allele frequency: z, = ZB TaB, L= Y, Tap
- Conditional allele frequency: £up = Zag/Ta
- Genotype frequencies (haploid) (forget about
dominance/recessivity!):
| B b
xaéag zaéab
TalaB  Talab

A
a
- Mean fitness: (w) = 1 + xas

29



Hitchhiking

- Evolution equation for za: ), = za(1+ 8)/(1 + zas) =
za(t) = za(0)(1 + 8)'/(1 — za(0)(1 — (1 + 5)"))
- Evolution equation for xpg:
(1+ za8)?2hg = (14 ) [zag(1 + 2a8) + 7 (TaTap — TaZas)]
- Evolution equation for zap:
(1 + 2a8)%2h5 = (1 + 2a8)2a + (1 + 5) (TaZas — TaTas)
- This implies
Enp — Eap = (1 — 1) (éns — &)
- Assume that initially &4 = 0, i.e., that A originatesina b
background, then when A is fixated, we have
= (1—r)t

&ap(00) = 7£38(0)(1 — xa(0)) 1= 2a(0) + 2a(0) (1 1 5)+1

t

29



Hitchhiking

10

0.8

Heterozygosity
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Heterozygosity 4xg(oo)xp(o0) as a function of r/s for s = 0.1,
x3(0) = 0.5 and z(0) = 10~
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Genetic draft

- Which allele hitchhikes on an advantageous allele going to
fixation is “chosen” at random

- This introduces an additional random factor called Genetic draft

- Assume r = 0 (for simplicity) and an initial frequency zg(0) = p

- Then xg = 1 with probability p and 0 with prob. 1 —p

- We have of course (zg) (00) = p, {(AzZ(c0)) = p(1 — p)

- If the “sweep” takes place with prob. p we have the same
average, but (Az3(c0)) = pp(1 — p)

- This is reminiscent of neutral drift, with effective population
N.=1/2p

30



Genetic draft

- Assume fixation takes place in a time short wrt the time
between fixations

- Then successive sweeps are independent (Bernoulli) and
fixation times are Poissonian

- Recombination: mutation arises in a single copy of the genome,
that eventually reaches frequency y

- Then we have

D, with probability 1 — p no sweep
xg(c0) = ¢ p(1 —y) +y, with probability pp
p(1—1), with probability p(1 — p)

- These effects tend to increase variability, i.e., to reduce the
effective population size
- For large population, genetic draft dominates: the effective
population size due to draft is given by
N

No=———
© 1+2Np(y?) 30



Recombination and Epistasis

- Deviations from linkage equilibrium arise due to selective
effects involving two (or more) loci
- Set,eg, o0 =41, 05 =—1, 08 = +1, op = 1, and assume wqgp
has the form
Wap = fo+ fa0a + f308 + fapoaos
——
epistasis
- Then selection introduces correlations between loci

- Define
R _ Ty T——

ZL’+,£L',+
then one can show that

<’LU> AIOgR = 4f12 - T‘(R - ].)]‘I7

where

H— T W4T 4 W_4 Z L
- 2

<w> Ta0p3 xaﬁ

31



Recombination and Epistasis

- If 0 < fi12 < r R will reach values close to 1 very quickly, and
then evolve slowly on the scale of fi2

- If R~ 1then H ~ 1 and we obtain a quasi-stationary state with

R~1+ fz
,
- This state has been called Quasi-linkage equilibrium

- It has been generalized to many interacting loci by Neher and
Shraiman

31



Thank you!
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