
1. Problems for Maldacena’s lectures

1.1. Problem 1

a) Consider the SYK model at large temperatures, on a small thermal circle with

length β, such that βJ � 1. Using perturbation theory compute the first correction to the

free energy. What is the first non-zero power of (βJ) that appears? This can be computed

from the path integral point of view, by inserting a couple of interaction terms.

b) Compare the answer to what you would get by using the following other method.

Compute

J∂J logZ =
J2

q
β

∫ β

0

dτG(τ)q (1.1)

and then use the free expression for G(τ) = 1
2 sign(τ), to obtain the first order correction.

1.2. Problem 2

Given a solution G(τ), or G(t1, t2), we would like to be able to read off the energy.

Prove that the energy is proportional to

E ∝ lim
t1→t+2

[∂t1G(t1, t2)] (1.2)

and find the proportionality constant. Hint: Express the derivative ψ̇i ∝ [H,ψi], compute

the commutator, insert it into ψ̇iψi and see what you get.

Is this an approximate equation or is it exact ? What correlator should you use in

order for this equation to be exact (one of the fermions, sum over all fermions)?

1.3. Problem 3

Consider the Schwarzian action

S ∝ −
∫
dt{f(t), t} , {f(t), t} =

f ′′′

f ′
− 3

2

f ′′2

f ′2
(1.3)

a) It is invariant under the infinitesimal transformation, f → f + c with a very small

c. Find the associated conserved charge. You can use Noether’s procedure. If you have

time, you can also find the charges for the infinitesimal transformations f → f + γf and

f → f + σf2. The finite form of these symmetries is f → af+b
cf+d , with ad− bc = 1.

b) It is also invariant under time translations, t → t + α. Compute the associated

conserved energy.

You can find the most general solution of the equations of motion for (1.3)?. You

can try by brute force, or you can use the above symmetries to first start form a simple

solution and act with the above symmetries.
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1.4. Problem 4

Define f(t) = tan ϕ(τ)
2 and find the action for ϕ, by computing {f(t), t} = {tan ϕ(t)

2 , t}.

You might find it useful to derive a “chain” rule for the schwarzian {f(g(t)), t} = {f, g}g′2+

{g, t}.

1.5. Problem 5

Consider the reparametrized expression for the correlator

Gf (t1, t2) =

[
f ′(t1)f ′(t2)

(f(t1)− f(t2))2

]∆

(1.4)

Expand t1 around t2 and look at the first term that depends on f . You will find that this

term is related to the energy in the Schwarzian approximation. Is this related to problem

2?

Can you think of this limit as an OPE ?

What is the two point function of two energy insertions. Could these possibly depend

on their time separation ? Do they behave as a stress tensor with dimension ∆ = 2 ?

1.6. Problem 6

Consider AdS2 (or H2) in terms of embedding coordinates YM living in R2,1 with the

constraint −Y 2
−1 − Y 2

0 + Y 2
1 = −1.

Understand the changes of coordinates from Poincare, to Rindler and global coordi-

nates where the metric is

ds2 =
−dt2 + dz2

z2
, ds2 = −dτ2 sinh2 ρ+ dρ2 , ds2 = −dτ̃2 cosh2 ρ̃+ dρ̃2 (1.5)

respectively. One way to do it is to identify the isometry with the right properties. For

example, shifts in τ̃ correspond to rotations in the (-1)0 plane of R2,1, and then write the

YM in terms of each of the sets of coordinates. Plot the Penrose diagram and regions

covered by each of the coordinates.

Understand the change of coordinates near the boundary of the space.
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1.7. Problem 7

a) Consider a geodesic in AdS2. Show that the trajectory of the particle is given by

Y.a = 0 where a is constant vector. You can argue this by consider a particular geodesic

and then performing general SL(2) transformations. Define by QM the SL(2) charges of

this particle. Show that a ∝ Q. This should be simplest for a geodesic near the origin.

b) Show that the general solution of a particle in an electric field moving in AdS2 is

given by Y.Q =constant. You could argue by first finding particular solutions and then

SL(2) transforming them by the symmetries to general solutions. Here Q are the SL(2)

charges of the particle. There is a point in AdS2 which lies at the tip of the causally

accessible wedge from this particle trajectory. Find its location in terms of QM .

c) Now consider a system with two boundary particles (which that behave as particles

in an electric field) and then some matter in the middle. Use the equation QML + qMmatt +

QMR = 0 to find a configuration where we have matter at rest at the center of AdS2, with

some energy, and then the two boundary particles. Check that the causal wedges of the

two boundary trajectories do not overlap. What property of matter ensures that they do

not overlap ?

1.8. Problem 8

Find the expression for the entropy as a function of the temperature for a charged

black hole (you can do it in 4d or any dimension) and expand it around extremality (you

can find the solution on the web). Did you get a term proportional to the temperature ?.

Find the coefficient of the Schwarzian action in terms of the parameters of the black hole

(the charge, the Netwon’s constant, etc.)
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