
Monte Carlo:

Techniques and Theory

Ronald Kleiss1

IMAPP, Radboud University of Nijmegen

version of February 7, 2019

John von Neumann
the other godfather

Stanislav Ulam
the other godfather

Nick Metropolis
the other godfather

‘We guarantee that each number
is random

individually, but we don’t
guarantee that more than one of them

is random’
Unnamed programming consultant quoted in [1]

1R.Kleiss@science.ru.nl

1

Contents

1 Introduction: randomness and probability 11
1.1 Protohistory . 11
1.2 Random number streamsRandom numbers!stream 11

1.2.1 Random numbers: circulus in probando 11
1.2.2 What is a random stream? Relying on probability . . . 11
1.2.3 What is probability? Relying on a random stream . . . 12
1.2.4 A difference between physics and mathematics 12

1.3 Miscellaneous probability items 12
1.3.1 Some notation in these notes 12
1.3.2 Moments and characteristic function 13
1.3.3 The Chebyshev-Bienaymé inequality 13
1.3.4 The Central Limit Theorem 14

2 Monte Carlo integration 16
2.1 The Monte Carlo idea . 16

2.1.1 Point sets and expectation values 16
2.1.2 Integration as archetype 16
2.1.3 Point sets, ensembles, and the Leap Of Faith 17

2.2 Finding estimators . 17
2.2.1 Direct sums, unequal-sums, and expectation values . . 17
2.2.2 The Monte Carlo estimators 18
2.2.3 Positivity of E2 and E4 19

2.3 Estimating in practice . 20
2.3.1 Improved estimators 20
2.3.2 Numerical stability; the extended CGL algorithm . . . 20
2.3.3 How to do Monte Carlo integration 21
2.3.4 How to report Monte Carlo integration 22
2.3.5 How to interpret Monte Carlo integration 22

2.4 A test case . 23
2.5 Exercises . 26

3 Random number generation 28
3.1 Introduction to random number sources 28

3.1.1 Natural vs Pseudo . 28
3.2 Pseudo-random number streams 29

3.2.1 The structure of pseudo-random number algorithms . . 29

2

3.2.2 The set of all algorithms 30
3.2.3 The concept of an arbitrary algorithm 30
3.2.4 Lessons from random algorithms 31
3.2.5 Shift-register PRNGs 32

3.3 Bad and good algorithms . 32
3.3.1 Bad: the midsquare algorithm 32
3.3.2 Bad: the chaos approach and the logistic map 34
3.3.3 Maybe not so bad: linear congruential methods 35
3.3.4 Horrible: RANDU, and a possible redemption 37
3.3.5 Good: RCARRY and RANLUX 37
3.3.6 Good: the Mersenne Twister 39

3.4 Exercises . 41

4 Testing PRNGs 43
4.1 Empirical testing strategies and doubts 43

4.1.1 The Leeb Conundrum: too much of a good thing . . . 43
4.1.2 Any test is a uniformity test 44
4.1.3 The χ2 characteristic 44

4.2 Theoretical testing strategies 45
4.2.1 The number-to-number correlation 45
4.2.2 The spectral test . 45

5 Quasi-Monte Carlo 46
5.1 Generalities of QMC . 46

5.1.1 The New Leap of Faith 46
5.1.2 The mechanism of error improvement 47

5.2 Error estimators . 48
5.2.1 The first-order estimate 48
5.2.2 The second-order estimate 48
5.2.3 Payback time: Lack of Leap of Faith is Punished . . . 48

6 Nonuniformity of point sets 49
6.1 Measures of nonuniformity: Discrepancy 49

6.1.1 The star discrepancy 49
6.1.2 Random vs Regular: Translation vs Rotation 50
6.1.3 The Roth bound . 51
6.1.4 The Koksma-Hlawka inequality 51
6.1.5 The Wiener measure and the Woźniakowski Lemma . . 51

3

6.2 Measures of nonuniformity: Diaphony 53
6.2.1 Fourier problem classes 53
6.2.2 Fourier diaphony . 54
6.2.3 Choosing your strengths: examples of diaphony 55

6.3 QFT for diaphony . 56
6.3.1 The distribution of diaphony 56
6.3.2 Feynman rules for diaphony in the large-N limit 57
6.3.3 Collecting bracelets . 58
6.3.4 The diaphony distribution for large N 60
6.3.5 The saddle-point approximation 61
6.3.6 1/N corrections to the diaphony distribution 62
6.3.7 The two-point function 63
6.3.8 Testing too much: the Dirac limit 65

6.4 Measures of nonuniformity: χ2 66
6.4.1 The χ2 as a discrepancy 66
6.4.2 Large-N results for χ2 67
6.4.3 Two-point function and 1/N corrections for χ2 68

7 Superuniform point sets 70
7.1 Fixed point sets vs streams . 70

7.1.1 Diaphony minimisation 70
7.1.2 Korobov sequences: good lattice points 71

7.2 QRNG algorithms . 72
7.2.1 Richtmeyer-Kronecker streams 72
7.2.2 Excursion into fractions (cont’d) 73
7.2.3 Rational approximations to irrationals 74
7.2.4 Almost-equidistancy for Richtmeyer sequences 75
7.2.5 van der Corput streams 76
7.2.6 Van der Corput sequences in more dimensions 78
7.2.7 Niederreiter streams 80

8 Variance reduction 81
8.1 Stratified sampling . 81

8.1.1 General strategy . 81
8.1.2 An example: VEGAS . 81
8.1.3 An example: PARNI . 81

8.2 Importance sampling . 81
8.2.1 General strategy . 81

4

8.2.2 Multichanneling . 81

9 Non-uniform PRNGs 82
9.1 The Art of Transforming, Rejecting, and Being Smart 82
9.2 The UA formalism . 82

9.2.1 Unitary algorithms as words and as pseudocode 82
9.2.2 Inversion of variates in UA 84
9.2.3 Rejection of variates in UA 85

9.3 Repertoire and the Rule of Nifty 87
9.3.1 Building up a repertoire 87
9.3.2 The normal distribution: the Box-Müller algorithm . . 88
9.3.3 The Euler algorithm 89
9.3.4 The Kinderman-Monahan algorithm 91

9.4 Random-walk algorithms . 92
9.4.1 The Metropolis algorithm 93
9.4.2 An elementary case study for Metropolis 95
9.4.3 Applications of the Metropolis algorithm 96
9.4.4 Gibbs sampling . 97
9.4.5 An elementary case study for Gibbs 98

10 Phase space algorithms for particle physics 100
10.1 The uniform phase space problem in particle phenomenology . 100
10.2 Two-body phase space . 100

10.2.1 The two-body algorithm 100
10.2.2 Two-body reduction 101

10.3 The relativistic problem . 102
10.3.1 Two-body reduction algorithm 102
10.3.2 Massless RAMBO . 103
10.3.3 Inclusion of masses . 105

10.4 Nonrelativistic phase space: BOLTZ 107

11 Appendices 110
11.0.1 Falling powers . 110
11.0.2 Relations between direct sums and unequal-sums . . . 111
11.0.3 An exponential sum and the Poisson formula 111
11.0.4 About the integral (40) 112
11.0.5 Selfies . 112
11.0.6 Serial correlation in a real-number model 113

5

11.0.7 The two-point function for the Euler diaphony 114
11.0.8 Rational denominators for continued fractions 114

List of Algorithms

1 Extended CGL algorithm for numerically safe updating of run-
ning Monte Carlo estimators 22

2 The RCARRY algorithm using a cyclic register. 38
3 The two major steps of the MT algorithm. 41
4 The van der Corput transform φb(n) 77
5 The Box-Müller algorithm . 89
6 The Euler density with parameters p1, p2, . . . , pn 90
7 Generating the Cauchy density by ratio of uniforms 92
8 Two-body phase space with masses m1,2 and total invariant

energy
√
s > m1 +m2 . 101

9 Lorentz boost from P µ, with P 2 = s, at rest to given form,
applied on vector pµ. The resultant vector is qµ. 101

10 The Platzer algorithm for n ≥ 3 103
11 The RAMBO algorithm for n momenta with total invariant mass

squared s . 105
12 Lorentz boost from P µ, with P 2 = s, to rest from given form,

applied on vector pµ. The resultant vector is qµ. 105
13 Giving masses to massless momenta 106
14 The BOLTZ algorithm for total energy U and masses m1,2,...,n . 108

6

The Buffon fragment

What follows is translated from the
‘Buffon fragment’, clay tablet in Akka-
dian discovered at the site of Jebel-i-
Qurul, most likely the library of the
temple precinct of the deity Nisaba,
which contained a school of the tupsar
enuma Anu Enlil scribes, who spe-
cialized in astronomy and astrology1;
believed to be based on an earlier Su-
merian original, primarily because of
the reference to absu. Several schol-
ars2, however, maintain that this frag-
ment is a forgery.

The main text

Master: Inside the lowly reedstalks!
thou mayest find, O my disciple, the
secret [of] the temple’s column ; yea,
verily, the secret of its girth to its
width3, from the river’s reeds! To
penetrate [the secret], to gain the col-
umn’s wisdom, thou shalt go to the
water’s edge to gather reeds and bring
them together, yea, even as many as
thou canst gather; and [thou] shalt
cut [them], so that none shall sur-
pass the others, nor one be less than
any4; and thou shalt also take clay

1 A.L. Oppenheim, Ancient Mesopota-
mia (univ. of Chicago Press, 1977), p242.

2 see, for instance, von Däniken’s refer-
ence to the Book of Dzyan (1968).

3i.e. the value of π
4.i.e. cut them to precisely the same

length

from the water’s edge, even as much
as thou canst gather, [and] bring it to
the scribe’s apprentice. And [the scri-
be’s apprentice] shall shape thereof [a
tablet of] two cubits; and [the scribe’s
apprentice] shall draw many [lines on
the tablet] so that none approach nor
separate; and the empty space5 be-
tween [the lines] shall be as one reed-
[stalk], so that it neither crosses [them],
nor shall it fall short: but the reed
will be like unto a bridge from one
line to another6. Thou shalt empty
thy mind of all [thought], [thou shalt]
void thy spirit of all purpose; and thou
shalt throw [the stalks] down onto the
tablet, yea, and scatter them, even
like unto chaff that is scattered by the
wind [on the] threshing floor7. And
the reeds that cross [a line], those thou
shalt gather together in thy hands,
but the reeds that do not cross thou
shalt not [gather together]. And the
multitude in the number of the reeds
in thy hands8, thou shalt [take] anew9.
And behold! it is as the column, yea,
even as the girth of the column to its
width [...]
Disciple: O my master, if I [perform]
this task, and my brother [performs]

5literally, ‘absu’ i.e. the watery abyss
6 i.e. draw parallel lines at a distance of

precisely one stalk’s length
7i.e. throw the reedstalks at random,

with no preconcieved pattern
8i.e. the the total number of stalks di-

vided by the number of retained stalks
9i.e. multiply by two

7

this task, and all my brethren [per-
form] this task, shall [we] not then
[approach] closer to the secret of the
temple [’s column]?
Master: Verily, thou speakest [with]
wisdom, O my [disciple]; for as a sin-
gle stalk leadeth not towards knowl-
edge, and giveth not the secret; so
many [stalks] shall reveal much of [the
secret]. Yet lo! the secret is revealed
ever more slowly to the diligent [...]10

Analysis of the prescription

We assume that the stalks are straight
lines of unit length; likwise the lines
on the tablet are parallel straight lines
with unit separation. Consider a reed-
stalk that makes an angle φ with re-
spect to the parallels. Its projection
orthogonal to the parallels then has
length sin(φ). Supposing that the dis-
tribution of the stalks over the tablet
is translationally invariant, this gives
the probability that the given stalk
will intersect one of the lines: note
that this relies on the fact that the
tablet be large enough to contain all
the thrown stalks, hence the reference
to ‘two cubits’11. The procedure re-
quires throwing the stalks with ran-

10A reference to 1/
√
N convergence?

11The mesopotamian cubit is about
51.86 cm, from the specimen discovered
by E. Unger at Nippur (Acta praehis-
torica et archaeologica Vol 7. Berliner
Gesellschaft für Anthropologie, Ethnologie
und Urgeschichte, Hessling Verlag, 1976).

domly chosen orientation, that is, φ
is a random variable distributed uni-
formly between 0 and π (note that
φ → φ + π gives the same situation,
except for a change in the stalk’s ori-
entation which is irrelevant). The ex-
pected probability for a given stalk to
cross one of the parallels is therefore

〈φ〉 =
1

π

π∫
0

sin(φ) dφ =
2

π
,

so that we arrive at

π =
2

〈φ〉
.

The expected probability is measured
by using many stalks and estimating
〈φ〉 by the value of x, where

x =
no. of stalks crossing a line

total number of stalks
,

which proves the validity of the algo-
rithm. The estimate for 〈φ〉 improves
with increasing number of stalks, as
suggested by the disciple’s question.
On the other hand, as indicated by
the master, the convergence to the ex-
tact answer is only asymptotic. The
expected error in the estimate after N
stalks have been thrown can be com-
puted to be

|x− 〈φ〉 | ≈

√√√√ 2
π

(
1− 2

π

)
N

≈ 0.481√
N

.

8

To obtain an accuracy of 2 decimal
digits (i.e. to get π ≈ 3.14) one would
need about 23,000 stalks, which may
explain ‘as many as thou canst gather’.
To obtain the next digit would neces-
sitate the use of 2.3 million stalks.

The fragment breaks of in the middle
of the disciple’s exclamation: ”Woe is
me! The reeds are a heavy [burden], a
terrible multitude, an angry host [...]”

9

An early scientific application Monte Carlo

Lord Kelvin reports [2] on an early Monte Carlo method for simulating the
motion of a particle in a volume with roughened edges, in order to examine
the equidistribution of energy:

‘[· · ·] I have evaded the difficulty in a manner thoroughly suitable for
thermodynamic application such as the kinetic theory of gases. I arranged
to draw lots for out of the 199 points dividing AB into 200 equal parts. This
was done by taking 100 cards∗, 0, 1 98, 99, to represent distances from
the middle point, and, by the toss of a coin, determining on which side of the
middle point it was to be (plus or minus for head or tail, frequently changed
to avoid possibility of error by bias). The draw for one of the hundred num-
bers (0 99) was taken after very thorough shuffling of the cards in each
case [· · ·]’

The footnote reads:
∗ ‘I had tried numbered billets (small squares of paper) drawn from a bowl,

but found this very unsatisfactory. The best mixing we could make in the
bowl seemed to be quite insufficient to secure equal chances for all the billets.
Full sized cards like ordinary playing-cards, well shuffled, seemed to give a
very fairly equal chance to every card. Even with the full-sized cards, electric
attraction sometimes intervenes and causes two of them to stick together. In
using one’s fingers to mix dry billets of card, or of paper, in a bowl, very
considerable disturbance may be expected from electrification.’

10

1 Introduction: randomness and probability

1.1 Protohistory

Monte Carlo methods are those numerical approaches to any problem in
which at least one random number is used to obtain an outcome. The idea
is not new, see for instance [2]. It came to fruitition with the advent of
computers in the 1940’s, mainly under the influence of WW2 efforts [3, 4].
One may distinguish Monte Carlo integration (of functions) and Monte Carlo
simulation (of processes). Formally these amount to the same.

1.2 Random number streamsRandom numbers!stream

1.2.1 Random numbers: circulus in probando

The concept of what constitutes a set of random numbers is surprisingly
tenuous. Any given set of numbers can be subjected to exhaustive analysis
and so be ‘shown’ to be not ‘fortuitous’ but ‘determined’12. Therefore, a
‘true’ set of random numbers should be considered rather as a stream of
numbers, like a tap that can be turned on and, maybe very much later on,
be turned off, or left running indefinitely. The idea is that it need never stop,
and the collection of numbers can in principle grow without limit.

ℵ Notions of randomness as ‘computational complex-

ity’ and ’Kolmogorov complexity’ are essentially de-

fined for finite sets.

1.2.2 What is a random stream? Relying on probability

The (to my mind) most operationally useful definition of ‘truly random num-
bers’ resides in the following description: a stream of numbers is random if,
after observing N numbers being produced, you will not be able to arrive at
a prediction of the (N + 1)th number to better than that given by its prob-
ability (for discrete random numbers), or to a prediction of its falling inside
a certain interval better than given by its probability density (for continuous
random numbers). That is, ‘you cannot beat the house’.

12See, e.g. Signor Aglié’s discussion of the dimensions of a newspaper stand in U. Eco,
Il Pendolo di Foucault. Another example is the discovery of Dr. Irving Joshua Matrix
that the decimals of π, correctly interpreted, contain the complete history of the human
race (as reported in an interview by Martin Gardner).

11

ℵ All definitions of random streams follow this ap-

proach if you study them closely. It ultimately leads

to the frequentist interpretation of probability.

1.2.3 What is probability? Relying on a random stream

The (to my mind) most operationally useful definition of ‘probability’ resides
in the following description: given a stream of truly random numbers it
may be possible, after observing N numbers being produced, to determine
probabilities, that is, the fraction of numbers that attain a certain value
(for discrete random numbers), or the fraction of numbers ending up inside
a predetermined interval (for continuous random numbers). That is, ‘the
house will not beat you’, an act of faith that can only be vindicated once
N =∞ has been reached and we are all dead.

ℵ This is the frequentist interpretation. Among other

ones are the propensity interpretation, which is unten-

able without becoming frequentist, and the Bayesian,

that rather describes a methodology for obtaining the

probabilities.

1.2.4 A difference between physics and mathematics

The above notions of randomness and probability are circular and based on
an operational picture of computational practice. The mathematical branch
of probability theory, on the other hand (based on σ-algebra’s and measures),
is rigorous, but while it describes what you can do with probabilities, it never
asks the question of what probability means.

ℵ The meaning of meaning is not mathematics.

1.3 Miscellaneous probability items

1.3.1 Some notation in these notes

When sums or integrals are given without limits they are understood to run
over all applicable real values (from minus to plus infinity).

Probability will always refer to a probability density, never to the (cumu-
lative) probability distribution beloved by mathematicians. This is because
the notion of density is defined in any dimension, and distribution is not.

12

The logical step function θ(A) has for its argument a statement. θ(A)
equals 1 if A is true, and 0 if A is false. If a and b are integers, θ(a = b) is
the Kronecker delta.

The ‘falling power’Nk is defined asN !/(N−k)! = N(N−1) · · · (N−k+1).

1.3.2 Moments and characteristic function

Given a probability density P (x) with support Γ we define the expectation
value of a function ϕ(x) by

〈ϕ〉P ≡
∫
Γ

dx P (x) ϕ(x) ; (1)

this is exactly what probability means13. The subscript P is left out when
no confusion can arise. For a one-dimensional density P (x), we define the

kth moment as
〈
xk
〉
. Useful notions are

the mean : 〈x〉 ,

the variance : σ(x)2 ≡
〈
x2
〉
− 〈x〉2 ,

the characteristic function : χ(z) = χP (z) = 〈exp(izx)〉 . (2)

The last is defined if all moments are finite. σ(x) is called the standard
deviation. Obviously, χ(0) = 1, χ′(0) = i 〈x〉, χ′′(0) = −〈x2〉, and

P (y) =
1

2π

∫
dz χP (z) e−izy . (3)

ℵ In the following we will generally assume that all

moments exist.

1.3.3 The Chebyshev-Bienaymé inequality

Consider a (one-dimensional) probability density P (x) with finite mean 〈x〉 =
m and variance. Then, for any a > 0,

σ(x)2 =
∫

dx P (x) (x−m)2 ≥
∫

|x−m|>a

dx P (x) (x−m)2

≥
∫

|x−m|>a

dx P (x) a2 = a2 Prob (|x−m| > a) . (4)

13In the frequentist sense.

13

We see that the probability for x to fall further from its mean than k times
its standard deviation σ(x) is always less than 1/k2. Since the estimated
variance, E2, decreases as 1/N this theorem guarantees that Monte Carlo
integration converges as long as the finiteness of 〈E2〉 is established with
some confidence.

ℵ In the sense of this theorem, the probability density

P (x) ∝ θ(|x−m| ≥ σ)

(
σ

|x−m|

)2+ε

where ε is finite but as small as you like, is the widest

possible density.

1.3.4 The Central Limit Theorem

Let the real numbers x1,2,...,n be iid random with density P (x), and we assume

that all the moments are finite. We denote m = 〈xj〉, σ =
√
σ(xj)2. Then,

ξ =
1

n

n∑
j=1

xj (5)

is also a random variate, with density Pn(ξ). Its characteristic function is

χPn(z) = 〈exp(izξ)〉 =
n∏
j=1

〈exp(izx/n)〉 = χP (z/n)n , (6)

where χP (z) is the characteristic function of the xj. We can approximate,
for large n,

log(χPn(z)) = n log(χP (z/n))

= n log
(
1 + iz 〈x〉 /n− z2

〈
x2
〉
/2n2 +O

(
1/n3

))
= izm− z2σ2/2n+O

(
1/n2

)
. (7)

Thus, for large n, we have approximately

Pn(ξ) ≈ 1

2π

∫
dz exp

(
iz(m− ξ)− z2σ2

2n

)

=

√
n

2πσ2
exp

(
−n(ξ −m)2

2σ2

)
(8)

14

This is the simplest version of the Central Limit Theorem: the distribution of
the average of n iid14 random numbers with mean m and standard deviation
σ approaches a Gaussian with mean m and standard deviation σ/

√
n.

ℵ This relies on the finiteness of the moments. A

counterexample is the density P (x) = (1 + x2)−1/π

for which Pn(ξ) = P (ξ) for any n. Note, however,

that in that case even the mean is not well defined,

and the variance is not finite.

14Independent, identically distributed.

15

2 Monte Carlo integration

2.1 The Monte Carlo idea

2.1.1 Point sets and expectation values

In standard Monte Carlo integration15 the random numbers x are assumed
to be iid with a probability density P (x) that has support Γ. The integrand
is f(x), and the weight w(x) is given by

w(x) = f(x)/P (x) . (9)

The weights w are also iid. The expectation values Jn are given by

Jn = 〈w〉P =
∫
Γ

dx P (x) w(x)n , (10)

and therefore J0 = 1 and

J1 =
∫
Γ

dx f(x) , (11)

which is the sought-after integral.

2.1.2 Integration as archetype

In a sense any Monte Carlo calculation, that is any calculation the outcome
of which depends on at least one random number is an integration. Because
if the outcome R of a calculation depends on N ≥ 1 random numbers,
R = F(x1,x2, . . . ,xN), then its expected value is nothing but an integral,

〈R〉 =
∫
dy1 · · · dyN P (y1) · · ·P (yN) F(y1, . . . ,yN) . (12)

It is therefore sensible to concentrate on Monte Carlo integration.

ℵ This is strictly formal; any serious Monte Carlo

simulation easily employs many millions of random

numbers, and its numerical result is therefore a

multimillion-dimensional integral. Nevertheless the

above point of view is useful to keep in mind.
15As opposed to Quasi-Monte Carlo.

16

2.1.3 Point sets, ensembles, and the Leap Of Faith

In the Monte Carlo approach we employ a point set X consisting of N points
xj: X = {x1,x2, . . . ,xN} where the x’s are sampled from the distribution
P (x). An individual point xj is called an event , and wj ≡ w(xj) is called
the corresponding event weight. Given X we can compute

Sk = Sk(X) =
N∑
j=1

wj =
N∑
j=1

w(xj)
k (k = 0, 1, 2, 3, 4) . (13)

Given the notion of a stream of random numbers, we envisage a great number
(→ ∞) of point sets X: the ensemble of point sets. Averaging over the
random numbers is averaging over the ensemble, which is defined by the
combined probability density it imposes on the points. For instance, for
point sets defined on the d-dimensional hypercube Id = (0, 1)d it is simply

P (x1,x2, . . . ,xN) = 1 . (14)

This immediately shows the uniformity and the iid property. An important
thing to remember is that in any calculation we assume that X is a ‘typi-
cal’ member of the ensemble, and that therefore the ensemble averages are
meaningful for the given point set. This is the Leap of Faith.

ℵ The Leap of Faith can, and if possible should, be

vindicated by repeating a computation with a different

point set, obtained by either taking a different part of

the generated random number stream, or switching to

another random number generator.

2.2 Finding estimators

2.2.1 Direct sums, unequal-sums, and expectation values

We consider N iid random numbers wj (j = 1, 2, . . . , N) with expectation
values 〈

wj
k
〉
≡ Jk . (15)

We define the direct sum Sm (m = 0, 1, 2, . . .) as

Sm =
N∑
j=1

(wj)
m : (16)

17

these sums are computable in linear time, O (N). S0 is simply equal to N .
The unequal-sums Sm1,m2,...,mk

are defined as

Sm1,m2,...,mk
=

N∑
j1,j2,...,jk=1

(wj1)
m1(wj2)

m2 · · · (wjk)mk (17)

with the constraint that the indices j1, . . . , jk are all different from one
another. The unequal-sum Sm1,m2,...,mk

therefore contains Nk terms. Its

straightforward computation takes time O
(
Nk
)
. By the iid assumption we

have
〈Sm〉 = N Jm , 〈Sm1,m2,...,mk

〉 = Nk Jm1Jm2 · · · Jmk
. (18)

The falling powers Nk are discussed in appendix 11.0.1. We can relate prod-
ucts of direct sums to combinations of unequal-sums by the following rule:

Sm1,m2,...,mk
Sp = Sm1+p,m2,...,mk

+ Sm1,m2+p,...,mk
+ · · ·

· · ·+ Sm1,m2,...,mk+p + Sm1,m2,...,mk,p . (19)

Explicit relations are given in appendix 11.0.2.

ℵ This provides a way to evaluate unequal-sums in

linear time, and a way to find expectation values of

nonlinear combinations of sums. Conversely, we can

find the combination of direct sums that has a given

expectation value.

2.2.2 The Monte Carlo estimators

Using the direct sums Sk we define three Monte Carlo estimators :

E1 =
1

N
S1 ,

E2 =
1

NN2

(
NS2 − S1

2
)
,

E4 =
N2

N3N4

(
NS4 − 4S3S1 + 3S2

2
)

+
1

N4

(
2

N2N2
− 4

N3

) (
NS2 − S1

2
)2

. (20)

Since the point set X is an element of the ensemble of point sets, the numbers
E1,2,4 are also (one-dimensional) random numbers with their own mean and

18

variance16. Using 11.0.2 we can prove

〈E1〉 = J1 ,

〈E2〉 = σ(E1)2 =
1

N

(
J2 − J1

2
)
,

〈E4〉 = σ(E2)2 =
1

N3

(
J4 − 4J3J1 + 3J2

2
)

+
(

2

N2N2
− 4

N3

) (
J2 − J1

2
)2

. (21)

We see that (in an ensemble sense) 〈E1〉 is the desired integral J1. E2 informs
about the ensemble variance in the probability density of E1 values, and it
has its own ensemble variance, estimated by E4. Note that 〈E2〉 <∞ if the
integrand is quadratically integrable, but 〈E4〉 < ∞ only if the integrand is
quartically integrable.

ℵ There is also an E8 with 〈E8〉 = σ(E4)2, and so on.

These ever more complicated estimators are not very

relevant. E1 and E2 are well known, and E4 deserves

to be.

2.2.3 Positivity of E2 and E4

In the Monte Carlo integral we have 〈w(x)〉 = J1. Now write u(x) = w(x)−
J1. Then we have

J2 − J1
2 =

∫
dx P (x) u(x)2 ,

J4 − 4J3J1 + 3J2
2 − 4

(
J2 − J1

2
)2

=

1

2

∫
dx dy P (x)P (y)

(
u(x)2 − u(y)2

)2

(22)

so both E2 and E4 have positive expectation value17. For a given X, define
uj = w(xj)− J1. Then

NS2 − S1
2 =

1

2

N∑
j,k=1

(uj − uk)2 ≥ 0 . (23)

16In the sense that every new chosen point set X yields its own values for E1,2,4.
17As they should!

19

So the estimator E2 will always result in a positive number18. However,
suppose that wj only takes the values 0 and 1, so that Sk = Nb for all
k > 0, where 0 < b < 1. Then, E4 evaluates to a negative number if
b(1 − b) > 1/4 − (N − 2)/2N(4N − 6), so E4 cannot be guaranteed to be
nonnegative. On the other hand,

N2
(
NS4 − 4S3S1 + 3S2

2
)
− 4

(
NS2 − S1

2
)2

=
N2

2

N∑
j,k=1

(
uj

2 − uk2
)2
≥ 0 .

(24)
This suggests a slight modification of the estimators E2,4.

2.3 Estimating in practice

2.3.1 Improved estimators

We can use the following ‘improved’ estimators:

E1 =
1

N
S1 ,

Ê2 =
1

N3

(
NS2 − S1

2
)
,

Ê4 =
1

N7

(
N2

(
NS4 − 4S3S1 + 3S2

2
)
− 4

(
NS2 − S1

2
)2
)

. (25)

These are equal to the exact ones up to 1/N corrections, and are nonnegative
by construction.

ℵ Since in any serious calculation N is of the order

of at least a few thousand, a 1/N correction in uncer-

tainty estimates is not a big deal.

2.3.2 Numerical stability; the extended CGL algorithm

Computing E2,4 involves large cancellations. Even E2 can almost never be
computed using single precision if Eq.(25) is used19. The following algorithm
avoids this. Suppose n− 1 random numbers have been used already, and the
contribution wn of the nth is applied. Define

Uk(n) =
1

n

n∑
j=1

wj
k (26)

18Barring numerical accidents.
19This is really true, as anyone who tried it seriously will testify.

20

and

M(n) = U1(n) ,

P (n) = U2(n)− U1(n)2 ,

Q(n) = U3(n)− 3U2(n)U1(n) + 2U1(n)3 ,

R(n) = U4(n)− 4U3(n)U1(n) + 3U2(n)2 − 4P (n)2 , (27)

and also

m = M(n− 1) , p = P (n− 1) , q = Q(n− 1) , r = R(n− 1) . (28)

Let us also define u = wn−m. Then we can update in linear time as follows:

M(n) = m+ u/n ,

P (n) =
n− 1

n

(
p+

u2

n

)
,

Q(n) =
n− 1

n

(
q +

n− 2

n2
u3 − 3p

n
u
)

,

R(n) =
n− 1

n

(
r +

1

n

(
p− n− 2

n
u2
)2

− 4
(
q

n
u− p

n2
u2)

))
. (29)

This algorithm is useful since (a) it can be used to update in constant time,
and (b) it is free of large cancellations.

ℵ The use of M and P in the computation of Ê2 is the

original CGL algorithm [5]. The Q and R necessary

for Ê4 is discussed in Bakx et al. [6].

2.3.3 How to do Monte Carlo integration

The recommended way to compute a Monte Carlo estimate of the integral

J1 =
∫
Γ

dx f(x) (30)

is then as follows: generate a point set X of iid random numbers xj (j =
1, . . . , N) with density P (x). Every time a new point xn is added, compute
w(xn) = f(xn)/P (xn). Then, update M,P,Q, and R. After each point, the
running (‘improved’) estimates are given by

E1 = M(n) , Ê2 = P (n)/n , Ê4 = R(n)/n3 . (31)

Below we give the algorithm in pseudocode

21

Algorithm 1 Extended CGL algorithm for numerically safe updating of
running Monte Carlo estimators

{ At every call to this algorithm an event weight w is inputted. The
number n is the number of event weights inputted so far. The estimators
Ê1,2,4 are the output. The numbers M,P,Q,R are kept internally.}
if n = 0 then

[M,P,Q,R]← [0, 0, 0, 0] {Initialization}
end if
[m, p, q, r]← [M,P,Q,R] {Variables used in the update}
n← n+ 1
u← w −m
M ← m+ u/n
P ← (n− 1)(p+ u2/n)/n
Q← (n− 1)(q + (n− 2)u3/n2 − 3pu/n)/n
R← (n− 1)(r + (p− (n− 2)u2/n)2/n− 4(qu/n− pu2/n2))/n
[Ê1, Ê2, Ê4]← [M,P/n,R/n3] {The estimators so far}

ℵ The updating allows for monitoring how the calcu-

lation progresses. This is a very important technique

to gauge the quality of the computation, as we shall

see.

2.3.4 How to report Monte Carlo integration

After a point set X of N points has been used to do a Monte Carlo integral,
the estimate of the integral is E1. The estimate of its ensemble variance is
Ê2, and the estimate of the ensemble variance of E2 is Ê4. The best way to
report the result of the computation is

J1 = E1 ±
(
E2

1/2 ± E4
1/4

)
. (32)

2.3.5 How to interpret Monte Carlo integration

The ‘Monte Carlo error’ is given by Ê
1/2
2 . If the Central Limit Theorem

holds, this gives the Gaussian confidence levels associated with the answer.
The ‘error on the error’ Ê

1/4
4 informs about the uncertainty in the confidence

levels, which can be quite important.

22

We have, for a given integrand,

Ê
1/2
2

E1

∼ 1

N1/2
. (33)

This is the well-known, slow but universal20 behaviour of Monte Carlo inte-
gration. Not so well known but important is the relative uncertainty of the
error:

Ê
1/4
4

Ê
1/2
2

∼ 1

N1/4
. (34)

The convergence of the error estimate is much slower that that of the inte-
gral. The error can be translated (in the Central Limit Theorem sense) into
Gaussian confidence intervals. Here the error on the error becomes impor-
tant. The 1σ confidence level (two-sided) is 68.2%; if the relative error on the
error is 30 per cent (admittedly quite large) the confidence level can range
from 51.6% to 80.6%. It is important to compute Ê4 even if only to confirm
that the error on the error is small.

ℵ The error on the error is not widely known, unfortu-

nately. Experience shows that it can be uncomfortably

large.

2.4 A test case

We consider the MC integration of the function f(a;x) = (1 + a)xaθ(0 <
a ≤ 1), with a > −1, for various decreasing values of a. The real value of
the integral is unity. We use the same set of 10000 (pseudo)random numbers
for all plots.

20In particular, independent of the dimensionality of Γ.

23

For a = 2 the integrand is bounded and perfectly integrable. The estimates
of the relative first- and second-order error decrease as N−1/2 and N−1/4

respectively.

For a = −0.1 the integrand is no longer bounded but integrable and also
square and quartically integrable. The The first-order error still decreases
smoothly, but the second-order error remains quite large (22% atN = 10000).
The small jumps in the curves arise from MC points close to zero.

24

For a = −0.4 the integrand is no longer quartically integrable, witness the
sizeable jumps in the error curves. The second-order error cannot really be
said to decrease at all even though the estimated error at N = 10000 is still
a reasonable 1%, but its own error is around 60% (relative).

For a = −0.7 the integrand is no longer square integrable, and the first-order
error estimate cannot be trusted at all, from the fact that here E

1/2
4 /E2 is

around unity.

25

For a = −0.9 integrability is almost completely lost: E2 jumps all over the
place and even E1 cannot be said to converge

From these simple tests a number of conclusions can be drawn. In the first
place, integration problems like these show, in the development of the esti-
mators, the phenomenon of ‘punctuated equilibrium’: the a priori behaviour
of E2 and E4 is still as 1/N and 1/N3, respectively, but interspersed with
jumps that become more pronounced as the integrand becomes more and
more singular21. Eventually these jumps counteract the decreasing of the es-
timators. In the second place, we see that in any MC integration one should
not be content with the final numbers alone, but the integration should be
monitored while it proceeds. Jumps signal singularities!

2.5 Exercises

Excercise 1 The CGL algorithm
Write your own Monte Carlo evaluator. This should be a code in which
(after initialisation) weights can be inputted one after the other, while a
continuous estimate of Ê1,2,4 is updated using the CGL algorithm. That is,
after a number of weights have been inputted, the code should be able to
give the Monte Carlo estimators at any moment during the computation.

21A similar notion from a quite distant field is found in [7].

26

Excercise 2 Studying the test case
Using the random number generator of your choice, perform your own study
of the test case of sect.2.4 by using the code of the previous exercise, and
playing around with the parameter a. You may also want to consider some
other function with an adjustable amount of singularity.

Excercise 3 For diehard combinatoricists only
Try to find the variance of Ê4, and find the estimator E8 that gives ‘the uncer-
tainty in the error estimate on the error’. It involves things like S1,1,1,1,1,1,1,1

and S3,2,2,1. . .

27

3 Random number generation

3.1 Introduction to random number sources

3.1.1 Natural vs Pseudo

Random streams can be obtained from natural processes, or by computer.
In the last case there is an algorithm and the ‘next’ number is entirely pre-
dictable22. Such streams aim not at being random but at appearing (suf-
ficiently) random, and are called pseudorandom numbers streams23. Both
methods have advantages and drawbacks.

1. Natural random number streams: electronic noise, chaotic lasers, air
pressure fluctuations, photonics, . . .

• Advantages: unpredictability

• Drawbacks: unrepeatability (in all cases), speed (in some cases),
unguaranteed probability density (in all cases)

The picture shows IDQuantique’s Quantis-USB-4M Quantum Random
Number Generator24. It produces ‘truly random’ bits by observing indi-

vidual photons that are
or are not reflected by a
half-reflecting mirror. I
timed (by hand) approxi-
mately 21 seconds to gen-
erate 80 Mbit and about
the same time for 2× 104

10-digit integers or 10-
digit floating point num-
bers in (0, 1). For such
scientific tasks as Monte
Carlo integration this is
typically much too slow.

Its main application is cryptographical; there, true unpredictability and
unrepeatability are essential.

22By those who are in on the secret, or on the code.
23Greek ψευδειν, ‘to lie’.
24https://www.idquantique.com

28

ℵ I think that the direct use of a physical supply of

random digits is absolutely inacceptable for this reason

and for this reason alone.

John von Neumann on the irreproducibility of natural

random numbers [25].

2. Pseudorandom number streams: computer algorithms

• Advantages: understandability, repeatability

• Drawbacks: predictability, speed (in some cases), nonuniformity
(in some cases)

ℵ Anyone who considers arithmetical methods of pro-

ducing random digits is, of course, in a state of sin.

John von Neumann on the predictability of pseudo-

random numbers [25].

3.2 Pseudo-random number streams

3.2.1 The structure of pseudo-random number algorithms

Consider algorithms working on the set of integers aj ∈ {1, 2, . . . ,M}, j =
1, 2, 3, Pseudorandom number generators25 always generate the next
number as a deterministic function of one or more previous ones. We shall
first examine the algorithm

an+1 = f(an) . (35)

Given a starting value a1 it generates the stream

a2 = f(a1) , a3 = f(a2) , f(a4) = f(a3) , . . . (36)

If f(aL) = ap ∈ {a1, a2, a3, . . . , aL} (i.e. a number comes up that was already
generated before) the series (ap, ap+1, . . . , aL) will start repeating itself and
pseudorandomness is lost. L is the lifetime of the algorithm f for starting
value a1. The series (a1, a2, . . . , ap−1) can be called the runup, and the series
(ap, . . . , aL) the cycle.

25Commonly denoted as PRNGs.

29

3.2.2 The set of all algorithms

The above algorithm f can be completely specified by the list

Sf =
[
f(1), f(2), f(3), . . . , f(M − 1), f(M)

]
. (37)

Many different-looking algorithms can end up with the same Sf . A few
conclusions immediately follow:

1. There are precisely MM possible algorithms of the form (35).

2. The maximum possible lifetime is M .

3. The number of algorithms with the maximum lifetime for a given start-
ing value is M !.

4. The number of algorithms with the maximum lifetime for any starting
value is (M−1)!, the number of permutations with no subcycles. These
have no runup.

3.2.3 The concept of an arbitrary algorithm

We can pick a ‘arbitrarily chosen algorithm’ by choosing Sf randomly out of
the MM possibilities, and so arrive at probabilistic statements about ‘arbi-
trary’ algorithms26. The probability to have a2 = f(a1) 6= a1 is 1− 1/M ; the
probability to have a3 = f(a2) 6= a1,2 is 1− 2/M , and so on: the probability
of having a lifetime L of at least k is therefore27

Prob (L ≥ k) =
Mk

Mk
. (38)

The probability of having a lifetime of precisely k is

Prob (L = k) = Prob (L ≥ k)− Prob (L ≥ k + 1) =
kMk

Mk+1
. (39)

The expected lifetime given a fixed arbitrary starting value a1 is

M∑
k=1

kProb (L = k) =
∑
k≥1

kProb (L ≥ k)−
∑
k≥1

kProb (L ≥ k + 1)

26The phrasing ‘random’ algorithm may lead to confusion.
27Correctly, this gives a probability zero for a lifetime longer than M .

30

=
∑
k≥1

Prob (L ≥ k) =
∑
k≥1

Mk

Mk

=

∞∫
0

dx e−x
∑
k≥1

xkMk

k!Mk

=

∞∫
0

dx e−x
(
−1 +

(
1 +

x

M

)M)

=

√
πM

2
− 1

3
+

√
π

288M
+O

(
1

M

)
, (40)

where the last line is derived in appendix 11.0.4.

3.2.4 Lessons from random algorithms

A number of probabilistic remarks hold for randomly chosen algorithms.

• The number M should be very large, since true random number streams
correspond to M →∞.

• The probability of picking an algorithm with lifetime L = M is M !/MM

≈
√

2πM exp(−M), i.e. extremely small.

• The expected lifetime is of order
√
M , so very much smaller than the

maximum lifetime.

• The probability of occurrence of at least one selfie, a number a such
that f(a) = a, is not small, around 63% (see appendix 11.0.5).

We can draw a number of inferences that are important for practical PRNGs.

• One should aim for long lifetimes. This is of course only the very
crudest requirement on a PRNG.

• Good algorithms are rare, and ‘lie close to’ bad or mediocre algorithms.

• Rounding errors are to be avoided28. This is why in many cases the
internal arithmetic is done with integer aj, and only at the output stage
the floating-point number aj/M ∈ (0, 1] is returned.

28Rounding errors mean that the algorithm does not do exactly what it is meant to do,
and so deviates from a possible good algorithm into the jungle of bad algorithms.

31

• For an algorithm with maximum lifetime, at the end of the lifetime all
numbers will have been generated exactly once. This does not look
random at all. One should avoid coming close to exhausting the whole
lifetime. In practice, if you envision using n random numbers, then L
should be at least of order n2.

3.2.5 Shift-register PRNGs

One can let the next number an depend not only on an−1 but on a register
of size r:

an = f(Rn) , Rn = (an−1, an−2, . . . , an−r+1, an−r) . (41)

The next number will be

an+1 = f(Rn+1) , Rn+1 = (an, an−1, . . . , an−r+2, an−r+1) ; (42)

an has entered from the left, and an−r has dropped out on the right : hence
the name shift-register PRNG. This is in fact just an artifice to enlarge M
since we can map the register to integers by

Rn ↔ 1+(an−1−1)+M(an−2−1)+M2(an−3−1)+· · ·M r−1(an−r−1) , (43)

which is an integer between 1 and M r. The use of the register is just a way
of writing very large numbers in base M , and only using the leading ‘digit’
as the random number. The maximum possible lifetime is now M r.

ℵ Shift-register PRNGs can be deceptively simple : an

algorithm like an ∼ an−s ± an−r (1 ≤ s < r) is often

already quite good.

3.3 Bad and good algorithms

3.3.1 Bad: the midsquare algorithm

This is one of the oldest attempts at a PRNG algorithm. Of the square of a
(not too small) integer, the last digit(s) are easily predictable, as are the first
few digits. By taking squares of 2d-digits numbers, and retaining the middle
2d digits of the result (adding zeroes if leading digits in the 4d-digit square

32

are missing), one hopes to achieve a ‘difficultly-predictable’ sequence. If K
is the maximum integer as before it would read, using the ‘floor’ function,

an =
⌊
a2
n−1 /

√
K
⌋

mod K . (44)

Typically K would have to be a perfect square29. For K = 100 this would
give, for instance the sequence

63, 96, 21, 44, 93, 64, 9, 8, 6, 3, 0 .

Direct inspection tells us that, for K = 100 : (i) there are 4 selfies, to wit
00, 10, 50, and 60 ; (ii) 61 sequences end in 0 ; (iii) the largest lifetime is 15,
achieved for the starting value 42 (!) ; (iv) the average lifetime is 5.76, way
below the ‘expected’ value of about 12.

Here we give the dis-
tribution of lifetimes
for K = 104 for all
starting values from
1 to 9999. The
maximum lifetime is
111 (achieved for the
starting value 6239),
not even equal to
the expected value of
around 125. The mid-
square method can be
considered a typical
example of an ‘aribi-
trary’ algorithm.

ℵ The midsquare method with K = 1010 has been

used with broadly satisfactory results in the early

1950’sa but should be considered totally obsolete for

modern applications.

aAs reported by P.C.Hammer in [4], p33. A lifetime of
at least 104 was found for starting value 1111111111.

29This is not strictly necessary, since the floor function erases rounding errors in the√
K unless K is really huge.

33

3.3.2 Bad: the chaos approach and the logistic map

The chaotic behaviour of certain dynamical systems would seem to be a
source of ‘random’, or at least unpredictable, sequences. A good example
is provided by the fully chaotic logistic map. This is based on real numbers
rather than integers:

xn = 4xn−1 (1− xn−1) . (45)

It is easy to see that this will almost certainly yield a sequence with infinite
lifetime. If we write

xn = sin2
(
π

2
yn

)
, 0 ≤ yn ≤ 1 , (46)

The map (45) corresponds to

yn = 2yn−1 mod 1 . (47)

Now, every non-rational number in (0, 1) has a binary expansional that does
not repeat. Therefore, the logistic map (45) will have infinite lifetime — in
mathematical principle. However, we can only use finite-precision floating-
point numbers. Therefore if yn is given with (say) 100 binary digits’ precision,
then iterating (47) would give yn+101 = 0, a selfie. Of course we do not use the
y’s but the x’s but this means that the selfie x = 0 is only avoided because of
rounding errors ! Consequently we expect the logistic map (in finite precision)
to be an ‘arbitrary’ algorithm. The same holds for all dynamical systems that
are chaotic : the very fact that their behaviour depends extremely sensitively
on the initial conditions guarantees that in practice it is driven by rounding
errors.

34

The lifetimes
of the logistic-
map algorithm
for numbers
restricted to 4
decimal digits,
for all possible
starting values.
The maximum
observed life-
time is 149, a
little better than
the expectation
value 125.

ℵ An even stronger statement about binary (or deci-

mal) expansions is possible. Almost all real numbers

(in the sense of Lebesgue measures) are normal, that

is their binary expansion contains every given block of

digits (such as 0, 101, or 1001010110011) with asymp-

totically the correct frequency. This means that iter-

ating (47) would give a perfect stream of random bits.

Unfortunately nobody knows how to construct a nor-

mal number. π may be normal but that has not been

proven yet.

3.3.3 Maybe not so bad: linear congruential methods

A very popular and simple (hence analysable!) algorithm is the linear con-
gruential method. In terms of integers xn (n = 0, 1, 2, . . .) it reads

xn+1 =
(
a xn + c

)
mod m (48)

The modulus m, the multiplier a, and the increment c are integers. One of the
advantages is that the period (and other properties) can be determined [8].
The maximum lifetime (in this case, period) is obtained under the folowing
conditions [9]:

35

1. c and m are relatively prime;

2. every prime factor of m divides a− 1;

3. if m is a multiple of 4, then so must a− 1 be.

When c = 0 the maximum period cannot be achieved30. In that case the
maximum period can be m/4 if m is a power of 2, or m− 1 if m is a prime,
everything depending on the optimal choice of a [10]31.

It is interesting to note the following. Suppose m = 2n, and a = 2p + q,
with p > n/2. Then

xn =
(
2q xn−1 − q2 xn−2

)
mod m , (49)

so this algorithm can be viewed as a shift-register PRNG as well. It also
means that the triples [x3k−2, x3k−1, x3k] all lie on a 2-dimensional plane. Us-
ing the mod m this plane intersects the 3-dimensional m ×m ×m cube a
number of times, so forming a collection of planes on which all generated
triples must fall. This is easily extended to larger multiplets of points in
hypercubes. Such structures of multiples of points are common to all mul-
tiplicative congruential PRNGs [11], the maximum number of planes in a
k-dimensional hypercube being m1/k. This limits the usefulness of multiplica-
tive congruential generators, even when the period length m is acceptable.

30Since then xn = 0 is a selfie.
31The indispensable reference here is [8].

36

3.3.4 Horrible: RANDU, and a possible redemption

Cube slice for RANDU Cube slice for a = 69069.

For many years the PRNG called RANDU was popular[?]. It has m = 231,
c = 0 and a = 216 + 3 = 65539. Typically, x1 is chosen to be 1. These values
are mainly inspired by simplicity of implementation on a 32-bit machine.
The choice of a has turned out to be about the worst possible; the number of
planes (as discussed above) is very small in low dimensions. We can visualise
this by, say, taking a slice of the cube with 0.32 ≤ x3k ≤ 0.34. RANDU

gives only 15 planes! Notice that for such features to become obvious it was
necessary for easy 2-d plotting to become available. A much better choice
appears to be a = 69069 [13]32.

3.3.5 Good: RCARRY and RANLUX

An example of a shift-register PRNG that does better than a multiplicative
congruential one, with a larger register, is RCARRY[14]. Its parameters are the
modulus B, and two index parameters s and r, the latter being the register
length. We use B = 224, s = 10 and r = 24. In addition there is a so-called
carry bit cn associated with the pseudorandom integer xn. The complete
register therefore reads

[xn−1, . . . , xn−s, . . . , xn−r; cn−1]

32 Viewed as shift-register PRNGs we have for RANDU xn = 6xn−1 − 9xn−2. For the
redemption value a = 69069 we have xn = 7066xn−1−12482089xn−2. The coefficients are
far larger, but the register length is still only 2.

37

and the algorithm is

xn = (xn−s − xn−r − cn−1) mod B (50)

where cn = 0 or cn = 1 according to whether or not the mod B was necessary.
In order to avoid having to build the register anew every time, it is best to
view it as cyclic with the starting point at the back.

Algorithm 2 The RCARRY algorithm using a cyclic register.

{The register is [a1, a2, a3, . . . , ar], and its last entry is currently aj. The
current value of the carry bit is c. The new pseudorandom number is
x/B.}
p← s+ j, if p > r then replace p← p− r {cyclicity}
q ← r + j, if q > r then replace q ← q − r {cyclicity}
y ← ap − aq − c
if y ≥ 0 then
x← y and c← 0

else
x← x+B and c← 1

end if
replace aj by x
j ← j − 1; if j = 0 then replace j ← r {cyclicity}
return x/B

As usual, the register has to be initialised. Best practice is to fill it with
large ‘arbitrary’ numbers, of O (B), and take c = 0. If the starting values
are small, such algorithms may take a long time before the output starts to
‘look random’.

There is an interesting observation here. If we define

zn =
r−1∑
k=0

xn−r+kB
k −

s−1∑
k=0

xn−s+kB
k + cn−1 , (51)

then the RCARRY algorithm is seen to be

zn = (a zn−1) mod m , m = Br −Bs + 1 , a = m− (m− 1)/B . (52)

It is a multiplicative congruential PRNG, acting on integers that have B
digits in base B; The carry bit is essential to have the multiplications work

38

out correctly33. The number m ≈ 2.47 × 10173 is prime34, the period is
(m− 1)/48, about 5× 10171. In [14] it is recommended to generate numbers
in a batch of 24, then skipping the next 223, then another batch of 24, and
so on. This is the RANLUX generator.

ℵ A nice feature is that this algorithm can be imple-

mented in floating-point immediately since rounding

errors can be avoided.

3.3.6 Good: the Mersenne Twister

Abbreviated by MT, this is likely the most popular PRNG nowadays [15]. It
is most convenient to represent the integers xn in binary form, and then all
the operations are in F2 (that is, addition is binary XOR and multiplication
is bitwise AND). We describe here the 32-bit case (hence w = 32 below). The
algorithm is officially a TGFSRPRNG35, called Mersenne Twister because
its period, 219937 − 1, is a Mersenne prime. The core of the MT algorithm is

xn = xn−q + xn−p+1

(
0 0
0 Im

)
M + xn−p

(
Iw−m 0

0 0

)
M , (53)

where Ik is the k × k unit matrix, and M a carefully chosen w × w matrix.
Note that the binary numbers are multiplied from the left since they are ‘row
vectors’. The binary number xn is then multiplied into a tempering matrix
T :

zn = xn T , (54)

and zn is the next pseudorandom integer. The matrix M has a special form:

M =


0
0 Iw−1
...

a

 (55)

33Just like the ‘carry’ operation is necessary in long multiplication.
34 For the record:

m = 2473304014731045340605025210196471900351313491012118399140630560928972251
06531867170316401061243044987830824361237755009768067533563832694140062258226
274209795000570856079361, and
a = 24733038673106381210135661382607460804970599395698832266234263274834136477
206248282598494759981052476260126375768920671440398509175301416716677335617826
7065685142904661606401.

35Twisted Generalised Feedback Shift Register Pseudo-Random Number Generator.

39

where a is another w-bit integer. For the tempering step, we can realize that
the matrices

R =


0
0 Iw−1
...
0 · · · 0

 , L =


0 · · · 0

...
Iw−1 0

0

 (56)

shift the numbers x to the right and to the left, respectively, by one bit. If
we furthermore define the diagonal matrix D(y) = diag(y1, y2, . . . , yw) for the
w-bit number y = (y1, y2, . . . , yw), the tempering matrix T can be written as
follows:

T = ·(Ru ·D(d) + 1) · (Ls ·D(b) + 1) · (Lt ·D(c) + 1) · (Rl + 1) . (57)

Here ‘1’ stands for the w×w unit matrix. In the table we give the values of
the various MT parameters.

parameter decimal binary
w 32
p 624
q 227
m 31
a 2567483615 10011001000010001011000011011111
u 11
d 4294967295 11111111111111111111111111111111
s 7
b 2636928640 10011101001011000101011010000000
t 15
c 4022730752 11101111110001100000000000000000
l 18

The period of MT is 2np−w − 1 which is huge. Moreover, we define the
property of k-distribution to v bits accuracy as follows: taking yn to consist
of the leading v bits of xn, then the concatenation

Yn = (ykn+1, ykn+2, . . . , ykn+k−1)

40

Algorithm 3 The two major steps of the MT algorithm.

{The register is [xn−1, xn−2, . . . , xn−p]. Operations: + stands for bitwise
XOR, and × stands for bitwise AND, >> k stands for ‘shift right by k bits,
<< stands for ‘shift left by k bits’.}
——————— Twisted FSR operation ———————
y ← (upper w − r bits of xn−p+1) + (lower r bits of xn−p)
if last bit of y is 0 then
y ← y >> 1

else
y ← (y >> 1) + a

end if
xn ← xn−q + y
——————— Tempering operation ———————
z ← xn + ((xn >> u)× d)
z ← z + ((z << s)× b)
z ← z + ((z << t)× c)
z ← z + (z >> l)
return z/232 as a floating-point number

runs over all 2kn possibilities as we progress through the series over its whole
period36. Viewed differently, the k-dimensional vectors ~Yn form a complete
and perfect hypercubic lattice37. The MT is k-distributed to 32 bits accuracy
for k up to 623, where multiplicative congruential generators typically are no
better than 5-distributed.

ℵ However, since in any realistic case the whole period

is very far from being used up, the ‘623-distributed’

property is of little use. Indeed the algorithm is known

to fail some randomness tests. As one expert states

‘there is no one-size-fits-all PRNG’.

3.4 Exercises

Excercise 4 Randomly chosen algorithms
Perform your own simulation of ‘arbitrary algorithms’. Take M to be largish,

36Except the case where all the yn are zero: if the register consists of zeroes only, we
have a selfie.

37This is either a very good thing or a very bad thing, see also sec.??.

41

and determine the lifetime for a fixed starting value (1, say). Note that you
can do this by simply generating random integers in (1,M) and stopping
when you pick some integer for the second time. Do this a great number of
times and produce a histogram of the lifetimes, and compute the average.

Excercise 5 RCARRY

Program your own version of the RCARRY algorithm. Experiment with various
seeds.

42

4 Testing PRNGs

4.1 Empirical testing strategies and doubts

Let us consider strings of n bits. Of the 2n possibilities, some strings,
11111111111 · · ·, say, will not ‘look random’, while 1010101010101010 · · ·
‘looks slightly more random’. A string like 01101110010111011110001001 · · ·
may ‘look quite random’38. In order to decide whether or not to trust a se-
quence as ‘acceptably random’ it is customary to perform empirical tests on
the sequence. That is, one computes some number using the sequence, and
compares that to what would be expected from an equally long sequence of
truly random numbers. Then some criterion is applied to decide whether the
string has passed this test. For instance, for n = 104 we can simply count
the number of 1’s. If this is falls between, say, 4900 and 5100, we accept the
string. Two sobering observations must be made. In the first place, a string
of truly random bits will fail this test in about 30 per cent of the cases. We
might enlarge our window of acceptance to run from 4800 to 5200 and reject
only about 5 per cent of truly random strings, but then we will also accept
more nonrandom ones. In the second place, one usually performs several or
even many tests. A good string, one that looks appreciable random, will fail
about 30 per cent of the tests at the one-σ level: what do you conclude?
What if one of the failed tests is actually the integration that you want to
perform? When does one stop testing?

4.1.1 The Leeb Conundrum: too much of a good thing

We can look at the procedure of testing n-bit strings in a more abstract
manner, adapted from [16]. Let us denote by U the set of all 2n possible
strings. Taking averages for truly random n-bit strings is taking averages
over U . A test will single out strings that pass it. We say that the test has
strictness 1− s if a fraction s of the 2n strings pass, and all other ones fail.
The following sounds trite but is not: a string x passes test T if it is an
elements of the subset UT of U of all strings that pass test T . In other words,
any test T , no matter how elaborately formulated, is completely described
by UT . If test T has strictness 1 − s, then UT contains s2n elements. This
gives us a handle on the concept of all tests of strictness 1−s: it is the set of
all subsets of U of size s2n. Each subset contains precisely s2n strings, and

38Actually, it is not! I just wrote 0123456789 · · · in binary.

43

all strings must occur precisely equally often. The probability that string x
passes test T of strictness 1− s is therefore given by(

2n

s2n

)
× (s2n) × 1

2n
=

s (2n)!

(s2n)!((1− s)2n)!
, (58)

independently of x. That is, if we perform all possible tests of a given strict-
ness, every string will perform equally well (or badly) as every other string!
Too much testing is not good. In practice, of course, not all tests of a given
strictness are considered equivalent, but this only goes to show that in decid-
ing whether or not you like a sequence as ‘random’, art and taste are involved
as much as objective testing.

4.1.2 Any test is a uniformity test

4.1.3 The χ2 characteristic

This quantity is defined for any collection of objects that can be gathered
into a finite number of bins numbered 1, . . . , B. Let us suppose that we
have some hypothesis (that of equidistribution, for instance) that predicts
the expected occupancy39 of bin j to be ej > 0. We can compare this to
the actual observed occupancy of that bin, nj. The χ2 statistic tests the
observation against the hypothesis as follows:

χ2 =
B∑
j=1

(nj − ej)2

ej
. (59)

The Bernoulli distribution assigns the probability of occupancy (n1, n2, . . . , nB)
if the objects are independently distributed with probability pj to end up in
bin j:

P (n1, n2, . . . , nB) =
N !

n1!n2! · · ·nB!
p1
n1p2

n2 · · · pBnB . (60)

Here N =
∑
j nj is the total number of objects. From

N !

n1!n2! · · ·nj! · · ·nB!
nj

k = Nk (N − k)!

n1!n2! · · · (nj − k)! · · ·nB!
(61)

we find the expectations

〈njm〉 = Nm pj
m , 〈njmjnk

mk〉 = Nmj+mk pj
mjpk

mk . (62)

39i.e. how many objects fall into the bin.

44

Some algebra then leads to〈
χ2
〉

= B − 1 ,

σ(χ2)2 = 2(B − 1)
(

1− 1

N

)
+

1

N

 B∑
j=1

1

pj
−B2

 . (63)

In the variance the second term is nonnegative, vanishing if every pj = 1/B.
For large N the density of χ2 is a Γ-density (cf Eq.(147)):

Pχ2(t) =
1

2 Γ ((B − 1)/2)
(t/2)(B−3)/2 exp(−t/2) (64)

for χ2 to attain the value t.
The confidence levels (although
less simple than those for the
normal distribution) are there-
fore known. The plot shows
the renormalised distributions
(B − 1)Pχ2((B − 1)t) for vari-
ous values of B. As the num-
ber of bins increases the den-
sity approaches a Gaussian cen-
tered around 1 (i.e. the value
of χ2 becomes centered around
B−1. The nice thing about χ2

is that for large values of N it
only depends on the number of

bins B. This holds if, say, the second term in Eq.(63) can be neglected. A
widely used rule of thumb says that we should make sure that every ej is at
least 5-10 or so. At any rate the expected χ2 is strictly equal to B − 1, and
therefore a quick look at the ‘χ2 per degree of freedom’ is usually already a
good indicator of a dubious result: it ought to differ not too much from one.

4.2 Theoretical testing strategies

4.2.1 The number-to-number correlation

4.2.2 The spectral test

45

5 Quasi-Monte Carlo

5.1 Generalities of QMC

5.1.1 The New Leap of Faith

In Monte Carlo integration, the relatively slow 1/
√
N behaviour of the error

estimate is due to the fact that the point sets X are chosen from the ensemble
of random iid uniform point sets. We may consider doing better by choosing
our point set to be ‘more uniform’ (in some sense to be defined) than a
random point set is expected to be. Such point sets are called superunuiform,
or quasirandom. Doing Monte Carlo with them is therefore called Quasi-
Monte Carlo (QMC). The difference with regular Monte Carlo is the fact that
the point sets X used are not typical members of the ensemble of random
iid uniform point sets40. But that means that the basis on which the various
error estimates E1,2,4 of sect. 2.2.2 are constructed is now invalid! We shall
have to define a new ensemble, and come to a New Leap of Faith that says
that the particular superuniform point set that we use is typical for that
ensemble.

It would seem reasonable to insist that, since we take trouble to use point
sets with a low measure of nonuniformity, the new superuniform ensemble
should be characterised by that measure. For the rest there does not seem
to be any reason not to stay as close to the random iid ensemble as possible.
Let us assume that there is a function T (X) > 0 that is a measure of the
nonuniformity of the point set X41. We also assume that T (X) is invariant
under any permutation of the points inside X. We shall then use the following
superuniform ensemble density (restricting ourselves to integration over the
unit hypercube Id):

PS(t; x1,x2, . . . ,xN) =
1

P (t)
δ(T (X)− t) ,

P (t) =
∫
dx1 dx2 · · · dxN δ(T (X)− t) . (65)

t is the value of T for all point sets in the superuniform ensemble. The
normalisation P (t) is the probability density to find T (X) = t for a point set
X in the uniform iid ensemble. The density P (t) is computed, for various

40Although they are in there, of course; but they form a tiny minority.
41Hence the smaller T (X), the more uniform the point set X is.

46

definitions of nonuniformity T , in section 6. The absence of the iid property
is obvious42.

ℵ The New Leap of Faith appears to be ignored by

almost everyone in the QMC field, with serious conse-

quences (see below).

5.1.2 The mechanism of error improvement

In the superuniform ensemble, the points are not iid as we have seen. On
the other hand, by the definition of T and since the superuniform ensemble
is a subset of the uniform one, the density PS(t; x1, . . . ,xN) is symmetric in
the point coordinates. Let us consider the situation where we disregard all
points except two of them:

1

P (t)

∫
dx3 dx4 · · · dxNPS(t; x1,x2,x3, . . . ,xN) ≡ 1− 1

N
F2(t; x1,x2) . (66)

This way of introducing the two-point function F2 is always possible, although
we anticipate a factor 1/N . Moreover we assume that each point in X is
distributed uniformly when considered individually:∫

dy F2(t; x,y) = 0 . (67)

If we take the Monte Carlo estimator E1 to do QMC as well:

E1 =
1

N

∑
j

w(xj) , (68)

we see that the superuniform ensemble average

〈E1〉S = J1 (69)

again gives us an unbiased integral estimate. The real issue is in the variance:〈
E1

2
〉
S

=
1

N2

〈∑
j,k

w(xj)w(xk)

〉
S

=
1

N2

(
N
∫
dx w(x)2 +N2

(∫
dx w(x)

)2

−N
2

N

∫
dx dy F2(t; x,y)w(x)w(y)

)
, (70)

42This ensemble may be called microcanonical: the corresponding canonical one would
let T (X) fluctuate around the value of t, but not much seems to be gained by going over
to this ensemble.

47

so that the variance now reads

σ(E1)2
S =

1

N

(
J2 − J1

2 −
(

1− 1

N

) ∫
dx dy F2(t; x,y)w(x)w(y)

)
. (71)

Two important conclusions follow:

1. A small, O (1/N) deviation from iid uniformity can have a large effect
on the expected integration error.

2. We may expect that the integrand values w(x) and w(y) are correlated
when x and y are close to one another43; in particular they will tend to
have the same sign. For QMC to be an improvement, we therefore want
F2(t; x,y) to become positive when x and y approach one another: in
a sense, the points in X must feel a mutual repulsion.

Another way to write Eq.(71) is

σ(E1)2
S =

1

2N

∫
dx dy

(
1 +

N − 1

N
F2(t; x,y)

)(
w(x)− w(y)

)2

. (72)

The ideally best possible error estimate that is valid for any integrand w is
therefore reached for

F2(t; x,y) = −1 + δd(x− y) . (73)

As we shall see, this is precisely what we obtain for T (X) → 0, a beautiful
but admittedly unreachable situation.

We of course have to somehow compute P (t) and F2 for a given nonunuifor-
mity T , and show that F2 integrates to zero. This is dealt with in section
6.

ℵ Like the New Leap of Faith, the mechanism behind

the error improvement of QMC over MC seems to be

virtually unknown.

5.2 Error estimators

5.2.1 The first-order estimate

5.2.2 The second-order estimate

5.2.3 Payback time: Lack of Leap of Faith is Punished

43In some reasonable sense.

48

6 Nonuniformity of point sets

6.1 Measures of nonuniformity: Discrepancy

6.1.1 The star discrepancy

Consider any point set X = {x1,x2, . . . ,xN} in the d-dimensional unit hy-
percube Id. With θ(x < y) we shall mean the function that is 1 if xµ < yµ

for all µ = 1, 2, . . . , d, otherwise zero44. We define the local discrepancy g(y)
as

g(y) =
1

N

∑
j

h(xj; y) ,

h(xj; y) = θ(xj < y)− vol(y) , vol(y) =
d∏

µ=1

yµ . (74)

y

The local discrepancy compares
the fraction of points ‘below’ y
with what that fraction would
be if the points were ideally uni-
formly distributed. In the plot we
give an example for d = 2. The
point y has coordinates (1/2, 2/3)
and its rectangle contains 4 points
out of 10, hence g(y) = 1/15.
At every corner, the local discrep-
ancy vanishes. Measures of global

discrepancy can be defined: the most important are the extreme discrep-
ancy45 (the Kolmogorov-Smirnov statistic):

L∗∞ = sup
y∈Id
|g(y)| , (75)

and the quadratic discrepancy (the Kramér-von Mises statistic):

L∗2 =
∫
Id

dy g(y)2 . (76)

44That is, x finds itself inside the rectangle spanned by y and the origin.
45The asterisk refers to the fact that the hyper-rectangles are attached to the origin.

49

The extreme discrepancy is beloved of mathematicians, but the quadratic
one is easier to handle in computations. At any rate, if one is small the other
will be small as well, since L∗2 < (L∗∞)2 and the function g(y) is piecewise
linear in the components yµ 46. The L∗2 discrepancy can be formulated as a
function of X only:

L∗2 =
1

N2

N∑
i,j=1

d∏
µ=1

(
1−max(xµi ,x

µ
j)
)
− 2

2dN

N∑
i=1

d∏
µ=1

(
1− (xµi)2

)
+
(

1

3

)d
.

(77)
For point sets X taken from the random iid ensemble, we have the expectation

〈L∗2〉 =
1

N

(
2−d − 3−d

)
. (78)

It is instructive to compare this for the ‘hypercubic’ lattice with N = Md

points. This has

xµj =
2kµ − 1

2M
, j = 1 +

D∑
µ=1

(kµ− 1)Mµ−1 , kµ ∈ {1, 2, . . . ,M} , (79)

and the quadratic discrepancy evaluates to

L∗2 =
(

1

3

)d [(
1 +

1

2M2

)d
− 2

(
1 +

1

8M2

)d
+ 1

]
≈ d

4N2/d 3d
, (80)

where the approximation holds for large M . For d > 4 the ‘random’ point
sets are, by this definition, more uniform than the regular hypercubic ones.

ℵ For given N , the hypercubic lattice will win out

as d increases. However, the usual situation is that d

is fixed (by the integration problem itself), and N is

the free parameter that tells us how much computing

resources can be spent.

6.1.2 Random vs Regular: Translation vs Rotation

You may wonder how a random point set can be more uniform than a nice,
beautiful hypercubic lattice. The answer47 must be the following. In low

46With jumps of magnitude 1/N whenever yµ = xµj for some µ and j.
47At least, the answer that satisfies me.

50

dimensions (d = 1, 2 or so) the translational invariance (by steps of 1/M) of
the hypercubic lattice is an obvious advantage. Indeed, in one dimension the
regularly-spaced point set is the most uniform one by any standard. How-
ever, in more dimensions we also have to consider the rotational properties
of the point set. A random collection of points does not look very differ-
ent when rotated, whereas for the hypercubic lattice some directions contain
many points (especially if we look parallel to the axes), while some direc-
tions contain hardly any points at all. As the dimensionality increases, there
are more and more directions to choose from, and the rotational invariance
becomes the more dominant property.

6.1.3 The Roth bound

It is obvious that the ideal finite point set, with L∗2 = L∗∞ = 0, does not
exist. In fact the discrepancies have lower bounds. In [17]48 the so-called
Roth bound is proven: for any point set X = {x1, . . . ,xN} in Id (d ≥ 2)
there is a constant cd > 0 (depending only on d) such that

L∗2(X) > cd
log(N)d−1

N2
. (81)

We see that the discrepancy can be quite a bit smaller than the ‘expected’
(2−d − 3−d)/N for random point sets; the question, of course, is how to find
such low-discrepancy point sets, and what cd is. In [17] it is proven that
Eq.(81) holds with

cd = 2−8d
(
(d− 1) log(2)

)1−d
, (82)

but I believe the ‘real’ cd is (considerably) larger.

6.1.4 The Koksma-Hlawka inequality

6.1.5 The Wiener measure and the Woźniakowski Lemma

Let us consider functions f(x) on the d-dimensional unit hypercube Id. For
d = 1, the Wiener measure W describes an ensemble of functions that is

48This book is an absolute must for anyone interested in low-discrepancy point sets
and related matters. I find it interesting to see that the emphasis is on L∗∞ rather than
on L∗2, perhaps reflecting the background of the authors as mathematicians rather than
physicists. Section 2.2, Lemma 2.5 is especially relevant.

51

defined by its expectation values:

〈f(x)〉W = 0 , 〈f ′(x) f ′(y)〉W = δ(x− y) . (83)

By integration we then find

〈f(x) f(y)〉W = min(x, y) . (84)

Let us now consider integrating such a function using Monte Carlo. The
integration error,

η =
1

N

∑
j

f(xj)−
1∫

0

dx f(x) , (85)

(where the sum runs from j = 1 to j = N) has a squared average over W ,
called the complexity:

〈
η2
〉
W

=
1

N2

∑
j,k

min(xj, xk)−
2

N

∑
j

(xj − x2
j/2) +

1

3
. (86)

The more-dimensional variant is called the Wiener sheet measure:

〈ϕ(x)〉W = 0 ,

〈
∂n

∂x1 · · · ∂xd
f(x)

∂n

∂y1 · · · ∂yd
f(y)

〉
W

= δd(x− y) , (87)

and

〈f(x) f(y)〉W =
d∏

µ=1

min(xµ,xµ) . (88)

The corresponding complexity is

〈
η2
〉
W

=
1

N2

∑
j,k

∏
µ

min(xµj ,x
µ
k)− 2

N

∑
j

(
xµj −

1

2
(xµj)2

)
+
(

1

3

)d
. (89)

By replacing every xµ by 1− xµ this is seen to be nothing but the quadratic
discrepancy L∗2, with every (hyper)rectangle anchored not to the origin point
(0, 0, . . . , 0) but the point (1, 1, . . . , 1). This is the Woźniakowski lemma: for
functions drawn from the Wiener (sheet) measure the complexity is given
by the discrepancy of the point set [18]. The central notion here is that of
a problem class: the ensemble of functions that we assume our particular
integrand is drawn from.

52

ℵ The type of function typical of the Wiener (sheet)

measure is hardly what you would encounter in high-

energy phenomenology: functions with a fractal struc-

ture, continuous but nowhere differentiable. Our usual

integrand, in contrast, has discontinuities but is differ-

entiable elsewhere. Nevertheless the above derivation

shows that a conjectured ensemble of integrands dic-

tates a measure of nonuniformity. In what follows we

try to make this notion more workable.

6.2 Measures of nonuniformity: Diaphony

6.2.1 Fourier problem classes

We consider the set of all functions f periodic on the d-dimensional unit
hypercube that can be written using Fourier modes,

f(x) =
∗∑
n

an exp(2iπ n · x) , (90)

where the asterisk means that the sum is to be taken over all d-dimensional
vectors n with integer components, except the zero vector n = (0, 0, . . . , 0).
Since constant functions are integrated with zero error, the zero modes are
irrelevant to our discussion49. We take the an to be real numbers. The Fourier
ensemble measure is then defined by the measure on the set of coefficients
an, which we take to be Gaussian as follows:

Df =
∗∏
n

dan exp

(
− a2

n

2σ2
n

)
1√

2πσ2
n

(91)

This implies the following ensemble averages:

〈an〉F = 0 , 〈an an′〉F = σ2
n θ(n = n′) . (92)

The real quantity σ2
n is called the strength of the mode n. We shall assume

that σ2
n depends on the components nµ (µ = 1, 2, . . . , d) only through their

absolute values. Moreover we shall insist that the total strength is finite, in
fact by convention

∗∑
n

σ2
n = 1 . (93)

49Indeed, you may argue that any integration is nothing but an attempt to strip an
integrand of all its nonzero modes.

53

ℵ The functions f are real on average. The Fourier

problem class contains the real-valued functions but is

actually even larger.

6.2.2 Fourier diaphony

We envisage integrating f using a point set X = (x1,x2, . . . ,xN), so that the
integration error is the estimated integral:

η =
1

N

N∑
j=1

f(xj) (94)

The squared error, averaged over the Fourier problem class, is then〈
|η|2

〉
F

=
1

N2

N∑
j,k=1

∗∑
n,n′
〈an an′〉 exp

(
2iπ(n · xj − n′ · xk)

)

=
1

N2

∗∑
n

σ2
n

∣∣∣∣∣∣
N∑
j=1

exp(2iπ n · xj)

∣∣∣∣∣∣
2

. (95)

The better the point set is at integrating the various Fourier modes, the
smaller will be the error. This, then, leads us to define the diaphony of the
point set as

T (X) =
1

N

∗∑
n

σ2
n

∣∣∣∣∣∣
N∑
j=1

exp(2iπ n · xj)

∣∣∣∣∣∣
2

=
1

N

N∑
j,k=1

β(xj − xk) ,

β(z) =
∗∑
n

σ2
n exp(2iπ n · z) . (96)

The bare two-point function β(z) is periodic in each of the components zµ,
and is invariant under zµ → −zµ for µ = 1, 2, . . . , µ. In addition we have the
following important properties:

β(0) = 1 ,
∫
β(z) dz = 0 . (97)

The factor in front of the definition of T (X) reads 1/N (not 1/N2) by con-
vention. The choice of the strengths σ2

n specifies the particular diaphony. By
construction, T (X) is nonnegative, and for the ‘most nonuniform’ point set,
where all xj coincide, T (X) = N .

ℵ To have a diaphony that we can realistically com-

pute for a point set, it is important to have β(z) in

some kind of closed form.

54

6.2.3 Choosing your strengths: examples of diaphony

A few examples of diaphony may be given. These are mainly geared towards
allowing results in closed form, plus the ‘physical’ intuition that modes with
small |n| are ‘naturally’ more prominent than those with large |n|.

1. Euler diaphony50 TE for d = 1:

σ2
n =

3

π2

1

n2
,

βE(x) = 1− 6|x|(1− |x|) (98)

For the computation of βE(x) see sec.11.0.7.

2. Euler diaphony TE for d > 1:

σ2
n =

1

2d − 1

d∏
µ=1

(
θ(nµ = 0) +

3

π2(nµ)2
θ(nµ 6= 0)

)
,

β(x) =
1

2d − 1

−1 +
d∏

µ=1

(1 + βE(xµ))

 (99)

3. Gulliver diaphony51 TG:

σ2
n =

((
1 + s

1− s

)d
− 1

)−1

s−|n
1|−|n2|−···−|nd| , 0 < s < 1 ,

βG(x) =

((
1 + s

1− s

)d
− 1

)−1
−1 +

d∏
µ=1

1− s2

1− 2s cos(2πxµ) + s2


(100)

4. Block diaphony TB:

σ2
n =

1

2p

d∏
µ=1

θ(−c ≤ nµ ≤ c) , 2p = (2c+ 1)d − 1,

βB(x) =
1

2p

−1 +
d∏

µ=1

sin((2c+ 1)π xµ)

sin(π xµ)

 (101)

50Named after Euler’s formula
∑
n≥1 n

−2 = π2/6.
51After Gulliver de Boer, the student who suggested it.

55

5. Jacobi diaphony52 TJ :

σ2
n =

1

K(λ; 0)d − 1
exp(−λ |n|2) ,

βJ(x) =
1

K(λ; 0)d − 1

−1 +
d∏

µ=1

K(λ; xµ)


K(λ; z) =

∑
n

exp(−λn2 + 2iπnz)

=

√
π

λ

∑
n

exp

(
−π

2(n+ z)2

λ

)
. (102)

In the last line the Poisson summation formula has been used (cf
sec.11.0.3).

A major drawback of diaphonies is that lattice vectors n that have the
same norm but are oriented differently can have very different strengths,
especially the more-dimensional Euler diaphony. The Gulliver diaphony aims
at repairing this somewhat while still having a closed form for the two-point
function. The Jacobi diaphony comes closest to full rotational invariance,
while the sums can usually be restricted to a manageable number of terms.

ℵ For the Euler diaphony in two dimensions, the lat-

tice vectors n = (13, 0) and n = (12, 5) make an angle

of only 21 degrees, but their strengths differ by a factor

21 as well.

6.3 QFT for diaphony

6.3.1 The distribution of diaphony

A given point set may have a diaphony of, say, 0.8: is this good, or bad,
or what? The natural yardstick is of course what you would expect for a
random point set. It is therefore interesting to see what can be said about the
distribution of T (X) if the point set X is taken from the ensemble of random
point sets discussed in section 2.1.3. In particular, we will be interested in〈
T `
〉

(` = 1, 2, . . .) where the average is over the ensemble of random point
sets, that is, we integrate over the points in the point set, assuming them
to be iid uniform in the hypercube. Eventually, we want to be able to say
something about the generating function Ω(z) ≡ 〈exp(zT)〉.

52Beause of the emergence of Jacobi theta functions with real-valued nome.

56

6.3.2 Feynman rules for diaphony in the large-N limit

It is useful to formulate the computation of the various moments of T in
terms of Feynman diagrams. The bare two-point function β(xj − xk) is the
bare propagator, and the points themselves are the vertices of the diagrams.
The lattice vectors n are the momenta, and momentum is conserved at each
vertex. An example is

=
∫
dx1 dx2 dx3 dx4 β(x1 − x2)β(x2 − x3)2β(x3 − x4)

Diagrams can be disconnected. If a diagram contains k vertices then it picks
up a factor Nk since we then have to sum over k distinct points. In addition
there is a combinatorial factor, the number of ways that diagram can be
formed. The first moments of the T distribution are now

〈T 〉 =
1

N

(
N2 +N1

)
,

〈
T 2
〉

=
1

N2

(
N4 + 2N3 + 4N3 + 4N2

+2N2 +N2 +N1

)
(103)

A tremendous simplification arises from the properties of β(z). In the first
place, all tadpoles vanish:

= 0 . (104)

Secondly, we have one-vertex reducibility: any two pieces of a connected
diagram that are connected by a single vertex factor can be separated53:

= . (105)

This is due to the fact that no momentum can flow between the pieces through
the connecting vertex. All this means that only one-particle irreducible vac-
uum diagrams are nonzero. In addition, we are not really interested in values

53Without changing the Nk in front, of course.

57

of N smaller than 103 or so. We can therefore take the large-N limit, so that
in 〈T p〉 only those diagrams survive that carry a prefactor Np ≈ Np:

〈T 〉 = ,〈
T 2
〉

= 2 +
2

,

〈
T 3
〉

= 8 + 6 +
3

, (106)

and so on54. These diagrams are sums of products of bracelets. A k-bead
bracelet Bk evaluates to

Bk ≡
∫
dx1 dx2 · · · dxk β(x1−x2)β(x2−x3) · · · β(xk−x1) =

∗∑
n

σ2k
n . (107)

Owing to our choice of diaphony55 the diaphony distribution becomes N -
independent for large N . In other terms in the 1/N expansion we may
encounter non-bracelet diagrams such as the last diagram in Eq.(103). In
general, a L-loop connected diagram carries a factor 1/NL−1, and we see
that 1/N plays the rôle of Planck’s constant.

ℵ The star discrepancy NL∗2 of course has its own
propagator, defined as

β(x1,x2) =

∫
dy h(x1;y)h(x2;y)

But since this propagator is not translationally invari-

ant nor integrates to zero, its analysis in terms of Feyn-

man diagrams is much more complicated. Still, some

results have been derived [19].

6.3.3 Collecting bracelets

We can immediately find the expectation value56 and variance of T :

〈T 〉 =
∗∑
n

σ2
n = 1 , σ(T)2 =

〈
T 2
〉
− 1 = 2

∑
n

σ4
n . (108)

54The sum of the coefficients in 〈Tm〉 is (2m)!/2mm!.
55In particular the use of the factor 1/N rather than 1/N2.
56This was the reason for insisting on the normalisation of the total strength.

58

But we can do more. Let us consider a contribution to 〈exp(zT)〉 that con-
tains n1 one-bead bracelets, n2 two-bead bracelets, n3 three-bead bracelets,
and so on. The total number of propagators involved is then

n = n1 + 2n2 + 3n3 + · · · (109)

The number of ways to divide n propagators into n1 groups of one, n2 groups
of two, n3 groups of three, and so on, is

R(n1, n2, n3, . . .) =
n!

n1!n2!n3! · · · (1!)n1 (2!)n2 (3!)n3 · · ·
, (110)

where we also take into account the indistinguishability of the propagators
in each group. Now, a k-bead bracelet can be built from k propagators in

2(k − 1) 2(k − 2) 2(k − 3) · · · 2 =
2kk!

2k

ways. The contribution under consideration has, in addition, a factor zn/n!.
Putting everything together and summing over all values of n1, n2, n3, . . .
then gives us

Ω(z) =
∑

n1,2,3,...≥0

1

n1!

(
2z

2
B1

)n1 1

n2!

(
(2z)2

4
B2

)n2 1

n3!

(
(2z)3

2
B3

)n3

· · ·

= exp

∑
k≥1

(2z)k

2k
Bk

 = exp

(
−1

2

∗∑
n

log(1− 2zσ2
n)

)

=

(∗∏
n

(1− 2zσ2
n)

)−1/2

. (111)

In this derivation, the factor 1/(2k) is precisely the symmetry factor of the k-
bead bracelet, and the occurrence of the 2 in the (2z)k is due to the bosonic
nature of the propagators, by which they can always be connected in two
ways in any bracelet. For the block diaphony we have

ΩB(z) =
1

(1− z/p)p
, (112)

and for the one-dimensional Euler diaphony

ΩE(z) =
∏
n≥1

(
1− 6z

π2n2

)−1

=

√
6z

sin(
√

6z)
. (113)

59

The one-dimensional Gulliver diaphony has

ΩG(z) =
∏
n≥1

(1− snx)−1 , x =
1− s
s

z . (114)

6.3.4 The diaphony distribution for large N

The actual probability density P (t) = Prob (T (X) = t) is given by the inverse
Laplace transform

P (t) =
1

2πi

∫
Γ

dz exp(−zt) Ω(z)

=
1

2π

∫
Γ

dz exp

(
−zt− 1

2

∗∑
n

log(1− 2zσ2
n)

)
, (115)

where the integration contour Γ runs from −i∞ to +i∞, passing to the left of
every singularity of Ω(z), that is it crosses the real axis below 1/(2 maxn σ

2
n).

For some diaphonies we can write it in (almost) closed form: for the block
diaphony

PB(t) =
pp

(p− 1)!
tp−1 exp(−tp) , p = ((2c+ 1)d − 1)/2 , (116)

and for the Euler diaphony (again employing Poisson’s formula)

PE(t) =
∑
n≥1

(−)n−1n
2π2

3
exp

(
−n

2π2t

6

)

=

√
3

2πt

∞∑
n=−∞

(
3(2n+ 1)2

t2
− 1

t

)
exp

(
−3(2n+ 1)2

2t

)
. (117)

Finally, for the one-dimensional Gulliver diaphony we find

PG(t) =
∑
m≥1

exp

(
−t

(1− s)sm−1

)
Rm(s) ,

R1(s) =
1

(1− s)
∏
n≥1

(1− sn)−1 ,

Rm(s) = − sm−2

1− sm−1
Rm−1(s) , m ≥ 2 . (118)

60

The plots show the large-N probability density of the one-dimensional Euler
and Gulliver (s = 0.5) diaphonies. For large t the distribution decays ex-
ponentially. The maximum probability is attained for t values considerably
lower than the mean value 1. At t = 0, the Euler diaphony distribution PE(t)
has an essential singularity. For all diaphonies that have an infinite number
of nonzero strengths the distribution P (t) must have the form

P (t) =
∑
n

cn exp(−ant) ,
∑
n

cn = 0 ,

where the cn asymptotically go to zero while the an increase without bound57.
As soon as <(t) < 0 the exponentials will explode and P (t) is no longer fi-
nite58. We therefore conjecture that t = 0 is a singular point of P (t) if the
number of nonzero strengths is infinite.

6.3.5 The saddle-point approximation

In the computation of P (t) we may use a saddle-point approximation, as
follows. We can write

P (t) =
1

2πi

∫
Γ

dz exp(φt(z)) , φt(z) = −zt− 1

2

∗∑
n

log(1− 2zσ2
n) . (119)

57Otherwise the total strength would not be finite.
58I have checked this numerically for the Gulliver diaphony.

61

We can look for the extremal point z0 of φt(z):

φ′t(z0) =
∗∑
n

σ2
n

1− 2z0σ2
n

− t = 0 , z0 < 1/(2 max
n

σ2
n) . (120)

Then we can write the saddle-point approximation as

φt(z) ≈ φt(z0) +
1

2
(z − z0)2φ′′t (z0) , φ′′t (z0) =

∗∑
n

2σ4
n

(1− 2z0σ2
n)2

,

P (t) ≈
√

2π

φ′′t (z0)
exp(φt(z0)) . (121)

For the block diaphony this is simply the Stirling approximation for the pref-
actor pp/(p − 1)!, good to beter than one percent even at p ≈ 10. For the
Euler and Gulliver diaphonies the approximation is also excellent. In prac-
tice, to obtain the saddle-point results it is best to take z0 as the independent
variable, and compute both t and P (t) as a function of z0 between −∞ and
the first singularity. Note that t→∞ corresponds to having z0 sidling up te
the first singularity. The saddle-point value z0 = 0 corresponds, very prop-
erly, to the expectation value t = 1. The limit t ↓ 0 is reflected in z0 → −∞.
For the Block diaphony we have the exact relation z0 = p(1− 1/t).

6.3.6 1/N corrections to the diaphony distribution

So far we have discussed only the N →∞ limit for P (t). Io order to obtain
the leading correction in the 1/N expansion we must take into account the
following two effects. In the first place, concomitant with every factor zq the
product of all bracelets contains the factor N q/N q ≈ 1− q(q − 1)/2N . This
1/N effect can be represented by taking(

1− z2

2N

∂2

(∂z)2

)
Ω(z) = Ω(z)

1− z2

2N

(∗∑
n

σ2
n

1− 2zσ2
n

)2

+
∗∑
n

2σ4
n

1− 2zσ2
n

 .

(122)
In the second place, we must include diagrams that have one vertex less than
the number of its propagators59: these are of the forms

and

59But of these diagrams we need to take only the first power.

62

with any number of vertices added onto the various propagators. It is seen
that p-point vertices effectively carry a coupling constant N−(p−2)/2. It is
useful to introduced the dressed propagator

≡ β̃(z; x) =
∗∑
n

2zσ2
n

1− 2zσ2
n

exp(2iπn · x) , (123)

denoted by a dashed line, in terms of which we can write the generating
function including its 1/N corrections as

〈
ezT

〉
= Ω(z)

1− 1

8N

2

− 1

4N
+

1

8N
+

1

12N


(124)

Note that all these diagrams carry their ‘natural’ symmetry factor. The first
and third of the four diagrams cancel one another and we find

〈
ezT

〉
= Ω(z)

(
1− 1

4N

∫
dx β̃(z; x)2 +

1

12N

∫
dx β̃(z; x)3

)
. (125)

ℵ In Eq.(124), there could appear the single remaining

connected two-loop vacuum diagram , with

its own symmetry factor 1/8. Since it is one-particle

irreducible, it vanishes for diaphonies; not, however,

for the χ2 discrepancy that we shall discuss below (cf

sect.6.4).

6.3.7 The two-point function

As mentioned in sect. 5.1.2 we still have to find the two-point correlation
F2(t; x1,x2). This can also be done diagrammatically, by computing the
averages of T k keeping x1 and x2 fixed and integrating over the N − 2 other
points. The only nonvanishing extra diagrams are of the form

→ = β̃(z; x1 − x2) , (126)

that again carry an effective factor 1/N because these diagrams also have
one vertex less than they have bare propagators. We can therefore write

〈
ezT

〉
x1,2 fixed

= Ω(z)
(

1 +
1

N
β̃(z; x1 − x2)

)
(127)

63

and then

F2(t; x1,x2) = −
(∫

dz e−tz Ω(z) β̃(z; x1,x2)
)(∫

dz e−tz Ω(z)
)−1

. (128)

In the saddle-point approximation this become quite simple:

F2(t; x1,x2) = −β̃(z0(t); x1,x2) . (129)

For the one-dimensional Euler diaphony we find

β̃E(z;x) =
∑
n6=0

6z

π2n2 − 6z
exp(2iπnx) (130)

which satisfies the differential equation for 0 < x < 1:

∂2

(∂x)2 β̃E(z;x) + 24z2 β̃ − E(z;x) = 24z2 . (131)

It has the solutions60

β̃E(z;x) =

{
1− y

2

(
e−yx + e−y(1−x)

)
/ (1− e−y) , z < 0

1− y
2

(sin(yx) + sin(y(1− x))) /(1− cos(y)) , z > 0
,

(132)

where y =
√

24|z|.

Here we plot the
function β̃E(z0(t);x)
for various values
of t. In the saddle-
point approximation,
β̃(z(t);x1−x2) is equal
to −F2(t, x1, x2). For
small t the ‘repulsion
effect’ is evident. For
large t, in contrast,
there is ‘attraction’
and the points tend
to cluster.

For the Block diaphony, where we have the saddle-point approximation t =

60For the boundary conditions, see appendix 11.0.7.

64

p/(p− z(t)),

β̃B(z0(t); x) = (t− 1)

−1 +
d∏

µ=1

sin((2c+ 1)π xµ)

sin(π xµ)

 . (133)

Here we plot
β̃G(z0(t);x) in the
saddle-point ap-
proximation for the
one-dimensional Gul-
liver diaphony,with
s = 0.5. This two-
point function is
not easily obtained
in closed form: I
have simply summed
numerically to large
enough n. Quali-
tatively it is quite
similar to β̃E(z0(t);x).

6.3.8 Testing too much: the Dirac limit

The various diaphonies can be considered test of equidistribution. As an
illustrative example, the block diaphony TB tests how well Fourier modes
with |nµ| ≤ c are integrated. Surely, if we include more and more modes, the
test will become more stringent? We have

σ(TB)2 =
〈
T 2
B

〉
− 〈TB〉2 = 2

∗∑
n

σ4
n =

2

p
, (134)

so that for c very large the variance of the TB distribution vanishes: the
distribution becomes a Dirac delta, and every point set61 ends up with TB ≈
1. For the Gulliver and Euler diaphonies we find, similarly:

σ(TG)2 ≈
(

1− s
4

)d
for s approaching 1 ,

61Because every point set finds itself, eventually, in the ensemble of random iid point
sets.

65

σ(TE)2 ≈ (21/40)d for d very large . (135)

The result holds generally: if
∑∗

n σ
2
n = 1, then

∑∗
n σ

4
n will tend to zero unless

a finite number of strengths completely out-dominate all the other ones [20].
The ‘ultimate test’ is no test at all; the message is that one should not test
‘ad infinitum’, but when to stop testing is not clear. In this respect, as in
others, Monte Carlo is an art rather than a prescription.

ℵ The limit of ‘large number of modes’ has its own

Central Limit theorem: the sums
∑∗

n σ
2k
n approach

zero ever faster for increasing k, and therefore the den-

sity P (t) takes on a Gaussian form [20].

6.4 Measures of nonuniformity: χ2

6.4.1 The χ2 as a discrepancy

The well-known χ2 density can also be cast in the language of problem classes.
In this case we divide the Id hypercube into B non-overlapping, but not
necessarily simply connected or even connected, regions (‘bins’). We define

θn(x) =

{
1 , x inside bin n
0 , x outside bin n

. (136)

We have

θn(x) θm(x) = δmn θn(x) ,
B∑
n=1

θn(x) = 1 . (137)

The volume of the bins is given by

vn =
∫
dx θn(x) ,

B∑
n=1

vn = 1 . (138)

The ‘Lego’ problem class62 now consists of functions that are piecewise con-
stant over the bins:

f(x) =
∑
n

αn θn(x) . (139)

The ensemble measure is again Gaussian, with

〈αn〉L = 0 , 〈αm αn〉L = δmn
1

vn
. (140)

62Because the functions look like the ‘Lego plots’ common in experimental analysis.

66

It is this choice that singles out the χ2 distribution out of all possible ‘Lego’-
like discrepancies. The integration error,

η =
1

N

N∑
j=1

f(xj)−
∫
dx f(x) =

1

N

B∑
n=1

αn
N∑
j=1

(θn(xj)− vn) , (141)

has expected square

〈
η2
〉
L

=
1

N2

B∑
n=1

1

vn

∑
j

(θn(xj)− vn)

2

, (142)

and this leads us to propose the measure of nonuniformity to be

TL(X) =
1

N

B∑
n=1

1

vn

∑
j

(θn(xj)− vn)

2

. (143)

This is exactly the χ2 of the point set X tested against the hypothesis of
uniform distribution over Id.

ℵ The fact that the bins may have any shape, or con-

sist of disconnected parts, is the reason for considering

(almost) any empirical test of a PRNG as a χ2 test of

uniformity in a possibly many-dimensional space with

weird-looking bins (e.g. the poker test).

6.4.2 Large-N results for χ2

The bare propagator for TL is

βL(x,y) = −1 +
∑
n

θn(x)θn(y)/vn . (144)

It is again tadpole-free,
∫
β(x,y) dy = 0; but it is not translation invariant

and hence not one-vertex reducible except when all volumes are equal, vn =
1/M . On the other hand, we have the nice property∫

dz βL(x, z) βL(z,y) = βL(x,y) . (145)

This means that all bracelets come out the same:

Bk = B1 =
∫
dx β(x,x) = M − 1 . (146)

67

We find immediately that, for N →∞63,

ΩL(z) = (1− 2z)−(B−1)/2 ,

PL(t) =
1

2Γ
(
B−1

2

) (t
2

)(B−3)/2

exp
(
− t

2

)
. (147)

The saddle-point is reached for

z0(t) =
1

2

(
1− B − 1

t

)
. (148)

The number B − 1 is called the number of degrees of freedom. Note that
for B = 1 we have only the single bin Id itself with trivially TL(X) = 0 for
all point sets, hence no degrees of freedom.

ℵ The χ2 discrepancy has expectation value B − 1

rather than 1. If we renormalize by scaling t to t/(B−
1) the probability density is exactly that for the Block

diaphony with p = (B − 1)/2; a curious result since

the two notions of nonuniformity are defined in totally

different ways!

6.4.3 Two-point function and 1/N corrections for χ2

Because of property (145) we can immediately find the dressed two-point
function:

= β̃L(z; x,y) =
2z

1− 2z
βL(x,y)

=
2z

1− 2z

(
−1 +

∑
n

θn(x)θn(y)

vn

)
. (149)

As before, we find repulsion for small t64. The 1/N correction terms now
include an extra diagram: we have

ΩL(z) = (1− 2z)−(M−1)/2
(

1 +
A
N

)
,

63We take B to be odd for simplicity here.
64In the saddle-point approximation.

68

A = −1

8

2

− 1

4
+

1

8

+
1

12
+

1

8

=
z2

2(1− 2z)2

(∑
n

1

vn
−M2 − 2M + 2

)

+
z3

3(1− 2z)3

(
5
∑
n

1

vn
− 3M2 − 6M + 4

)
. (150)

69

7 Superuniform point sets

Point sets with a discrepancy/diaphony (considerably) lower than that ex-
pected for truly random ones are called superuniform.

7.1 Fixed point sets vs streams

We shall discuss several approaches to the construction of point sets with low
discrepancy/diaphony. Here it becomes important to distinguish between
fixed-size point sets and streams. If a point set of n points has very low
diaphony, then adding an (n+1)th one will be problematic from the uniformity

1

?

0

point of view. This point set of 4 points
at 0,1/4,1/2,3/4 has the smallest di-
aphony possible. Where can we put
the 5th one without increasing the di-
aphony (note that points at 0 and at
1 coincide)? A point set of 5 points
with minimal diaphony has its points
at 0,1/5,2/5,3/5,4/5.

7.1.1 Diaphony minimisation

For given N there exists the point set with minimal discrepancy/diaphony.
Finding this point set is (in more than one dimension) not feasible. In general
the best we can hope for is to obtain point sets with very low diaphony. Two
strategies can be envisaged: either minimising the diaphony by shifting points
around, or invoking some rule. Numerical minimisation typically relies on (a)
descending methods that use expressions for the gradient of the diaphony65,
or (2) the Metropolis algorithm (cf sect.9.4.1). Both methods are very slow.

65This cannot be done for discrepancy since the local discrepancy is by construction not
differentiable where it sounts.

70

[

The plot shows a two-
dimensional low-discrepancy
point set with N = 1000.
It was obtained by student
T.Blank in about a week’s
computing time, by descend-
ing the Gulliver diaphony
with s = 0.5. The obtained
diaphony is 7.2 10−8. It
is clear that simply running
a PRNG many times and
selecting the ‘best’ point set is
a hopeless strategy.

7.1.2 Korobov sequences: good lattice points

A widely used strategy is that of Korobov sequences, or the method of good
lattice points. For a d-dimensional N -point set this consists of identifying a
‘good’ lattice vector with natural coefficients

~g = (g1, g2, . . . , gd) , (151)

and then the points are defined by

xk =

({
k g1

N

}
,

{
k g2

N

}
, . . . ,

{
k gd

N

})
, k = 1, 2, . . . , N . (152)

We can take g1 = 1 without loss of generality. The other components gj

should at least be relatively prime to N and to one another. A possibility

71

for d = 2 is this: if N equals
the nth Fibonacci number Fn
we can take ~g = (1, Fn−1).
The plot shows the result for
F16 = 987, F15 = 610. The
uniformity is obvious, but so is
the lack of rotational symme-
try, especially when compared
to the plot in sect.7.1.1. Es-
sentially, such point sets have
the same advantages and draw-
backs as ‘hypercubic’ lattices.
The low value of diaphony is,
in some way, a result of special-
ising the lattice vector to that

particular definition of nonuniformity. In my opinion fixed-N point sets
are of limited use since for a realistic nontrivial integration problem it is
not known a priori what N ought to be. An important insight, however,
is the following: in the complete point set, the set of the jth coordinates of
the points, (xj1, x

j
2, . . . , x

j
N), are precisely the minimal-diaphony, equidistant

point sets in one dimension, thus explaining in some qualitative way the low
diaphony of the full d-dimensional point set66.

7.2 QRNG algorithms

In view of the above, the more attractive idea is to search for low-diaphony
stream algorithms, or QRNG: Quasi-random number generators.

7.2.1 Richtmeyer-Kronecker streams

Korobov sequences eventually ‘run out of steam’ since if we continue the rule
(152) beyond k = N the points will start to repeat. We can therefore envisage
to let N approach infinity, and of course then the gj have to approach infinity
as well: the rational numbers gj/N have to become irrational. This is the
idea of Richtmeyer sequences: rather than identifying a lattice vector ~g we

66However, the vector ~g = (1, 1, . . . , 1) would give the same projections but an unaccept-
able more-dimensional set. Hence the requirement that the components of ~g be mutually
prime.

72

search for ‘irrational vectors’

~g = (θ1, θ2, . . . , θd) , (153)

where the numbers θj are all irrational numbers that are also mutually irra-
tional67. The quasi-random numbers xk are then given by

xk = (, {k θ1}, {k θ2} . . . , {k θd}) . (154)

The suitability of the irrationals θj can be investigated using their continued-
fraction representation, that we shall now discuss.

7.2.2 Excursion into fractions (cont’d)

Let θ be a number in (0, 1). Then

1

θ
= a+ θ′ , a =

⌊
1

θ

⌋
(155)

so that a is an natural number and θ′ is a number in [0, 1). We can therefore
repeat this procedure to arrive at the continued-fraction representation of θ:

θ =
1

a1 + 1
a2+ 1

a3+
1

a4+···

≡ [a1, a2, a3, a4, . . .] . (156)

If θ is a rational number, aj will become infinite for some j and the fraction
stops there; we can then write θ = [a1, a2, . . . , aj−1]. For irrational θ the
continued-fraction representation continues forever. Some examples:

π − 3 = [7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, . . .] ,

(
√

5− 1)/2 = [1, . . .] ,√
26− 5 = [10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, . . .] ,√
3− 1 = [1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, . . .] ,

sin(1) = [1, 5, 3, 4, 19, 2, 2, 2, 2, 7, 2, 2, 1, 136, 3, 20, 3, 1, 3, . . .] ,

21/3 − 1 = [3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3, . . .] ,

e− 2 = [1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, . . .] .

(157)

67That is, every ratio θi/θj is also irrational.

73

If the continued-fraction expansion is periodic, then θ will be the solu-
tion of a quadratic equation with integer coefficients, a quadratic irrational.
Therefore all other irrational numbers, like 21/3, have continued-fraction ex-
pansions that are aperiodic.

ℵ The fact that the continued-fraction coefficients for

most irrational numbers do not form a periodic pat-

tern might lead one to propose these as a source of

‘truly random’ integers. This is a bad idea, since (a)

the irrational number would have to be known to many

millions of digits, and (b) non-periodicity does not im-

ply randomness (cf Eq.(157) for e−2), or even a known

distribution of integers.

7.2.3 Rational approximations to irrationals

Truncating the continued-fraction representation gives us a method to ap-
proximate numbers by rational numbers:

θ ≈ θn =
pn
qn

,

p0 = 0 , q0 = 1 ,

p1 = 1 , q1 = a1 ,

pn = anpn−1 + pn−2 , qn = anqn−1 + qn−2 . (158)

We see that if aj becomes infinite, then θ is the rational number pj−1/qj−1.
In some sense, therefore, the number π is almost rational since a4 = 292 is
so large. In fact, replacing 292 by infinity gives the Chinese approximation
π ∼ 355/113, which gets 6 decimals correct68. We can also claim to know the
most irrational number in the universe: it is that for which all the coefficients

68This fraction is called the Milü, established by Zu Chongzhi (429-500 AD).

74

aj are 1, i.e. the golden ratio
φ1 ≡ (−1 +

√
5)/2 = 0.618 · · ·.

This plot shows the goodness
of the rational approximation
(the number of correct deci-
mal digits) for φ1, and also for
φ2 = [2, 2, 2, 2, . . .] = −1 +

√
2,

φ12 = [1, 2, 1, 2, 1, 2, . . .] = −1+√
3, and π − 3. The almost-

rationality of π is seen from the
jump in goodness from n = 3
to n = 4. The smaller the
continued-fraction coefficients,
the worse the rational approx-
imation: no curve exists below
that for φ1.

7.2.4 Almost-equidistancy for Richtmeyer sequences

Let us consider Richtmeyer sets xk, k = 1, . . . , N , where xk = {k φ1}, φ1 =
[1, 1, 1, 1, . . .] being the golden ratio. We plot the running value of NTE(φ1),

using the Euler diaphony TE.
The number φ1 is approxi-
mated by ratios of Fibonacci
numbers, Fn−1/Fn, the approx-
imation improving for increas-
ing n. Every time N = Fm
for some m, the distribution
of points is almost equidistant
with xk ∼ q(k)/Fn, where
q(k) ∈ [1, Fn] is some func-
tion of k ∈ [1, Fn]. That is,
when N = Fn the distribu-
tion of points has essentially
the smalles possible diaphony.

This is the source of superuniformity: in between these ‘optimal’ values the
diaphony cannot grow too much before coming down again. From appendix
11.0.8 we see that the Fibonacci numbers approximate Fn ∼ (1.618)−n so that
the diaphony moves out further and further as n increases. This is the reason

75

for the logarithmic term
in the Roth bound. A
similar phenomenon is ob-
served for NTE(φ2) with
φ2 = [2, 2, 2, 2, . . .] = −1 +

√
2,

except that the returns
to almost-equidistancy are
now further apart, since
1/φ2 ∼ 2.414. As in the
previous case a fractal pattern
is evident, corresponding to
a rational approximation to
the irrational that is less than
optimal. The quality of the
diaphony is seen to depend on

how close together the ‘optimal’ values are. An intermediate case is that of
a mixture of coefficients 1
and 2, for instance φ12 =
[1, 2, 1, 2, . . .] = −1 +

√
3 which

is plotted here. The ‘optimal’
values (see appendix 11.0.8)
are spaced ∼ (1.932)n, and
the diaphony is minimal for
odd n, next-to-minimal for
even n. The minima are
closer together than for φ2.
We observe similar behaviour
for other irrationals such as
[1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, . . .] =

−1 +
√

5/2.

7.2.5 van der Corput streams

In the above Richtmeyer sequences, the (one-dimensional) distribution of
points is almost equidistant at the ‘optimal’ values of N . We can improve on
that using the following approach. The van der Corput transform φb(n) of
an integer n ≥ 0 in base b is defined as follows: if n has the b-ary expansion

n = n0 + n1b+ n2b
2 + n3b

3 + · · · (159)

76

then
φb(n) = n0b

−1 + n1b
−2 + n2b

−3 + n4b
−4 + · · · . (160)

An explicit algorithm is given here: for n given, it runs in time O (log(n)).

Algorithm 4 The van der Corput transform φb(n)

{The base is b, the input number is n > 0. }
m← n {this avoids changes in n}
k ← 0
while m > 0 do
k ← k + 1 , ck ← m mod b {get the next digit}
m← (m− ck)/b

end while
j ← k ; φ← 0 {start at the least significant digit; φ is the output}
while j > 0 do
j ← j − 1 , φ← (cj + φ)/b

end while
return φ

In one dimension, the point set {φb(1), φb(2), . . . , φb(N)} will be exactly
equidistant if N = bp for some power p: we return to the ‘best’ case as

often as possible for given b.
Here we represent how the first
van der Corput numbers φ2(n)
(= 0, 2, . . . , 15) are filling the
unit interval [0, 1). At line 1
(n = 0) the discrepancy is au-
tomatically minimal. In line 2
the 2 points are spaced equidis-
tantly, as they are in line 4,
8, and 16. Every time 2k

points have been filled in the
discrepancy returns to its min-
imal value. In between, at line

77

6, say, the discrepancy is ‘al-
most optimal’. This is evi-
denced by looking at NTE(X)
as before. The evolution of the
Euler diaphony shows an even
more explicitly fractal pattern,
and the optimal values at N =
2p have the absolute minimal
diaphony. Inbetween, for N =
2p + 2p−1, say, the diaphony is
slightly higher, and for N =
2p + 2p−2 ± 2p−2 it is higher
again. For larger values of the
base b the minima are necessar-
ily spread further apart. Below
we give similar results for b = 3
and b = 5.

7.2.6 Van der Corput sequences in more dimensions

In two dimensions we may consider the sequences

xn = (φ2(n), φ3(n)) and xn = (φ2(n), φ4(n)) . (161)

The first 1000 points are displayed below.

78

Whereas the choice b = 2, 3 is quite acceptable for a superuniform point set,
the choice b = 2, 4 is extremely unlucky: the pattern is fractal, with

diamonds built up from smaller dia-
monds and so on. It is clear that
in more dimensions the bases must
be relatively prime. But that im-
plies that with increasing dimension
d the bases must increase at least as
fast as the lowest d primes. Going
back to the one-dimensional projec-
tions of the point set, that implies that
some ‘optimal’ values are going to be
very far apart for appreciable d. As
an example, we plot the point set for
b = 11, 13, which is a two-dimensional

projection for allvan der Corput sequences for d ≥ 6. This shows that the
discrepancy/diaphony can become large. In [21] the following result is given:

L∗2 <
(logN)2d

N2
Kd , Kd =

d∏
j=1

(bj − 1)2

log(bj)
. (162)

so we can determine the value of Nd for which the van der Corput sequence

79

d Kd Nd

2 5.253 0.1560 107

3 52.24 0.1807 1012

4 966.4 0.1079 1018

5 0.4030 105 0.3192 1024

6 0.2263 107 0.2144 1031

7 0.2045 109 0.3649 1038

8 0.2252 1011 0.1087 1046

is guaranteed to have a discrep-
ancy smaller than the ‘random value’
(2−d − 3−d)/N . This is given in the
table. Since we only consider an upper
limit on L∗2 here, the picture is not re-
ally so bleak. Nevertheless, the fact
that asymptotically van der Corput
sequences are superuniform does not
guarantee useful behaviour for mod-
erate N .

7.2.7 Niederreiter streams

If the van der Corput sequences deteriorate in higher dimensions because
the bases b become large, we may decide to keep the same base b in all d
dimensions but change the ordering of the points. This is the idea behind the
Niederreiter sequences. For given base b (think of b = 2) we find functions
pj(k), (j = 1, 2, . . . , b) with the following property: for all m, if k runs from
1 to bm then pj(k) takes on all values between 1 and bm as well. In other
words, pj(k) is a permutation of the numbers (1, 2, . . . , bm). Having found
these, the Niederreiter sequence is defined by

xk =
(
φb(p1(k)), φb(p2(k)), . . . , φb(pd(k))

)
. (163)

The trick is of course in finding the permutation functions pj. A method
of doing so is described in [22] and implemented independently in [23]. The
(asymptotic!) bounds on the discrepancy are very much better that those
for van der Corput sequences.

80

8 Variance reduction

8.1 Stratified sampling

8.1.1 General strategy

8.1.2 An example: VEGAS

8.1.3 An example: PARNI

8.2 Importance sampling

8.2.1 General strategy

8.2.2 Multichanneling

81

9 Non-uniform PRNGs

Often (and especially in the case of importance sampling) we are required to
generate non-uniform pseudorandom numbers, and for many given densities
a great number of strategies and tricks have been developed.

9.1 The Art of Transforming, Rejecting, and Being
Smart

In generating nonuniform random numbers one invariably starts out with
a source of iid pseudorandom numbers uniform in (0, 1)69. These are then
subjected to transformations, decisions and combinations. These can be
broadly classified under

• Inversions (mappings) where a function of a variate is computed;

• Rejections where variates are kept or rejected according to some cri-
terium;

• Cleverly combining several variates into new ones;

• The building of a repertoire of tricks as a basis for new tricks;

• Random-walk methods that employ ergodicity.

We shall discuss examples of all these. The reference text is the book by
Devroye [24].

9.2 The UA formalism

9.2.1 Unitary algorithms as words and as pseudocode

Experience shows that, when we perform all kind of manipulations on ran-
dom variates, it quickly becomes unclear what is precisely the density of the
resulting numbers. Here it becomes useful to adhere to the Unitary Algorithm
(UA) formalism. This is actually nothing more than integration statements
with the number 1 on the left-hand side of the equation. These statements

69Some care has to be taken here since quite often the special values 0 or 1 can give rise
to numerical problems. We shall assume that they are never generated by your favourite
PRNG.

82

can be put in words as well, and describe immediately (pseudo)code for soft-
ware implementation of algorithms. The simplest example is

1 =

1∫
0

dρ . (164)

In words this reads ‘there exists an algorithm for generating numbers ρ uni-
formly between 0 and 1’. An this is true, since we assume that we have a good
PRNG at hand. in pseudocode, the UA statement reads

ρ← prng

which just means ‘get a number out of your PRNG’. The second ingredient
of the UA formalism is the multiplication by unity in the form of saturated
Dirac deltas. For instance we may extend Eq.(164) as follows:

1 =

1∫
0

dρ
∫
dx δ(x− ρ2)

=

1∫
0

dρ
∫
dx

1

2ρ
δ(ρ−

√
x)

=
∫
dx

1

2
√
x
θ(0 <

√
x < 1)

=

1∫
0

dx
1

2
√
x
. (165)

In words, we now have the statement ‘there is an algorithm for generating
the density 1/(2x1/2) between 0 and 1’, and indeed there is: in pseudocode
it reads

ρ← prng
x← ρ2

In the UA description, the 1 on the left is to ensure that we are dealing
with properly normalised densities. For instance, θ(0 < x < 1/2) is not a
density, but 2θ(0 < x < 1/2) is. Furthermore, in the step

∫
dx δ(x − ρ2)

the boundaries on x are ±∞ so that there always is some x for any ρ: this
ensures that the algorithm actually finishes and yields a result. The final
boundaries 0 and 1 on x arise from the fact that when we eliminate ρ from
the Dirac delta we must make sure that ρ actually runs from 0 to 1.

83

9.2.2 Inversion of variates in UA

One of the basic tools of the trade is the following. Suppose that we want
to generate x according to some (properly normalised) density g(x), between
x0 and x1. Suppose, furthermore, that we can find the primitive of g(x):

G(x) =

x∫
x0

dy g(y) → G(x0) = 0; , G(x1) = 1 . (166)

And suppose, in addition, that we are able to invert G somehow, so that
G−1(z) can be computed. We then put x equal to G−1(ρ), in UA speak:

1 =

1∫
0

dρ
∫
dx δ(x−G−1(ρ))

=
∫
dx

1∫
0

dρ δ(ρ−G(x))
1

(G−1)′(ρ)

=
∫
dx

1

(G−1)′(G(x))
θ(0 < G(x) < 1)

=

x1∫
x0

dx g(x) (167)

1

0

1

x
0

x

An illustration of the transfor-
mation method. We plot a
function G(x) and intersect it
with regularly spaced horizon-
tal lines. The resulting x val-
ues are on the lower axis. Ob-
viously, the density of x val-
ues must be proportional to the
slope of G(x).

This method has the advantage that it uses only one prng per call, and it
is very elegant. On the other hand, computing G−1 may not be possible
analytically, or be very time-consuming; moreover it is really suited only to

84

one-dimensional densities so that for more-dimensional distributions one has
to be able to successively integrate the density over its variables, and then also
be able to invert the primitives. This can quickly become unfeasible. But for
often-occurring, simple distributions this method works like a dream. Some
examples:

ρ← prng
x ← − log(ρ)

generates the exponential density exp(−x)θ(x > 0), and

ρ← prng
x← arctan(π(ρ− 1/2))

generates the Cauchy density π−1/(1 + x2).

9.2.3 Rejection of variates in UA

This method works for more-dimensional densities as well as for one-dimens-
ional ones. We want to generate a difficult target density g(x) in some
region Γ. ‘Difficult’ here means that we cannot use inversion, in fact we
may not even know the normalisation of g(x). Suppose that we are able
to generate x according to another density h(x), and that g(x) < ch(x)
in Γ for some known number70 c. We then use the following algorithm, in
pseudocode:

loop
generate x according to h(x)
ρ← prng
if ρ < g(x)/(c h(x)) then

return {The value x is accepted}
end if

end loop

70Larger than 1 if both g and h are properly normalised.

85

.c

x0 x1

g(x)

h(x)
This illustrates the rejection
method in one dimension. We
want to fill the histogram of
g(x), the shaded area, uni-
formly. The algorithm relies on
filling the area below c h(x) uni-
formly, and cutting away, on a
probabilistic basis, the points
above the shaded area. That
is, points are accepted with a
probability g(x)/(c h(x)).

We can analyse this algorithm the UA way as well, in spite of the fact that
we may have to go through the loop an unbounded number of times.

1 =
∫
Γ

dx P (x) ,

P (x) =
∫
Γ

dy1 h(y1)

1∫
0

dρ1

[
θ

(
ρ1 <

g(y1)

c h(y1)

)
δ(x− y1)

+θ

(
ρ1 >

g(y1)

c h(y1)

) ∫
Γ

dy2 h(y2)

1∫
0

dρ2

[

θ

(
ρ2 <

g(y2)

c h(y2)

)
δ(x− y2) +

θ

(
ρ2 >

g(y2)

c h(y2)

)∫
Γ

dy3 h(y3)

1∫
0

dρ3 · · ·

 (168)

The expression for P (x) is potentially infinite, but we can telescope it71:

P (x) =
∫
Γ

dy1 h(y1)

1∫
0

dρ1

[
θ

(
ρ1 <

g(y1)

c h(y1)

)
δ(x− y1)

+ θ

(
ρ1 >

g(y1)

c h(y1)

)
P (x)

]
71Remember the continued fractions?

86

=
∫
Γ

dy1 h(y1)

[
g(y1)

c h(y1)
δ(x− y1) +

(
1− g(y1)

c h(y1)

)
P (x)

]

=
g(x)

c
+ P (x)− P (x)

∫
Γ

dy1
g(y1)

c
. (169)

And we finally arrive at

P (x) = g(x)

∫
Γ

dy g(y)

−1

, (170)

so that the rejection algorithm is self-normalising. Also note that it is really
necessary that g(x) < ch(x) everywhere. The rejection algorithm is concep-
tually very simple but also has its drawbacks. It uses at least two calls to
prng to obain a single variate. It is common to use a uniform distribution
for h(x) but that will not work if Γ is infinitely large. Finding a good value
for c may not be easy, or impossible if g(x) goes to infinity somewhere. Of
course the algorithm will work for any sufficiently large c but its efficiency
will become low if c is very large. Rejection is typically used if we have almost
the distribution we want, and has only to be massaged a bit. The canonical
reference to the method is to von Neumann [25], but surely the method must
be older.

9.3 Repertoire and the Rule of Nifty

An important rôle in the generation of nonuniform variates is played by the
buildup of a repertoire of algorithms, and by application of the following
Rule of Nifty: a clever way of constructively computing the normalisation of
a density will usually lead to an efficient algorithm for generating the density.

9.3.1 Building up a repertoire

It pays to keep in mind tricks that work. We give an example here. Suppose
that we have an algorithm for generating g(x)θ(x > 0). Then, multiplying
with a prng results in

1 =

∞∫
0

dy g(y)

1∫
0

dρ
∫
dx δ(x− ρy)

87

=
∫
dx

∞∫
0

dy
g(y)

y

1∫
0

dρ δ

(
ρ− x

y

)

=
∫
dx

∞∫
0

dy
g(y)

y
θ(x < y)

=

∞∫
0

dx P (x) , P (x) =

∞∫
x

dy g(y)/y . (171)

By repeated applications, we then establish that

ρ1,2,...,k+1 ← prng
x← ρ1ρ2 · · · ρkρk+1

gives the density log(1/x)k/k! between 0 and 1. Note that this is not possible
with rejection, and unfeasible with inversion. Similarly,

ρ1,2,...,k+1 ← prng
x← − log(ρ1ρ2 · · · ρkρk+1)

results in the density xk exp(−x)/k!. Weird densities are possible:

ρ1,2 ← prng
x← −ρ1 log(ρ2)

is what you need if you ever have to generate de exponential integral E1(x)[26];
another weirdo algorithm is

ρ1,2 ← prng
x← log(ρ1) log(ρ2)

very useful if the need to generate 2K0(2
√
x) ever crosses your path72.

9.3.2 The normal distribution: the Box-Müller algorithm

As an example of the Rule of Nifty we can consider the Guassian, or normal
density:

N(x) =
1

K
exp(−x2) , K =

∞∫
−∞

dx exp(−x2) . (172)

Computing K by integrating the density in a straightforward way involves
the error function, so generating normal variates by transformation calls for
the inverse error function, which is horrible. Straightforward rejection from

72The function K0 is the modified Bessel function of the second kind of order zero [26].

88

a uniform distribution is also impossible on the interval (−∞,∞). However,
there exists the ‘doubling trick’, where polar coordinates are used:

K2 =
∫
dx dy exp(−x2 − y2)

=

2π∫
0

dφ

∞∫
−

dr r exp(−r2) = π

∞∫
0

ds exp(−s) = π . (173)

We already know how to generate the density exp(−s) (see sect.9.2.2). This
method is known as the Box-Müller algorithm [27]. There are faster methods,
but (to my mind) none so elegant.

Algorithm 5 The Box-Müller algorithm
ρ1,2 ← prng
r2 ← − log(ρ1)
φ← 2πρ2

x← r cos(φ)
y ← r sin(φ) {x and y are independent normal variates}

9.3.3 The Euler algorithm

Quite often we are asked to generate numbers satisfying some constraint.
An example of the Rule of Nifty is the generalised Euler distribution, the
n-dimensional probability P (x1, x2, . . . , xn) given by

P (x1, x2, . . . , xn) ∼ x1
p1 x2

p2 · · ·xnpn δ

 n∑
j=1

xj − 1

 , (174)

where pj ≥ 0 are integers. The normalisation factor is here unknown: we
must also compute it. It might be tempting to generate the xj in order, with
xj between 0 and 1−x1− · · ·−xj−1, but we can see straightaway that, first,
the distribution of x1,2,...,n−1 is independent of n (which is surely wrong) and,
second, the value of xn is completely fixed by x1,2,...,n−1 so that its density
cannot play a rôle. The better algorithm is given here, further on we shall
discuss its various aspects.

89

Algorithm 6 The Euler density with parameters p1, p2, . . . , pn
generate yj in (0,∞) according to ∼ ypj exp(−y) for j = 1, 2, . . . , n
s← y1 + y2 + · · · yn
xj ← yj/s for j = 1, 2, . . . , n

Let us write this out in the UA formalism. It reads

1 =
1

p1!p2! · · · pn!

∞∫
0

dy1 · · · dyn y1
p1e−y1 · · · ynpne−yn∫

ds δ(y1 + · · ·+ yn − s)∫
dx1 · · · dxn δ

(
x1 −

y1

s

)
· · · δ

(
xn −

yn
s

)
. (175)

First, we eliminate the y’s in favor of the x’s, taking care to correctly handle
the factors of s coming from the Dirac deltas, and then we do the integral
over s:

1 =
1

p1!p2! · · · pn!

∞∫
0

dx1 · · · dxn x1
p1 · · ·xnpn exp(−s(x1 + · · ·+ xn))

∞∫
0

ds sp1+···+pn+n δ(s(x1 + · · ·+ xn)s− s)

=
1

p1!p2! · · · pn!

∞∫
0

dx1 · · · dxn x1
p1 · · ·xnpn δ(x1 + · · ·+ xn − 1)

∞∫
0

ds sp1+pn+n−1 e−s

=
Γ(p1 + · · ·+ pn + n)

Γ(p1 + 1) · · ·Γ(pn + 1)

∞∫
0

dx1 · · · dxn x1
p1 · · ·xnpn δ

∑
j

xj − 1

 .

(176)

We see that the density is precisely correct, and we obtain the normalisa-
tion into the bargain. The ‘original’ distribution of the y’s contains a factor
exp(−y). Such a damping factor is necessary if we want to allow for arbitrar-
ily large y values: these must be allowed since (x1, x2, . . . , xn) = (1, 0, . . . , 0)
must be possible. The damping factor might also have been exp(−y2), say,
but our choice is seen to be the better one since it leads to a uniform sampling.

90

9.3.4 The Kinderman-Monahan algorithm

Let us generate two variates v, u iid uniformly, 0 < u < 1 and −1 < v < 1,
and consider their ratio:

1 =
1

2

1∫
0

du

1∫
−1

dv
∫
dx δ

(
x− v

u

)

=
1

2

∫
dx

1∫
0

du u

1∫
−1

δ(v − xu)

=
1

4

∫
dx

1∫
0

d(u2) θ(x2u2 < 1) . (177)

The step functions can be translated as

θ(x2u2 < 1)θ(0 < u < 1) =

θ(|x| < 1)θ(0 < u < 1) + θ(|x| > 1)θ(0 < u < 1/|x|) , (178)

and so we get

1 =
∫
dx h(x) , h(x) =

1

4

[
θ(|x| < 1) +

1

x2
θ(|x| > 1)

]
. (179)

Thus we have a method to generate a density h(x) that has a bump around
zero and tails that fall off as 1/x2. We may use this one to generate other
distributions by rejection73: The Kinderman-Monahan, or ratio of uniforms
algorithm[28] . Let us generate u and v and keep only points that fall inside
a certain region defined by a function f :

1∫
0

du

1∫
−1

dv θ
(
u <

√
f(v/u)

) ∫
dx δ(x− v/u)

=
∫
dx

1∫
0

du u θ(u <
√
f(x)) θ(−1 < ux < 1)

∼
∫
dx f(x) , (180)

73Since rejection is self-normalising we can afford to be somewhat sloppy with the overall
factors.

91

and this proves that x is generated proportional to f(x). Note that we need

f(x) < 1 as well as the fact that
√
f(x) < 1/|x| in order for the last step

function to be irrelevant. The Kinderman-Monahan algorithm essentially
asks only for the determination that the points (u, v) are inside a certain
region, and this can be made quite efficient. The region of acceptance is

bounded by a curve (u(τ), v(τ)
where v(τ) = τ u(τ), u(τ) =√
f(τ). Here we give three ex-

amples: the Gauss density ∼
exp(−x2), the Cauchy density
∼ 1/(1 + x2), and a ‘dipped
Gauss’ density ∼ x2 exp(−x2).
We may relax the constraints
0 < u, |v| < 1, and simply
look for the maxima of u(τ)
and |v(τ)| in order to decide on
the rectangle in which to sam-
ple the points uniformly. For
the Cauchy distribution, the

region of acceptance is a half circle, and this gives us an even simpler method
of generating it, which avoids taking an arctangent at the cost of more ran-
dom numbers.

Algorithm 7 Generating the Cauchy density by ratio of uniforms

loop
ρ1,2 ← prng
r ← 2ρ1 − 1
if r2 + ρ2

2 < 1 then
return r/ρ2

end if
end loop

9.4 Random-walk algorithms

The algorithms discussed so far return iid variates. There is another strategy
that is widely used, where new variates are determined from the previous
ones. In the space of events the algorithm therefore performs a ‘random

92

walk’ of which one must ensure that (a) the points visited have the desired
density, also called the target density, (b) eventually the whole space is visited
(that is, ergodicity holds), and (c) that the subsequent points can be argued
to be essentially independent. Such algorithms also go under the name of
Markov-Chain Monte Carlo (MCMC).

9.4.1 The Metropolis algorithm

This is nowadays also called the Metropolis-Hastings method [29]. The al-
gorithm is actually quite simple. Suppose we are at a point xn. Then, using
some prescription, we generate a candidate new point y using a probability
density g(xn; y). We then compare the target densities P (x) and P (y):

R =
P (y)

P (x)
. (181)

If R > 1 then we accept the candidate point xn+1 = y; this is reasonable
since the candidate point is more probable than the old one. However, if
R < 1 we may accept xn+1 = y, with probability R. If not, then we stick to
the old point, and have xn+1 = xn. The fact that we allow for a reduction in
probability is what allows us to wander all over the space; otherwise we would
simple be working our way towards a point of (locally) maximal probability.
This method will work provided that we have detailed balance: we insist that

g(x; y) = g(y; x) . (182)

The convergence of the Metropolis algorithm can best be pictured as follows.
Suppose our space is populated by many random walkers, that at the start
are distributed with some density p1(x). These walkers then each take one
Metropolis step; some of them will remain where they are, others will be dis-
placed. Their density after this first step is then p2(x), presumably a different
one. This continues, so that as the algorithm proceeds we have a succession
of densities p1(x), p2(x), p3(x), The idea is that limn→∞ pn(x) = P (x).
The UA formulation is

1 =
∫
dx pn(x) ,

pn(x) =
∫
dz pn−1(z)

∫
dy g(z; y)

×
[
θ(P (y) > P (z)) δ(x− y)

93

+ θ(P (y) < P (z))
P (y)

P (z)
δ(x− y)

+ θ(P (y) < P (z))

(
1− P (y)

P (z)

)
δ(x− z)

]
. (183)

Let us now suppose that at some moment the walkers are actually distributed
according to the target density: pn−1(x) = P (x). After stepping, their den-
sity becomes

pn(x) =
∫
dz P (z) g(z; x) θ(P (x) > P (z))

+
∫
dz P (x) g(z; x) θ(P (x) < P (z))

+ P (x)
∫
dy g(x; y) θ(P (y) < P (x))

−
∫
dy g(x; y)P (y) θ(P (x) > P (y)) . (184)

Under detailed balance and renaming the integration variables, the first and
fourth lines cancel and we are left with

pn(x) = P (x)
∫
dz g(x; z)

[
θ(P (x) < P (z)) + θ(P (z) < P (x))

]
= P (x)

∫
dz g(x; z) = P (x) . (185)

We see that the target density P (x) is a fixed point of the Metropolis al-
gorithm, so that we can feel more or less confident that we shall approach
our goal. Note the essential rôle played by the detailed balance requirement!
For the rest we are completely free in the choice of g: we may change it
at will at any moment. The choice of g does influence the performance of
the algorithm, though. If we take ‘small’ steps the probability of accepting
a candidate point is probably high, but it will take a (very) long time to
cover the space. If the steps are ‘large’ then we move over the space quickly,
but we may expect that not many of such proposed steps are accepted74. A
good rule of thumb seems to be that about half of the candidates should be
accepted.

A drawback is the fact that the various points are not independent. This
is typically overcome (hopefully) by taking a number of Metropolis steps

74Especially if there are several probability maxima the chance of moving from the
neighbourhood of one maximum to that of another can be very small.

94

before claiming the new point. How many steps are necessary and sufficient
depends on the case: here, as everywhere, Monte Carlo is partly an art.

9.4.2 An elementary case study for Metropolis

We can completely analyse the Metropolis algorithm in a very simple case.
This is the generation of the density P (x) = 2x θ(0 < x < 1). We shall
use the step recipe g(x; y) = θ(0 < x, y < 1) which certainly gives detailed
balance. The Metropolis step of Eq.(183) then takes the form

pn(x) =
x

2
pn−1(x) +

x∫
0

dx pn−1(z) + x

1∫
x

dz
pn−1(z)

z
. (186)

We start with p0(x) = θ(0 < x < 1). The subsequent densities are

p1(x) =
3

2
x− x log(x) ,

pn(x) =

(
2 +

1

2n−1(n− 1)

)
x− n+ 1

2n(n− 1)
xn , n ≥ 2 . (187)

We plot the shapes of pn(x) for
n = 0, 1, 2, 4, and 10. The
density p10(x) is essentially in-
distinguishable from the tar-
get density P (x) = 2x. As
we see from Eq.(187), the ap-
proach to P is exponentially
fast. This way of generating
P (x) is of course much clumsier
than the simple inversion rule
x ← √prng but it avoids tak-
ing a square root. Two-thirds
of the candidates are accepted
in this case.

An interesting observation is the following. Suppose that you would need to
generate the distribution x(3 − log(x))/2. Inversion seems pretty hopeless
in this case, and rejection from a uniform density demands the computation
of the logarithm. We see that an alternative method is to generate a ran-
dom variable uniformly in (0, 1) and then perform precisely one step of the
Metropolis algorithm!

95

9.4.3 Applications of the Metropolis algorithm

The Metropolis algorithm finds a very natural (and, in fact, its original)
application in statistical mechanics. For a system in the canonical ensemble
its microconfigurations X are distributed with a density

P (X) ∼ exp
(
− 1

kT
H(X)

)
, (188)

where k is Boltzmann’s constant, T is the themperature, and H(X) the
Hamiltonian function of the system. Thermodynamic quantities are com-
puted as averages over a sample of microconfigurations with this density.
Calculating H is usually very cumbersome by itself, but in the Metropolis
algorithm it is not necessary since what we are really interested in is the ratio
of densities:

P (Y)/P (X) = exp
(

1

kT

(
H(X)−H(Y)

))
. (189)

We therefore only have to compute the change in the Hamiltonian when
stepping from X to Y. Especially for simple steps, the flipping of a single
spin in an Ising system, say, this can be done very fast75.

Another interesting application is that of simulated annealing, best ex-
emplified by the Travelling Salesman problem: given a set of N ‘cities’ with
known distances between them, find the shortest route that visits all the
cities. For simplicity we demand that we come back to the starting city, and
the direction of travel is unimportant. This gives us (N − 1)!/2 different
routes, and a direct enumeration to find the optimal route becomes unprac-
tical for N > 13 or so. What we can do instead is to assign a probability
density to each route R:

P (R) ∼ exp
(
− 1

kT
L(R)

)
, (190)

where kT is as before, and L(R) is the total length of route R. The ‘temper-
ature’ is of course a totally fictional one. Using the Metropolis algorithm we

75Flipping a single spin should not be the only possible step, however, especially close
to an ordering transition. Occasionally, whole blocks of spins can be flipped as well. As we
have already pointed out, choosing between different steps depending on the circumstances
is perfectly allowed as long as detaild balance is maintained.

96

can sample this density; and by starting at high T and then gradually and
carefully lowering it towards zero we may hope to end up in a maximum of
the probability, i.e. a very short (or even the shortest) route. Typical steps
in this game are the interchange of two cities, and (somewhat surprisingly at
first sight) the reversal of a whole sequence of cities. Because of the triangle

inequality a route
that crosses itself is
always shortened by
undoing the cross-
ing, as indicated
here. But that im-
plies that the cities
on on side of the
crossing must be
travelled in the op-
posite order!

9.4.4 Gibbs sampling

Another example of a random-walk method is Gibbs sampling, that aims at
replacing the generation of a multidimensional density by a succession of one-
dimensional ones. It is best described by an example. Suppose that we want
to generate a three-dimensional density P (x) = P (x1, x2, x3). This may not
be possible directly, but suppose that we can generate x1 for fixed x2,3, and
x2 for fixed x1,3, and also x3 for x1,2 fixed. Since these are one-dimensional
densities, that is usually easier. Note that we have to normalize properly: for
the generation of xj the appropriate density is not P (x) itself but Pj where
(in the n-dimensional case)

Pj(x
1, . . . , xj−1, xj, xj+1, . . . , xn) =

P (x)
[∫

dξ P (x1, . . . , xj−1, ξ, xj+1, . . . , xn)
]−1

. (191)

Now assume that at some step n in the Gibbs algorithm we have generated a
point x. A Gibbs step to the new point y is then performed by first generating
y1 using P (y1, x2, x3), then generating y2 according to P2(y1, y2, x3), and
finally generating y3 from P3(y1, y2, y3). At each step one new coordinate
replaces an old one. Again considering a distribution of random walkers on
our space, with density pn(x), we can then UA towards the density after one

97

Gibbs step:

1 =
∫
d3x pn(x)

=
∫
dx1 dx2 dx3 pn(x1, x2, x3)

× dy1 P1(y1, x
2, x3) dy2 P2(y1, y2, x3) dy3 P3(y1, y2, y3)

=
∫
dyP (y) Rn(y) , (192)

where after reshuffling of factors we have

Rn(y) =
∫
dx1 pn(x1, x2, x3)∫

dξ P (ξ, x2, x3)
dx2 P1(y1, x2, x3)∫

dξP (y1, ξ, x3)
dx3 P (y1, x2, x3)∫

dξ P (y1, y2, ξ)
.

(193)
The new density pn+1(y) is therefore equal to P (y)Rn(y). Now, assume that
at step n the x’s are actually distributed with the target distribution: then
pn(x) = P (x). It immediately follows that Rn(y) = 1 and pn+1(y) = P (y):
we have thus proven that the target density is a fixed point of this algorithm.

9.4.5 An elementary case study for Gibbs

A very simple analysable case for Gibbs sampling is the two-dimensional
density

P (x) = x1 + x2 . (194)

If at step n the density of walkers is given by pn(x) then after one Gibbs step
we shall have (cf Eq.(192))

pn+1(y) = P (y)
∫
dx1 dx2 pn(x) (y1 + x2)

(x2 + 1/2)(y1 + 1/2)
(195)

Let us start with a uniform density of walkers: p1(x) = θ(0 < x1,2 < 1).
After the first Gibbs step, Eq.(195) yields

p1(x) = P (x)
2− τ + 2τ x1

1 + 2x1
, τ = log(3) . (196)

By direct computation we find that, in general

pn(x) = P (x)
an + bnx

1

1 + 2x1
, (197)

98

with a double recursion relation:(
an
bn

)
=M

(
an−1

bn−1

)
,

(
a1

b1

)
=

(
2− τ

2τ

)
, (198)

with

M =

(
1− κ κ/2

2κ 1− κ

)
, κ = τ − τ 2/2 = 0.49514 · · · (199)

The matrix M has eigenvalues 1 and 1 − 2κ = 0.0097 · · ·, for eigenvectors
v1 = (1, 2) and v2 = (1,−2), respectively. Starting with the vector (2 −
τ, 2τ) = v1 + (1 − τ) v2 and repeatedly applying M, we shall suppress the
v2 component exponentially fast, and find that limn→∞(an, bn) = (1, 2), in
other words,

lim
n→∞

pn(x) = P (x) . (200)

Since 1 − 2κ is so small, the approach to the target density is very fast in
this case.

99

10 Phase space algorithms for particle physics

In particle physics, a recurrent integration problem is that of a differential
cross section over the collection of allowed final states. The determination of
the differential cross section is outside the scope of these lectures, rather we
are interested in the phase space integration itself.

10.1 The uniform phase space problem in particle phe-
nomenology

In particle phenomenology (not in statistical physics), phase space denotes
the collection of all possible final-state momenta., including the constraints
posed by the on-shell consitions on the individual momenta as well as the
overall restriction posed by conservation of energy and momentum. Denot-
ing the masses of the particles by mj and the four-momenta by pµj (j =
1, 2, . . . , n), and the total four-momentum by P µ, the (relativistic) phase
space integration element reads76

dVn(P ; p1, . . . , pn) =
n∏
j=1

(
d4pj δ(p

2
j −m2

j)
)
δ4

P − n∑
j=1

pj

 . (201)

It defines a (3n− 4)-dimensional subspace of the 4n-dimensional space of all
momentum components. Because of the mass-shell conditions, this subspace
is highly nonlinear. The ‘phase space problem’ is that of designing algorithms
to generate phase space points (‘events’) with uniform probability. That this
is far from trivial can be seen from the fact that the volume of phase space is
in general unknown. The only77 closed-form results are those for n = 2 with
arbitrary masses, and for general n the ultrarelativistic limit with mj = 0,
and the nonrelativistic limit where P 2 ≈ (m1 + · · ·+mn)2 .

10.2 Two-body phase space

10.2.1 The two-body algorithm

The simplest phase space is the two-body one: by standard methods we have

dV2(P ; p1, p2) = d4p1 δ(p
2
1 −m2

1) d4p2 δ(p
2
2 −m2

2) δ4(P − p1 − p2)

76There is an additional constraint that the energies of all momenta be positive. This is
usually left to be understood.

77As far as I know.

100

=
1

8
F
(
m2

1

s
,
m2

2

s

)
dΩ , (202)

where s = P 2, Ω is the solid angle of p1 in the rest frame of P µ, and

F (x, y) =
(

(1− x− y)2 − 4xy
)1/2

. (203)

The algorithm is given below; the momenta p1,2 are generated in the rest
frame of P , and then boosted to the frame in which P µ was given. The

Algorithm 8 Two-body phase space with masses m1,2 and total invariant
energy

√
s > m1 +m2

p0
1 ← (s+m2

1 −m2
2)/2
√
s

p0
2 ←
√
s− p0

1 , q ←
√

(p0
1)2 −m2

1 {compute energies and momenta}
cos θ ← −1 + 2ρ , φ← 2πρ {the solid angle}
p1

1 ← q sin θ cosφ , p2
1 ← q sin θ sinφ , p3

1 ← q cos θ
p2 ← −p1 {construct the momenta in the P rest frame}
boost pµ1,2 to the actual frame of P µ (see algorithm 9)

Lorentz boost is that which takes the vector (
√
s,~0) over into (P 0,P). We

give it here separately.

Algorithm 9 Lorentz boost from P µ, with P 2 = s, at rest to given form,
applied on vector pµ. The resultant vector is qµ.

q0 ← (p0P 0 + p1P 1 + p2P 2 + p3P 3)/
√
s {Note signs!}

~q ← ~p+ ~P (p0 + q0)/(
√
s+ P 0)

10.2.2 Two-body reduction

Let us manipulate Eq.(201) by multiplying it with a clever choice of unity:

dV (P ; p1, p2, . . . , pn) =
n∏
j=1

(
d4pj δ(p

2
j −m2

j)
)
δ4

P − n∑
j=1


× d4q1 δ

4

q1 −
n∑
j=2

 du1 δ(q
2
1 − u1)

= dV2(P ; p1, q1) du1 dVn−1(q1; p2, . . . , pn) .(204)

101

We can continue this so that eventually

dVn(P ; p1, . . . , pn) = dV2(P ; p1, q1) du1 dV2(q1; p2, q2) du2 dV2(q2; p3, q3) du3 · · ·
· · · dV2(qn−3; pn−2, qn−2) dun−3 dV2(qn−2; pn−1, pn) dun−2 .

(205)

The n-body problem has now been split up into a cascade of n− 1 two-body
problems and a selection of n− 2 invariant masses squared. Using the result
for the two-body case, the volume of the n-body phase space is then given
by an (n− 2)-dimensional integral:

Vn(P) =
(
π

2

)n−1 ∫
du1 · · · dun−2

n−2∏
j=1

F
(
uj
uj−1

,
m2
j

uj−1

)F (m2
n−1

un−2

,
m2
j

un−2

)
,

(206)
where u0 = s. The integration boundaries are

√
uj <

√
uj−1 −mj (j = 1, . . . , n− 2) ,

√
un−2 > mn−1 +mn . (207)

Unsurprisingly the general result for Vn(P) is not known, nor do we have an
algorithm for generating the u’s.

10.3 The relativistic problem

The phase space problem becomes simpler if we can neglect the masses, or
at least assume that they are small(ish).

10.3.1 Two-body reduction algorithm

If we let all the particle masses vanish, Eq.(206) becomes simpler:

V (0)
n (P) =

(
π

2

)n−1 ∫
du1 · · · dun−2

n−2∏
j=1

(
1− uj

uj−1

)
, (208)

with s > u1 > u2 > · · · > un−2 > 0. Following [31] we introduce new
variables vj = uj/uj−1 (j = 1, . . . , n− 2) and then we find

V (0)
n (P) =

(
π

2

)n−1

sn−2

1∫
0

dv1 · · · dvn−2

n−2∏
j=1

vn−2−j
j (1− vj)

=
(
π

2

)n−1 sn−2

(n− 1)!(n− 2)!
. (209)

102

The remaining problem is to generate variables v according to vk(1− v). It
can be done by inversion, where we solve

v∫
0

dwwk(1− w) = ρ

1∫
0

dwwk(1− w) → (k + 2)vk+1 − (k + 1)vk+2 = ρ .

(210)
All this then leads to the following algorithm for massless n-body phase
space.

Algorithm 10 The Platzer algorithm for n ≥ 3

generate vj according to (k + 1)(k + 2)vn−2−k
j (1− vj) (j = 1, . . . , n− 2)

compute uj = vjuj−1 (j = 1, . . . , n− 2)
use algorithm 8 for the cascade P → p1 + q1 , q1 → p2 + q2 , q2 →
p3 + q3 , . . . , qn−2 → pn−1 + pn

ℵ This way of handling many-body phase space has a

long history; I have simply referred to its most recent

incarnation.

10.3.2 Massless RAMBO

The algorithm of the previous section imposes a hierarchy on the momenta
that has no physical basis, and involves n−1 Lorentz boosts than may lead to
numerical inaccuracies [31]. On the other hand, we can generalise the Euler
algorithm to impose the overall constraint of momentum conservation, and
arrive at a more ‘democratic’ approach : the RAMBO algorithm that is another
case of the Rule of Nifty. We start by generating unconstrained massless
momenta, and then modify them to enforce the correct overall momentum.
From ∫

d4q δ(q2) exp(−q0) =

∞∫
0

dq0 q
0

2
exp(−q0)

∫
dΩ = 2π (211)

we see that a UA reads

1 =
1

(2π)n

∫ n∏
j=1

d4qj δ(q
2
j) exp(−q0

j) . (212)

103

The momenta qj add up to a total momentum Q. We then perform a scaling

by a factor
√
Q2/s so that Q gets the right invariant mass, and a Lorentz

boost Λ that takes the vector Q into its rest frame. We can write this out as

1 =
1

(2π)n

∫ n∏
j=1

d4qj δ(q
2
j) exp(−q0

j)

d4Qδ4

Q− n∑
j=1

qj

 d(x2) δ

(
x2 − Q2

s

)
n∏
j=1

d4pj δ
4
(
pj −

1

x
Λqj

)
. (213)

We now eliminate the qj, using

δ4

 n∑
j=1

qj −Q

 =
1

x4
δ

 n∑
j=1

pj −
1

x
ΛQ

 =
1

x4
δ4

 n∑
j=1

pj − P

 ,

δ4
(
pj −

1

x
Λqj

)
= x4 δ4(qj − xΛ−1pj) , δ(q2

j) =
1

x2
δ(p2

j) , (214)

so as to arrive at

1 = A
∫
dVn(P ; p1, . . . , pn) ,

A =
1

(2π)n

∫
d4Qd(x2) exp(−Q0)x2n−4 δ(x2 −Q2/s)

=
2(2π)n−1

sn−2

∞∫
0

dQ0

Q0∫
0

d|Q| |Q|2
(
(Q0)2 − |Q|2

)n−2
exp(−Q0)

= 1/V (0)
n (P) . (215)

This proves the correctness of the RAMBO algorithm. Note that, as before, the
damping factor exp(−q0

j) precisely guarantees a uniform density. In addition
we see that particle masses cannot be easily included because of the scaling
by the a priori unknown scaling factor x. Finally, we see that 4n pseudo-
random numbers are used to sample points in (3n − 4)-dimensional space.
Therefore, information is lost, and the 4n-dimensional space of random num-
bers contains subspaces of dimension n + 4 in which every point ends up in
the same phase space point.

104

Algorithm 11 The RAMBO algorithm for n momenta with total invariant
mass squared s

generate energies q0
j according to q0

j exp(−q0
j), 1 ≤ j ≤ n

generate momenta qj isotropically, with |qj| = q0
j , 1 ≤ j ≤ n

compute Qµ =
∑
j q

µ
j , and x =

√
Q2/s

pj ← Λqj/x, 1 ≤ j ≤ n {Λ is the Lorentz boost that brings Q to its rest
frame, see algorithm12}
each event carries a weight given by Eq.(209)

Algorithm 12 Lorentz boost from P µ, with P 2 = s, to rest from given form,
applied on vector pµ. The resultant vector is qµ.

q0 ← (p0P 0 − p1P 1 − p2P 2 − p3P 3)/
√
s {Note signs!}

~q ← ~p− ~P (p0 + q0)/(
√
s+ P 0)

10.3.3 Inclusion of masses

For the case where the particle masses are nonzero no algorithm is known
that populates phase space uniformly78. However, if the masses (and n) are
not too large the following procedure can be used. We start with generating
massless momenta pj. We then proceed to scale down the 3-momenta of
the particles with a common factor ξ, which opens up room to increase the
energies such that masses can be accommodated. We therefore set

Φ(ξ) =
n∑
j=1

√
m2
j + ξ2|pj|2 =

√
s . (216)

Since Φ(ξ) is monotonic and a solution with 0 < ξ < 1 exists, it is not
difficult to find the right value of ξ, and the UA description becomes

1 =
1

Vn(P)

∫  n∏
j=1

d4pj δ(p
2
j −m2

j)

 δ4

 n∑
j=1

pj − P


=

1

Vn(P)

∫  n∏
j=1

1

2|pj|
d3pj

 δ3

 n∑
j=1

pj

 δ

 n∑
j=1

|pj| −
√
s


dξ Φ′(ξ) δ(Φ(ξ)−

√
s)

78Except for n = 2, see above, and for n = 3 with m1 > 0,m2,3 = 0.

105

 n∏
j=1

d3kj δ
3(kj − ξpj) dk0

j δ
(
k0
j −

√
|kj|2 +m2

j

) , (217)

which after standard79 manipulations results in

1 =
∫  n∏

j=1

d4kj δ(k
2
j −m2

j)

 δ4

 n∑
j=1

kj − P

 G
Vn(P)

,

G =

 n∏
j=1

k0
j

|kj|

 n∑
j=1

|kj|2

k0
j

√
s

 n∑
j=1

|kj|√
s

3−2n

. (218)

The scaling algorithm therefore results in a nonuniform sampling, with event
weights given by Vn(P)/G. The scaling operation is reversible, and no in-
formation is lost80. On the other hand, it is not known what the maximum
weight is for general masses.

Algorithm 13 Giving masses to massless momenta

generate n massless momenta pj using algorithm 11

find ξ such that
∑
j

√
|qj|2ξ2 +m2

j =
√
s

kj ← ξqj, k
0
j ←

√
|kj|2 +m2

j , 1 ≤ j ≤ n

each event carries a weight given by Vn(P)/G, see Eq.(218)

79By now, hopefully!
80We can reconstruct the ‘original’ pj from the kj .

106

ℵ Consider n = 3. In the massless case, the phase

space (the Dalitz plot) is a triangle in terms of two of

the energies: 0 < p0
1,2 <

√
s/2 and p0

1+p0
2 <
√
s. When

masses are introduced, the triangle is ‘contracted’ into

a figure with rounded edges and no sharp points. A

uniform mapping is therefore not possible, and the

events will have nonconstant weights. Another mes-

sage is that the ‘contraction’ may be expected to be

minimal (and hence the weight maximal) for those

events that are ‘as far as possible’ from the edges of

phase space. This translates into the rule of thumb

that the maximum weight is attained when all mass-

less particles have zero energy, and all massive par-

ticles have the highest possible velocity (in whatever

sense this makes sense).

10.4 Nonrelativistic phase space: BOLTZ

At the other extreme of the energy range we have nonrelativistic phase space.
This also allows for a ‘democratic’ approach, as we shall now show. From

∫
d3q exp

(
−|q|

2

2m

)
= (2πm)3/2 (219)

we see that a UA can be given:

1 = A
∫ n∏

j=1

d3qj exp

(
−|qj|

2

2m

)
, A =

n∏
j=1

(2πmj)
−3/2 . (220)

Obviously, no mass is allowed to vanish here. Having generated the qj we
then perform a Galilei transformation that takes the momenta over into new
momenta kj that add up to zero. Subsequently we scale the momenta kj
into pj that have the correct total kinetic energy U . With the notation

Q =
∑
j qj, M =

∑
jmj, Ek =

∑
j |kj|2/(2mj), and Â = (2πM)3/2A, we can

analyse this procedure as follows, by successive elimination of the qj and the
kj:

1 = A
∫  n∏

j=1

d3qj exp

(
−|qj|

2

2m

)
107

× d3v δ3

(
Q

M
− v

)  n∏
j=1

d3kj δ
3(kj − qj +mjv)


= A

∫  n∏
j=1

d3kj

 δ3

 n∑
j=1

kj

 d3vM3 exp

(
−Ek −

M |v|2

2

)

= Â
∫  n∏

j=1

d3kj

 δ3

 n∑
j=1

kj

 exp(−Ek)

× d(x2) δ
(
x2 − Ek

U

)  n∏
j=1

d3pj δ
3
(
pj −

1

x
kj

)
= Â

∫  n∏
j=1

pj

 δ3

 n∑
j=1

pj

 δ

 n∑
j=1

|pj|2

2mj

− U

 d(x2)x3n−5 exp(−Ux2)U

= ÂΓ
(

3n− 3

2

)
U (5−3n)/2

∫  n∏
j=1

pj

 δ3

 n∑
j=1

pj

 δ

 n∑
j=1

|pj|2

2mj

− U

 .

(221)

We have thus proven that we can sample nonrelativistic phase space uni-
formly, and have also computed the volume of this phase space: it reads

Vnr(U ;m1, . . . ,mn) =

n∏
j=1

(2πmj)
3/2

(2πM)3/2

U (3n−5)/2

Γ((3n− 3)/2)
. (222)

This Rule of Nifty result is the basis of the BOLTZ algorithm81.

Algorithm 14 The BOLTZ algorithm for total energy U and masses m1,2,...,n

generate qrj according to exp(−(qrj)
2/(2mj)) for r = x, y, z and 1 ≤ j ≤ n

v← ∑
j qj/

∑
jmj

kj ← qj −mjv for 1 ≤ j ≤ n

compute Ek and x =
√
Ek/U

pj ← kj/x for 1 ≤ j ≤ n
each event carries a weight given by Eq.(222)

ℵ In trms of staistical physics, the —tt BOLTZ algo-

rithm generates the microcanonical ensemble.
81Boltz, man!

108

ℵ I do not know of a spacetime transformation that

‘interpolates’ between a Galilei and a Lorentz trans-

form. This makes it understandable why the general

phase space problem is so hard.

109

11 Appendices

11.0.1 Falling powers

The falling powers are defined as

Nk = N(N − 1)(N − 2) · · · (N − k + 1) =
N !

(N − k)!
(223)

By its definition, we have Nk = 0 when k > N , and NN = N !. For large N
and finite k we can approximate

Nk ≈ Nk

(
1− k(k − 1)

2N

)
. (224)

From Nk = N !/(N − k)! we find immediately the binomial sum

∑
k≥0

xk

k!
Nk =

∑
k≥0

(
N

k

)
xk = (1 + x)N . (225)

We can extend this by summing over N as well:

∑
N≥0

∑
k≥0

xk

k!
Nk yN =

∑
N≥0

yN(1 + x)N

=
1

1− y − xy
=
∑
m≥0

xmym

(1− y)m+1
. (226)

Isolating from this the power xk gives

∑
N≥0

yNNk =
k! yk

(1− y)k+1
. (227)

Eq.(225) also leads to the ‘binomial theorem for falling powers’:

(x+ y)s =
s∑
r=0

(
s

r

)
xr ys−r . (228)

110

11.0.2 Relations between direct sums and unequal-sums

S1
2 = S2 + S1,1 ,

S2S1 = S3 + S2,1 ,

S1
3 = S3 + 3S2,1 + S1,1,1 ,

S3S1 = S4 + S3,1 ,

S2
2 = S4 + S2,2 ,

S2S1
2 = S4 + 2S3,1 + S2,2 + S2,1,1 ,

S1
4 = S4 + 4S3,1 + 3S2,2 + 6S2,1,1 + S1,1,1,1 ; (229)

and conversely,

S1,1 = S1
2 − S2 ,

S2,1 = S2S1 − S3 ,

S1,1,1 = S1
3 − 3S2S1 + 2S3 ,

S3,1 = S3S1 − S4 ,

S2,2 = S2
2 − S4 ,

S2,1,1 = S2S1
2 − 2S3S1 − S2

2 + 2S4 ,

S1,1,1,1 = S1
4 − 6S2S1

2 + 8S3S1 + 3S2
2 − 6S4 . (230)

11.0.3 An exponential sum and the Poisson formula

Consider the function

δ(s;x) =
∑
n

s|n| e2iπnx =
1− s2

1− 2s cos(2πx) + s2
, (231)

where 0 < s < 1. As s → 1, δ(s;x) goes to zero except for integer x, where
it approaches infinity. Moreover,

k+1/2∫
k−1/2

dx δ(s;x) = 1 (232)

for any integer k. Consequently we may write∑
n

e2iπnx =
∑
k

δ(x− k) (233)

111

in the sense of distributions, that is integrated with a suitable test function.
This implies the Poisson formula:∑

k

f(k) =
∑
n

g(n) , g(y) =
∫
dx f(x) e2iπxy . (234)

11.0.4 About the integral (40)

For M large, we can approximate

log
(

(1 + x/M)M
)

= M log(1 + x/M)

= M

(
x

M
− x2

2M2
+

x3

3M3
− x4

4M3
+ · · ·

)

= x− x2

2M
+

x3

3M2
− x4

4M3
+ · · · (235)

We can therefore estimate the integral

∞∫
0

dx e−x
(

1 +
x

M

)M
=

∞∫
0

dx exp

(
− x2

2M
+

x3

3M2
− x4

4M4
+ · · ·

)

≈
∞∫
0

dx e−x
2/2M

(
1 +

x3

3M2
− x4

4M3
+

x6

18M4
+ · · ·

)

=
1

2

√
2πM

(
1− (3M2)

4M3
+

(15M3)

18M4

)
+

(2M)2

6M2
+ · · ·

=

√
πM

2

(
1 +

1

12M

)
+

2

3
+ · · · (236)

The neglected terms are of order 1/M and smaller.

11.0.5 Selfies

Consider an ‘arbitrarily chosen algorithm’ of the type of Eq.(35). The number
a is a selfie if f(a) = a. The probability that a given number is a selfie is
1/M , and therefore the probability of having exactly k selfies in an arbitrarily
chosen algorithm is

SM(k) =

(
M

k

)(
1

M

)k (
1− 1

M

)M−k
. (237)

112

Since

SM(0) =
(

1− 1

M

)M
≈ 1

e

(
1− 1

2M
+O

(
1

M2

))
, (238)

the probability to have at least one selfie is about 1−1/e ≈ 63%. The largest
probability is SM(1), and incidentally

M∑
k=0

kSM(k) = 1 , (239)

so that the expected number of selfies is exactly 1, independent of M . This
therefore also holds for shift-register PRNGs.

11.0.6 Serial correlation in a real-number model

Consider a multiplicative congruential PRNG with modulus m, multiplier a
and increment c. The serial correlation is

r =

k∑
n=1

xnxn+1 −
(

k∑
n=1

xn

)2

k∑
n=1

x2
n −

(
k∑

n=1
xn

)2 , (240)

a version of the Pearson correlation coefficient. We can compute an approxi-
mate value for this correlation using the ‘real number’ model for the PRNG:
after scaling by 1/m, the zn = xn/m values will be approximately the real
numbers in (0, 1). Then zn+1 = y(zn) with

y(z) = (az + δ) mod 1 = (azn + δ)−
a∑
k=1

θ

(
z >

k − δ
a

)
. (241)

Then, assuming uniform distribution of the zn values we will have approxi-
mately 〈

z2
n

〉
≈ 1/3 , 〈zn〉2 ≈ 1/4 , (242)

and

〈zn y(zn)〉 ≈
1∫

0

dz z y(z) =

1∫
0

dz (az2 + δz)−
a∑
k=1

1∫
(k−δ)/a

dz z

= −a
6

+
δ

2
− 1

2a2

a∑
k=1

(
k2 − 2δk + δ2

)
=

1

4
+

1

12a
− 1

2a
δ(1− δ) . (243)

113

The estimate for the correlation is therefore

r ≈ 1

a

(
1− 6 δ(1− δ)

)
. (244)

11.0.7 The two-point function for the Euler diaphony

For the one-dimensional Euler diaphony we have

β(x) =
∑
n 6=0

3

π2 n2
exp(2iπn x) . (245)

Now assume that 0 < x < 1. By differentiating twice we have

β′′(x) = −12
∑
n 6=0

exp(2iπnx) = 12 (246)

by virtue of Eq.(233). Thus,

β(x) = 6x2 + px+ q (247)

There are two conditions to be met:

β(x) = β(1− x) ,

1∫
0

dx β(x) = 0 . (248)

This leads to
β(x) = 1− 6x(1− x) , 0 < x < 1 . (249)

At every integer value of z the two-point function has a kink to make it
periodic, so the final result must be

β(z) = 1− 6{x}
(

1− {x}
)

, {x} = x− bxc . (250)

If we are interested only in −1 ≤ x ≤ 1 we may replace {x} by |z|.

11.0.8 Rational denominators for continued fractions

The continued fraction with the smallest possible coefficients is

φ1 = [1, 1, 1, 1, 1, . . .] =
1

1 + φ1

=
1

2

(√
5− 1

)
, (251)

114

the golden ratio; its approximant denominator obeys

qn = θ(n = 0, 1) + θ(n ≥ 2)(qn−1 + qn−2) , (252)

so that qn = Fn are the Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,
Fibonacci number. We can find the asymptotic behaviour by introducing
the generating function

f1(x) =
∑
n≥0

xn qn = 1 + x+ x(f1(x)− 1) + x2f1(x)

=
1

1− x− x2
. (253)

Its nearest singularity82 is at x = φ1. We can therefore approximate83

f1(x) ∼ 1

(φ1 − x)(2φ1 + 1)
=

1

φ1(2φ1 + 1)

1

1− x/φ1

, (254)

which gives84

qn ∼
1

φ1(2φ1 + 1)

(
1

φ1

)n+1

∼ (0.724) (1.618)n . (255)

A continued fraction with nonminimal coefficients is

φ2 = [2, 2, 2, 2, 2, . . .] =
1

2 + φ2

= −1 +
√

2 . (256)

Its approximant denominators, successively 1, 2, 5, 12, 29, 70, 169, 408, . . . obey
the recursion

qn = θ(n = 0) + θ(n ≥ 1)(2qn−1 + qn−2) , (257)

with generating function

f2(x) =
∑
n≥0

xn qn =
1

1− 2x− x2
. (258)

82That singularity that lie closest to the origin in the complex plane.
83A polynomial P (x) with nondegenerate roots xj is approximated by (x − xj)P ′(xj)

close to the root.
84The exact result also contains powers of 1/x1 that are therefore exponentially sup-

pressed: the approximation is therefore very good already for moderate n.

115

Its nearest singularity is at x = φ2 and proceeding as before we find

qn =
1

φ2(2φ2 + 2)

(
1

φ2

)n
∼ (0.854) (2.414)n . (259)

A continued fraction with ‘quite small’ coefficients is for instance

φ12 = [1, 2, 1, 2, 1, 2, . . .] =
1

1 + 1
2+φ12

=
2 + φ12

3 + φ12

= −1 +
√

3 , (260)

and for its approximant denominator we have

= θ(n = 0, 1) + θ(n ≥ 2, even)(2qn−1 + qn−2) + θ(n ≥ 2, odd)(qn−1 + qn−2)

= θ(n = 0, 1) + θ(n ≥ 2)(qn−1 + qn−2) + θ(n ≥ 2, even)qn−1 , (261)

and for the generating function we find

f12(x) =
∑
≥0

xn qn = 1 + xf12(x) + x2f12(x) + x
∑
n≥1

x2n−1q2n−1 . (262)

Splitting f(12x) into even and odd parts we find that there must be an even
function g(x) such that f12(x) = (1 + x− x2)g(x), and we finally arrive at

f12(x) =
1 + x− x2

(1− x2)2 − 2x2
. (263)

The resulting denominators are, successively, 1, 1, 3, 4, 11, 15, 41, 56, 153, . . .,
growing faster than the Fibonacci numbers. The generating function has its
nearest singularities at ±y0, with y0 = (

√
3 − 1)/

√
2, and we can therefore

approximate

qn ∼
1

4
√

3

[
(
√

2 + 1) + (−1)n(
√

2− 1)
] (1

y0

)n+1

=

√
3 + 1√

24

(
1

y0

)n [
θ(n odd) +

√
2 θ(n even)

]
∼ (0.789) (1.932)n , n even , (0.558) (1.932)n , n odd . (264)

The growth rate of the denominators is indeed inbetween that for φ1 and φ2.

116

References

[1] W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, Nu-
merical Recipes: The Art of Scientific Computing, Cambridge Univer-
sity Press (1986).

[2] Nineteenth Century Clouds over the Dynamical Theory of Heat and
Light, by the Right. Hon. Lord Kelvin, G.C.V.O., D.C.L., LL.D., F.R.S,
M.R.I, Philosophical Magazine S. 6. Vol. 2, no. 7. July 1901.

[3] N. Metropolis, S. Ulam, The Monte Carlo Method, J. Am. Stat. Ass.
44 (1949) 335.

[4] Monte Carlo Method (Proceedings of a symposium in Los Angeles CA,
sponsored by the RAND Corporation, the National Bureau of Stan-
dards, and the Oak Ridge National Laboratory, June 29 - July 1, 1949),
National Bureau of Standards Applied Mathematics Series 12 (1951).

[5] T.F. Chan, G.H. Golub, R.J. Leveque, Algorithms for Computing
the Sample Variance: Analysis and Recommendations, The American
Statistician 37 (1983) 242.

[6] R. Bakx, R. Kleiss, F. Versteegen, First- and second-order error es-
timates in Monte Carlo integration, Comp. Phys. Comm. 208 (2016)
29.

[7] N. Eldredge, S. J. Gould , Punctuated equilibria: an alternative to
phyletic gradualism, in T.J.M. Schopf, ed., Models in Paleobiology. (San
Francisco: Freeman, Cooper and Company), pp. 82?115.

[8] D.E. Knuth, The Art of Computer Programming, vol.2: Seminumerical
Algorithms , Addison-Wesley, 1981.

[9] T.E. Hull, A.R. Dobell, Random Number Generators SIAM Review.
4(3) 230.

[10] R.D. Carmichael, Note on a new number theory function Bull.
Am.Math.Soc. 16(1910)232.

[11] G. Marsaglia, Random Numbers Fall Mainly in the Planes , Proc. Nat.
Acad. Sci. U.S.A. 61(1)25.

117

[12] System/360 Scientific Subroutine Package, Version III, Programmer’s
Manual. IBM, White Plains, New York, 1968, p. 77.

[13] http://random.mat.sbg.ac.at/results/karl/server/server.html

[14] M. Lüscher, A Portable high quality random number generator for lat-
tice field theory simulations , Comput.Phys.Commun. 79(1994) 100.
This is an adaptation from the original algorithm proposed in
G. Marsaglia and A. Zaman, A New Class of Random Number Gener-
ators, Ann. Appl. Prob. 1 (1991)462.

[15] M. Matsumoto and T. Nishimura, Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number gener-
ator, ACM Trans. Mod. Comp. Sim. 8 (1998).

[16] H. Leeb, MSc thesis, University of Salzburg, 1995.

[17] L. Kuipers and H. Niederreiter, Uniform Distribution if Sequences,
(Dover, 2006).

[18] H. Woźniakowski, Average case complexity of multivariate integration,
Bull. AMS 24 (1991) 185.

[19] F. James, J. Hoogland, R. Kleiss, Multidimensional sampling for sim-
ulation and integration: Measures, discrepancies, and quasirandom
numbers , Comp. Phys. Comm. 99 (1997) 180.

[20] A. van Hameren, R. Kleiss , J. Hoogland, Gaussian limits for discrep-
ancies, Nucl.Phys.Proc.Suppl. 63 (1998) 988-990.

[21] J.M. Hammersley and D.C. Handscomb, Monte Carlo Methods (Lon-
don: Methuen 1964).

[22] B. Bratley, P. Fox and H. Niederreiter. AMC Transactions on Modeling
and Computer Simulation 2, 3:195.

[23] A. Lazopoulos, PhD thesis, Radboud University, Nijmegen (2007).

[24] L. Devroye, Non-uniform Random Variate Generation (Springer,
New York 1986). Out of print, it is now available for free on
www.nrbook.com/devroye.

118

[25] J. von Neumann, Various Techniques Used in Connection With Ran-
dom Digits, contribution to [4]. This 3-page paper is an absolute must
for anyone interested in Monte Carlo and its history.

[26] M. Abramowitz and I. Stegun (eds.), Handbook of Mathematical Func-
tions with Formulas, Graphs, and Mathematical Tables, (Nat. Bur.
Standards, 1964).

[27] G.E.P. Box, M.E. Muller, A Note on the Generation of Random Normal
Deviates., Ann. Math. Stat. 29 (2) (1958) 610.

[28] A.J. Kinderman, J.F. Monahan, Computer Generation of Random
Variables Using the Ratio of Uniform Deviates, ACM Trans. Math.
Softw., 3 (3) (1977).

[29] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E.
Teller, Equations of State Calculations by Fast Computing Machines,
J. Chem. Phys. 21 (6) (1953) 1087;
W.K. Hastings, Monte Carlo Sampling Methods Using Markov Chains
and Their Applications, Biometrika. 57 (1) (1970): 97.

[30] S.D. Ellis, R. Kleiss, W.J. Stirling, A New Monte Carlo Treatment of
Multiparticle Phase Space at High energies. Comp. Phys. Comm. 40
(1986) 359

[31] S. Platzer, RAMBO on diet, arXiv:1308.2922

119

Index

billets, 10
Boltzmann’s constant, 96
Buffon, 7

canonical ensemble, 96
continued-fraction representation, 73
contracted, 107

democracy, 103
detailed balance, 93

fixed point, 94

good lattice points, 71
gradient, 70

Ising system, 96

Lord Kelvin, 10

MCMC, 93
microconfigurations, 96
Monte Carlo, 11

estimators, 18
improved, 20
numerical stability, 20
positivity, 19

integration, 11
simulation, 11

most irrational number, 74

nearest singularity, 115
nonrelativistic limit, 100

phase space problem, 100
PRNG, 29

logistic-map, 34
Mersenne Twister, 39

Midsquare, 32
RANDU, 37
RCARRY, 37
shift-register, 32

programming consultant, 1

QRNG, 72
quadratic irrational, 74

Random numbers, 11
probability definition, 11
stream, 11

Rule of Nifty, 87

simulated annealing, 96

target density, 93
Temple column, 7
TGFSRPRNG, 39
Travelling Salesman, 96

ultrarelativistic limit, 100

120

	Introduction: randomness and probability
	Protohistory
	Random number streamsRandom numbers!stream
	Random numbers: circulus in probando
	What is a random stream? Relying on probability
	What is probability? Relying on a random stream
	A difference between physics and mathematics

	Miscellaneous probability items
	Some notation in these notes
	Moments and characteristic function
	The Chebyshev-Bienaymé inequality
	The Central Limit Theorem

	Monte Carlo integration
	The Monte Carlo idea
	Point sets and expectation values
	Integration as archetype
	Point sets, ensembles, and the Leap Of Faith

	Finding estimators
	Direct sums, unequal-sums, and expectation values
	The Monte Carlo estimators
	Positivity of E2 and E4

	Estimating in practice
	Improved estimators
	Numerical stability; the extended CGL algorithm
	How to do Monte Carlo integration
	How to report Monte Carlo integration
	How to interpret Monte Carlo integration

	A test case
	Exercises

	Random number generation
	Introduction to random number sources
	Natural vs Pseudo

	Pseudo-random number streams
	The structure of pseudo-random number algorithms
	The set of all algorithms
	The concept of an arbitrary algorithm
	Lessons from random algorithms
	Shift-register PRNGs

	Bad and good algorithms
	Bad: the midsquare algorithm
	Bad: the chaos approach and the logistic map
	Maybe not so bad: linear congruential methods
	Horrible: RANDU, and a possible redemption
	Good: RCARRY and RANLUX
	Good: the Mersenne Twister

	Exercises

	Testing PRNGs
	Empirical testing strategies and doubts
	The Leeb Conundrum: too much of a good thing
	Any test is a uniformity test
	The 2 characteristic

	Theoretical testing strategies
	The number-to-number correlation
	The spectral test

	Quasi-Monte Carlo
	Generalities of QMC
	The New Leap of Faith
	The mechanism of error improvement

	Error estimators
	The first-order estimate
	The second-order estimate
	Payback time: Lack of Leap of Faith is Punished

	Nonuniformity of point sets
	Measures of nonuniformity: Discrepancy
	The star discrepancy
	Random vs Regular: Translation vs Rotation
	The Roth bound
	The Koksma-Hlawka inequality
	The Wiener measure and the Wozniakowski Lemma

	Measures of nonuniformity: Diaphony
	Fourier problem classes
	Fourier diaphony
	Choosing your strengths: examples of diaphony

	QFT for diaphony
	The distribution of diaphony
	Feynman rules for diaphony in the large-N limit
	Collecting bracelets
	The diaphony distribution for large N
	The saddle-point approximation
	1/N corrections to the diaphony distribution
	The two-point function
	Testing too much: the Dirac limit

	Measures of nonuniformity: 2
	The 2 as a discrepancy
	Large-N results for 2
	Two-point function and 1/N corrections for 2

	Superuniform point sets
	Fixed point sets vs streams
	Diaphony minimisation
	Korobov sequences: good lattice points

	QRNG algorithms
	Richtmeyer-Kronecker streams
	Excursion into fractions (cont'd)
	Rational approximations to irrationals
	Almost-equidistancy for Richtmeyer sequences
	van der Corput streams
	Van der Corput sequences in more dimensions
	Niederreiter streams

	Variance reduction
	Stratified sampling
	General strategy
	An example: VEGAS
	An example: PARNI

	Importance sampling
	General strategy
	Multichanneling

	Non-uniform PRNGs
	The Art of Transforming, Rejecting, and Being Smart
	The UA formalism
	Unitary algorithms as words and as pseudocode
	Inversion of variates in UA
	Rejection of variates in UA

	Repertoire and the Rule of Nifty
	Building up a repertoire
	The normal distribution: the Box-Müller algorithm
	The Euler algorithm
	The Kinderman-Monahan algorithm

	Random-walk algorithms
	The Metropolis algorithm
	An elementary case study for Metropolis
	Applications of the Metropolis algorithm
	Gibbs sampling
	An elementary case study for Gibbs

	Phase space algorithms for particle physics
	The uniform phase space problem in particle phenomenology
	Two-body phase space
	The two-body algorithm
	Two-body reduction

	The relativistic problem
	Two-body reduction algorithm
	Massless RAMBO
	Inclusion of masses

	Nonrelativistic phase space: BOLTZ

	Appendices
	Falling powers
	Relations between direct sums and unequal-sums
	An exponential sum and the Poisson formula
	About the integral (40)
	Selfies
	Serial correlation in a real-number model
	The two-point function for the Euler diaphony
	Rational denominators for continued fractions

