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Lecture 2.

Schwinger-DeWitt technique

One-loop divergences in curved spacetime.

Renormalization group.

Form factors. High energy (UV) and low-energy (IR) limits.
Decoupling.

Running of cosmological constant (CC) and Newton constant.
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Schwinger-DeWitt technique
is the most useful method for practical 1-loop calculations .

Consider the typical form of the operator

Ĥ = 1̂�+ Π̂ + 1̂m2 .

It depends on the metric and maybe other external parameters
(via Π̂). The one-loop EA is given by the expression

i
2

Tr ln Ĥ .

Let us perform variation with respect to the external parame ters.

i
2
δ Tr ln Ĥ =

i
2

Tr Ĥ−1 δ Ĥ .

The Schwinger proper-time representation for the propagat or

Ĥ−1 =

∫

∞

0
ids e−is Ĥ .

Then, we transform δ Ĥ ·
∫

∞

0
ids e−is Ĥ = δ

∫

∞

0

ds
is

e−is Ĥ .
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After all, we arrive at

i
2

Tr log Ĥ = const − i
2

Tr
∫

∞

0

ds
s

e−is Ĥ ,

where the constant term can be disregarded.

The next step is to introduce

Û(x , x ′ ; s) = e−is Ĥ

Ĥ acts on the covariant δ -function and it proves useful to define

Û0(x , x ′ ; s) =
D1/2(x , x ′)

(4πi s)n/2
exp

{

iσ(x , x ′)

2s
− m2s

}

.

σ(x , x ′) - geodesic distance between x and x ′. It satisfies an
identity 2σ = (∇σ)2 = σµσµ .

D is the Van Vleck-Morett determinant

D(x , x ′) = det
[

− ∂2σ(x , x ′)

∂xµ ∂x ′ν

]

,

which is a double tensor density, with respect to x and x ′.
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A useful representation for the evolution operator Û(x , x ′ ; s) is

Û(x , x ′ ; s) = Û0(x , x
′ ; s)

∞
∑

k=0

(is)k âk (x , x
′) ,

âk (x , x ′) are Schwinger-DeWitt coefficients.

The evolution operator satisfies the equation

i
∂Û(x , x ′ ; s)

∂s
= − ĤÛ(x , x ′ ; s) , U(x , x ′ ; 0) = δ(x , x ′) .

Using these relations one can construct the equation for the
coefficients âk (x , x ′):

σµ∇µâ0 = 0 ,

(k+1)âk+1+σ
µ∇µâk+1 = ∆−1/2

�(∆1/2âk )+Π̂âk , k = 1, 2, 3, ... .

It is sufficient to know the coincidence limits

lim
x→x′

âk (x , x ′) .
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If we consider more general operator

S2 = Ĥ = 1̂�+ 2ĥµ∇µ + Π̂ ,

the linear term can be indeed absorbed into the covariant
derivative ∇µ → Dµ = ∇µ + ĥµ.

The commutator of the new covariant derivatives will be

Ŝµν = R̂µν − (∇ν ĥµ −∇µĥν)− (ĥν ĥµ − ĥµĥν)

and we arrive at

â1

∣

∣

∣
= â1(x , x) = P̂ = Π̂ +

1̂
6

R −∇µĥµ − ĥµĥµ .

and

â2

∣

∣

∣
= â2(x , x) =

1̂
180

(R2
µναβ − R2

αβ +�R)

+
1
2

P̂2 +
1
6
(�P̂) +

1
12

Ŝ2
µν .

The great advantage of these expressions is their universality.
They enable to analyze EA in various QFT models.
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In 4-dimensional space-time â2

∣

∣

∣
logarithmic divergences, while

â1

∣

∣

∣
defines quadratic divergences.

The derivation of the “magic” coefficient

a2 ≡ Tr â2

∣

∣

∣

is, in many cases, the most important thing.
The divergent part of EA, in the dimensional regularization , is

Γ̄
(1)
div = − µn−4

ǫ

∫

dnx
√−g tr â2(x , x) , where ǫ = (4π)2(n − 4) .

The last formula is a very powerful tool for deriving the
divergences in the models of field theory in flat and curved
space-times or even in Quantum Gravity.

Sometimes it has to be modified, for example the sign gets
changed for a fermionic case.

In complicated cases we need the generalized Schwinger-DeWitt
technique (Barvinsky & Vilkovisky, 1985) .
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Further coefficients âk , k ≥ 3 correspond to the finite part.

They are given by the expressions like

1
m2 O(R3) ,

1
m2 Rµν�Rµν , . . . (a3 case)

and therefore contribute only to the finite part of EA.

Practical calculation of the coefficients âk , k ≥ 3 is possible,
despite rather difficult.

The â3 coefficient has been derived by Gilkey (1979) and by
Avramidy (1986), who also derived â4 coefficient .
In 1989-1990 I. Avramidy and A. Barvinsky & G.V. Vilkovisky derived
important resummation of the Schwinger-DeWitt series.
As an important application one can obtain, for massive
theories, the exact one-loop form factors of the terms

R2 , C2 , F 2
µν , (∇φ)2 , φ4 .

E.Gorbar, I.Sh., G.de Berredo-Peixoto, B.Gonçalves,
JHEP (2003); CQG (2005); PRD (2009).
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In the EA Γ[Φ, gµν ] one can separate the part Γ[gµν ] which doesn’t
depend on matter fields.

It corresponds to the Feynman diagrams, with the internal lines
of matter fields and the external lines of the metric only.

Γ[gµν ] is called the EA of vacuum. It is the most important part of
EA, as far as gravitational applications are concerned.

Path integral representation of the vacuum EA

eiΓvac[gµν ] =

∫

dΦ eiS[Φ; gµν ] .

Here Φ is the set of all matter fields and gauge ghosts.
Γvac admits a loop expansion, at the tree level it is equal to Svac .

Already at this level one can make some strong statements
about possible and impossible form of quantum corrections.

Ilya Shapiro, Quantum Gravity from the QFT perspective Apri l - 2019



The effective action Γ[gµν ] is a well-defined diffeomorphism
invariant quantity constructed from the metric gµν .

As a consequence Γ[gµν ] can not include odd powers of the
metric derivatives.

Let us emphasize that this property is not related to the
perturbative expansion and is valid independent on whether the
effective action is a local functional of the metric.

Indeed, it is nonlocal, except the divergences.

This important property of effective action holds for any
particular metric, including the cosmological one.

Let us consider the simplest part, that is divergences.
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Consider one-loop divergences for the free fields, scalars,
spinors and massless vectors in curved space-time.

Scalar field. Ns-component case.

Ĥ = δi
j

(

�− m2
s − ξR

)

x , where i, j = 1, 2, ...,Ns.

The identification with the general expression

Ĥ = 1̂�+ 2ĥµ∇µ + Π̂ gives ĥµ = 0 , Π̂ = −δi
j (m

2
s + ξR).

Then, Ŝµν = 0 and P̂ = δi
j

[(

ξ − 1
6

)

R − m2
s

]

.

Finally,

Γ̄
(1)
div = −Ns µ

n−4

ǫ

∫

dnx
√−g

{1
2

m4
s + m2

s

(

ξ − 1
6

)

R

+
1
2

(

ξ−1
6

)2
R2 +

1
180

(

R2
µναβ−R2

αβ

)

−1
6

(

ξ−1
5

)

�R
}

.
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For a complex scalar field, the divergent part of the EA is twic e
of the previous result. This is nothing but the overall factor Ns.

In general, free fields give additional and independent
contributions to the vacuum divergences.

In the n = 4 conformal case ms = 0, ξ = 1/6

Γ̄
(1)
div = −µ

n−4

360ǫ

∫

dnx
√−g

{

3C2 − E + 2�R
}

.

Both classical action

Sc
0 =

∫

d4x
√−g

{

1
2

gµν ∂µϕ∂νϕ+
1
12

Rϕ2
}

and the log. divergence are conformal invariant

gµν −→ gµν e2σ(x) , ϕ −→ ϕe−σ(x) .

In the conformal scalar case the pole terms are conformal
invariant or surface structures.

!! This result holds only in certain regularizations and may be
violated in others.
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Spinor field. We meet another operator

Ĥ = i ( γα∇α − i mf ) .

The 1-loop EA is

Γ̄(1) = − i
2

Tr log Ĥ .

The sign change is due to the odd Grassmann parity of the
fermion field, while Tr is taken in the usual “bosonic” way.

After some algebra we arrive at the following expression

Γ̄
(1)
div = −µ

n−4

ǫ

∫

dnx
√−g

{

m2
f

3
R − 2m4

f +
1
20

C2(4)− 11
180

E +
1
30

�R
}

.

Again, in the conformal case mf = 0 we meet only the
conformal-invariant counterterms.
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Vector field

In the massless case we do not need to distinguish Abelian and
non-Abelian vectors, since only the free parts are importan t.

Consider a single Abelian vector. The action must be
supplemented by the gauge fixing and ghost terms.

The 1-loop contribution to the vacuum EA

Γ̄(1) =
i
2

Tr log Ĥ − i Tr log Ĥgh ,

Ĥ and Ĥgh are bilinear forms of the field and ghost actions.

The divergent part is

Γ̄
(1)
div = −µ

n−4

180ǫ

∫

d4x
√−g

{

18(C2 −�R)− 31 E
}

.

The divergences include conformal-invariant and surface t erms.
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Renormalization group equations

Renormalization group (RG) is one of the most efficient metho ds
of Quantum Field Theory, also in Stat. Mechanics.

In QFT there are many versions of RG

• Perturbative RG based on the minimal subtraction scheme of
renormalization (MS).

• Perturbative RG which is based on a more physical, e.g.,
momentum subtraction scheme of renormalization.

• Non-Perturbative RG based on the path integral integration over
momenta beyond some cut-off (Wilson approach).

• Intermediate approach with the cut-off dependence for the Green
functions by Polchinsky.

• The same in the EA formalism, by Wetterich, Morris, Percacci,
Reuter et al.
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• Consider the standard MS-based formalism of RG in curved
space . Let us denote Φ the full set of matter fields

Φ = ϕ, ψ, A

and P the full set of parameters: couplings, masses, ξ and
vacuum parameters.

The bare action S0[Φ0,P0] depends on bare quantities, S[Φ,P]
is the renormalized action.

Multiplicative renormalizability:

S0[Φ0,P0] = S[Φ,P] ,

(Φ0,P0) and (Φ,P) are related by proper renormalization
transformation. The generating functionals of the bare and
renormalized Green functions are

eiW0[J0] =

∫

dΦ0 ei(S0[Φ0,P0]+Φ0·J0) ,

eiW [J] =

∫

dΦ ei(S[Φ,P]+Φ·J) .
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The transformation for matter fields is

Φ0 = µ
n−4

2 Z 1/2
1 Φ .

Make this change of variables and denote

J0 = µ
4−n

2 Z−1/2
1 J .

Then
W0[J0] = W [J ] .

Consequently, for the mean field we meet

Φ̄0 =
δW [J0]

δJ0
=

δW [J ]
δJ

δJ
δJ0

= µ
n−4

2 Z 1/2
1 Φ̄ .

Finally, for the effective action we find

Γ0[Φ0,P0] = W0[J0]− Φ̄0 · J0 = W [J ]− Φ̄ · J = Γ[Φ,P] .
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S0 and Γ0 are 4 - dimensional integrals,
while S and Γ are n - dimensional integrals.

Γ depends on the dimensional parameter µ, while Γ0 does not
depend on µ by construction.

Therefore,
Γ0[gαβ ,Φ0,P0, 4] = Γ[gαβ ,Φ,P, n, µ] ,

and we arrive at the differential equation

µ
d

dµ
Γ[gαβ ,Φ,P, n, µ] = 0 .

Taking into account the possible µ- dependence of P and Φ we
recast this equation into
{

µ
∂

∂µ
+ µ

dP
dµ

∂

∂P
+

∫

dnxµ
dΦ(x)

dµ
δ

δΦ(x)

}

Γ[gαβ ,Φ,P, n, µ] = 0 .
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We define, as in flat space-time

βP(n) = µ
dP
dµ

, βP(4) = βP

γΦ(n) = µ
dΦ
dµ

, γΦ(4) = γΦ .

Then, the RG equation is cast in the form
{

µ
∂

∂µ
+

∫

x,n
γΦ(n)

δ

δΦ
+ βP(n)

∂

∂P

}

Γ[gαβ ,Φ,P, n, µ] = 0 .

This is the general RG equation which can be used for differen t
purposes, depending on the physical interpretation of µ.

Here
∫

x,n
=

∫

dnx
√−g and

∫

x
=

∫

x,4
.
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An example of RG equation.

The divergent part of the EA of vacuum for the theory with Ns

scalars, Nf spinors and Nv vectors

Γ̄
(1)
div = − µn−4

n − 4

∫

dnx
√−g

{

βEHR + βCC + βW C2 + βE E + βR2R2 + βd�R
}

,

where βi =
ki

(4π)2 and kCC =
1
2

m4
s − 4m4

f ,

kEH = Nsm2
s

(

ξ − 1
6

)

+
2Nf m2

f

3
, kR2 =

Ns

2

(

ξ − 1
6

)2
,

w = kW =
Ns

120
+

Nf

20
+

Nv

10
,

b = kE = − Ns

360
− 11 Nf

360
− 31 Nv

180
,

c = k� =
Ns

180
+

Nf

30
− Nv

10
.
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Consider the Weyl-squared term.

∆SW =
µn−4

ǫ

∫

dnx
√−g wC2 , w =

Ns

120
+

Nf

20
+

Nv

10
.

Renormalized action = to the bare one, SW (n) + ∆SW = S0
W .

Obviously, this means a0
1 = µn−4

(

a1 +
w
ǫ

)

. Taking

0 = µ
da0

1

dµ
= µn−4

[

(n − 4)
(

a1 +
w
ǫ

)

+ µ
da1

dµ

]

In this way we arrive at µ
da1

dµ
= −(n − 4)a1 −

w
(4π)2 .

or βW = µ
da1

dµ

∣

∣

∣

∣

n=4
= − w

(4π)2 .

For the coupling parameter λ = −(2a1)
−1 we have

µ
dλ
dµ

= − w
2 (4π)2 λ

2 ,

indicating asymptotic freedom, since in all cases w > 0.
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In a similar way one can derive RG equations for a2,3,4 and also
for Λ and G , namely

da3

dt
= µ

da3

dµ
=

Ns

2 (4π)2

(

ξ − 1
6

)2

,

(4π)2 d
dt

(

Λ

8πG

)

=
Nsm4

s

2
− 2Nf m

4
f .

(4π)2 µ
d

dµ

(

1
16πG

)

=
Nsm2

s

2

(

ξ − 1
6

)

+
Nf m2

f

3
.

These equations describe the short distance behavior of the
corresponding effective charges.

However, it is not really clear how to apply them, e.g., to
cosmology or to the black hole physics.
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Short distance limit.

Perform a global rescaling of quantities according to their
dimension

Φ → Φk−dΦ , P → Pk−dP , µ → kµ, l → k−1l.

The effective action Γ does not change.

Since Γ does not depend on xµ explicitly, one can replace
l → l × k−1 by the transformation of the metric gµν → k2gµν .

Then, in addition to RG, we meet an identity

Γ[gαβ ,Φ,P, n, µ] = Γ[k2gαβ , k−dΦΦ, k−dP P, n, k−1µ] ,

whereas the curvatures transform as

R2
µναβ ∼ k−4, R2

αβ ∼ k−4, R ∼ k−4 .
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Replace k = e−t ,

d
dt

Γ[e2t gαβ , e−dΦtΦ, edP t P, n, e−tµ] = 0 .

For t = 0 we meet
{

∫

dnx
(

2gαβ
δ

δ gαβ
− dΦ

δ

δΦ

)

− dP
∂

∂P
−µ

∂

∂µ

}

Γ[gαβ ,Φ,P, n, µ] = 0.

Together with the RG equation it gives the solution

Γ[gαβe−2t ,Φ,P, n, µ] = Γ[gαβ ,Φ(t),P(t), n, µ] ,

where P(t) and Φ(t) satisfy RG equations for “effective charges”

dΦ
dt

= (γΦ − dΦ)Φ ,
dP
dt

= βP − PdP .
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The limit t → ∞ means, the limit of short distances and great
curvatures.

It is equivalent to the standard rescaling of momenta in the
flat-space QFT.

However, one has to be careful!

The time-dependence of the metric is very similar to the
rescaling (we denote time as τ in order to avoid confusion)

gαβ → gαβ · eHτ , where H = const .

However, this situation does not correspond to the RG, becau se
scalar curvature remains constant R = −12H2.

For the most interesting physical applications we need some
special scale-setting procedure, to associate µ with some
physically relevant quantity (lecture IV - seminar).
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What are terms in the EA which are behind the RG?

Consider the simplest case of QED and the one-loop diagram
with electron loop and two photon tails (polarization opera tor).

Qualitatively, the effective action with the non-local for m factor
is similar to the expression

Γ(1) ∼ − 1
4e2

∫

d4x Fαβ

{

1 + β ln
(

�− m2
e

µ2

)}

Fαβ ,

where β is a usual Minimal Subtraction beta function.

It is easy to see that the behavior of this form factor is very
different is the UV and in the IR. In momentum Euclidean
representation:

k2 ≫ m2
e =⇒ ln

(

�− m2
e

µ2

)

≈ ln
(k2

µ2

)

,

k2 ≪ m2
e =⇒ ln

(

�− m2
e

µ2

)

≈ ln
(m2

e

µ2

)

+ O
(k2

µ2

)

.
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Decoupling at the classical level.

Consider propagator of massive field at very low energy

1
k2 + m2 =

1
m2

(

1 − k2

m2 +
k4

m4 + ...

)

.

In case of k2 ≪ m2 there is no propagation of particle.

What about quantum theory, loop corrections?

Formally, in loops integration goes over all values of momen ta.

Is it true that the effects of heavy fields always become irrel evant
at low energies?
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For simplicity, consider a fermion loop effect in QED.

In the UV, the mass of quantum fermion is negligible, this
simplifies the form factor, and we arrive at

β̃ Fµν ln
(

�

µ2

)

Fµν .

The momentum-subtraction β-function

β1
e =

e3

6a3 (4π)2

[

20a3 − 48a + 3(a2 − 4)2 ln
(2 + a

2 − a

)

]

,

a2 =
4�

�− 4m2 . Special cases:

UV limit p2 ≫ m2 =⇒ β1 UV
e =

4 e3

3 (4π)2 + O
(m2

p2

)

.

IR limit p2 ≪ m2 =⇒ β1 IR
e =

e3

(4π)2 · 4 p2

15 m2 + O
( p4

m4

)

.

This is the standard form of the Appelquist and Carazzone
decoupling theorem (PRD, 1977).
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One can obtain the general expression which interpolates
between the UV and IR limits.

e t( )
-2

t

These plots show the effective electron charge as a function of
log(µ/µ0) in the case of the MS-scheme,
and for the momentum-subtraction scheme, with ln(p/µ0) .

An interesting high-energy effect is a small apparent shift of the
initial value of the effective charge.
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Scalar contributions.

An example of finite (nonlocal) corrections (factor 1/64π2 )

Leff = Cµναβ

[

1
60ǫ

+
8Y

15a4 +
2

45a2 +
1

150

]

Cµναβ

+λφ2
[

Y (a2 − 4)
12a2 − 1

36
−
(

1
2ǫ

− Y
) (

ξ − 1
6

)]

R + ... ,

where
1
ǫ
=

1
2 − ω

+ ln
(

4πµ2

m2

)

− γ ,

Y = 1 − 1
a

ln
(

2 + a
2 − a

)

, a2 =
4�

�− 4m2 .

One can get a full form of the Appelquist and Carazzone theore m
for gravity out of these expressions.

Gorbar & Sh. JHEP, 2003, hep-ph/0210388, 0303124; 0311190;
Gorbar, Berredo-Peixoto & Sh. 2005, and others.
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In the gravitational sector we meet Appelquist and Carazzon e -
like decoupling, but only in the higher derivative sectors.
In the perturbative approach, with gµν = ηµν + hµν , we do not
see running for the cosmological and inverse Newton constan ts.
Why do we get βΛ = β1/G = 0 ?

Momentum subtraction running corresponds to the insertion of,
e.g., ln(�/µ2) formfactors into effective action.

Say, in QED: − e2

4
FµνFµν +

e4

3(4π)2 Fµν ln
(

− �

µ2

)

Fµν .

Similarly, one can insert formfactors into

Cµναβ ln
(

− �

µ2

)

Cµναβ .

However, such insertion is impossible for Λ and for 1/G,
because �Λ ≡ 0 and �R is a full derivative.

Further discussion:
Ed. Gorbar & I.Sh., JHEP (2003); J. Solà & I.Sh., PLB (2010).
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Is it true that physical βΛ = β1/G = 0 ?

Probably not. Perhaps the linearized gravity approach is simply
not an appropriate tool for the CC and Einstein terms.

Let us use the covariance arguments. The EA can not include
odd terms in metric derivatives. In the cosmological settin g this
means no O(H) and also no O(H3) terms, etc. Hence

ρΛ(H) =
Λ(H)

16πG(H)
= ρΛ(H0) +

3ν
8π

(

H2 − H2
0

)

, ν = const .

Then the conservation law for G(H; ν) gives

G(H; ν) =
G0

1 + ν ln
(

H2/H2
0

) , where G(H0) = G0 =
1

M2
P

.

Here we used the identification

µ ∼ H in the cosmological setting.
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The same ρΛ(µ) follows from the assumption of the Appelquist
and Carazzone - like decoupling for CC.

A.Babic, B.Guberina, R.Horvat, H.Štefančić, PRD 65 (2002);
I.Sh., J.Solà, C.España-Bonet, P.Ruiz-Lapuente, PLB 574 (2003).

We know that for a single particle

βMS
Λ (m) ∼ m4 ,

hence the quadratic decoupling gives

βIR
Λ (m) =

µ2

m2 β
MS
Λ (m) ∼ µ2m2 .

The total beta-function will be given by algebraic sum

βIR
Λ =

∑

kiµ
2m2

i = σM2 µ2 ∝ 3ν
8π

M2
P H2 .

This leads to the same result in the cosmological setting,

ρΛ(H) = ρΛ(H0) +
3ν
8π

M2
p

(

H2 − H2
0

)

.
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One can obtain the same G(µ) in one more independent way.

I.Sh., J. Solà, JHEP (2002); C. Farina, I.Sh. et al, PRD (2011).

Consider MS-based renormalization group equation for G(µ):

µ
dG−1

dµ
=

∑

particles

Aij mi mj = 2νM2
P , G−1(µ0) = G−1

0 = M2
P .

Here the coefficients Aij depend on the coupling constants,
mi are masses of all particles. In particular, at one loop,

∑

particles

Aij mi mj =
∑

fermions

m2
f

3(4π)2 −
∑

scalars

m2
s

(4π)2

(

ξs −
1
6

)

.

One can rewrite it as

µ
d(G/G0)

dµ
= −2ν (G/G0)

2 =⇒ G(µ) =
G0

1 + ν ln
(

µ2/µ2
0

) . (∗)

It is the same formula which results from covariance and/or f rom
AC-like quadratic decoupling for the CC plus conservation l aw.
(∗) seems to be a unique possible form of a relevant G(µ).
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All in all, it is not a surprise that the eq.

G(µ) =
G0

1 + ν ln
(

µ2/µ2
0

) .

emerges in different approaches to renorm. group in gravity :

• Higher derivative quantum gravity.
A. Salam & J. Strathdee, PRD (1978);
E.S. Fradkin & A. Tseytlin, NPB (1982).

• Non-perturbative quantum gravity with (hipothetic) UV-st able
fixed point.
A. Bonanno & M. Reuter, PRD (2002).

• Semiclassical gravity.
B.L. Nelson & P. Panangaden, PRD (1982).
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So, we arrived at the two relations:

ρΛ(H) = ρΛ(H0) +
3ν
8π

M2
p

(

µ2 − µ2
0

)

(1)

and G(µ) =
G0

1 + ν ln
(

µ2/µ2
0

) . (2)

Remember the standard identification

µ ∼ H in the cosmological setting.

A. Babic, B. Guberina, R. Horvat, H. Štefančić, PRD (2005).

Cosmological models based on the assumption of the standard
AC-like decoupling for the cosmological constant:

• Models with (1) and energy matter-vacuum exchange:
I.Sh., J.Solà, Nucl.Phys. (PS), IRGA-2003;
I.Sh., J.Solà, C.España-Bonet, P.Ruiz-Lapuente, PLB (2003).

• • Models with (1), (2) and without matter-vacuum exchange:
I.Sh., J.Solà, H.Štefančić, JCAP (2005).
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• Models with constant G ≡ G0 and permitted energy
exchange between vacuum and matter sectors.

For the equation of state P = αρ the solution is analytical,

ρ(z; ν) = ρ0 (1 + z)r ,

ρΛ(z; ν) = ρΛ0 +
ν

1 − ν
[ ρ(z; ν)− ρ0 ] ,

The limits from density perturbations / LSS data: |ν| < 10−6.

Analog models:
Opher & Pelinson, PRD (2004); Wang & Meng, Cl.Q.Gr. 22 (2005).

Direct analysis of cosmic perturbations:
J. Fabris, I.Sh., J. Solà, JCAP 0702 (2007).

Given the Harrison-Zeldovich initial spectrum, the power
spectrum today can be obtained by integrating the eqs. for
perturbations.

Initial data based on w(z) from J.M. Bardeen et al, Astr.J. (1986).
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Results of numerical analysis for the • model:
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(d)

The ν-dependent power spectrum vs the LSS data from the
2dfFGRS. The ordinate axis represents P(k) = |δm(k)|2 where
δm(k) is the solution at z = 0. ν = 10−8, 10−6, 10−4, 10−3.
In all cases Ω0

B ,Ω
0
DM ,Ω

0
Λ = 0.04, 0.21, 0.75.
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•• Models with variable G = G(H) but without energy
exchange between vacuum and matter sectors.

Theoretically this looks much better!

ρΛ(H) = ρΛ(H0) +
3ν
8π

M2
p

(

H2 − H2
0

)

.

By using the energy-momentum tensor conservation we find

G(H; ν) =
G0

1 + ν ln
(

H2/H2
0

) , where G(H0) =
1

M2
P

.

These relations exactly correspond to the RG approach
discussed above, with µ = H .

I.Sh., J.Solà, H.Štefančić, JCAP (2005).
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General situation

We can not prove that there is a relevant IR running of
cosmological and/or Newton constants.

And we can not disprove it too.

We can instead use phenomenological approach and try to
check what can be the consequences of such a running at the
level of the universe or in the astrophysical domain.

D. Rodrigues, P. Letelier & I.Sh., JCAP (2010).

Another possibility is to model such a running with some
covariant terms, e.g.,

R
1
�2 R, Rαβ

1
�2 Rαβ , R

1
�

R, Rαβ
1
�

Rαβ .

Gorbar & Sh. JHEP, 2003, hep-ph/0210388.
and many other papers after that.

Ilya Shapiro, Quantum Gravity from the QFT perspective Apri l - 2019



Conclusions

• The renormalization program is a full success of we are
interesting in getting free of divergences.

• Perturbative Renormalization Group is formulated without
difficulties within Minimal Subtraction scheme.

• Unfortunately the problems start right at the point when we
need to calculate finite part of EA. For, example, there is no
unique interpretation of µ or t = ln(µ/µ0) for the case of
inflation and, in fact, in many other cases.

• The question of whether CC can be variable is, to some
extent, reduced to existing-nonexisting paradigm.
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Exercises and references

1. About the Schwinger-DeWitt technique the useful reading is

Refs.: [1.1] B.S. DeWitt, Dynamical Theory of Groups and Fields,
(Gordon and Breach, 1965).
[1.2] B.S. DeWitt, The Global Approach to Quantum Field Theory,
(Clarendon Press, Oxford. Vol. 2 - 2003).
[1.3] I.G. Avramidi, hep-th-9410140; Heat kernel and quantum gravity.
(Springer-Verlag, 2000).
[1.4] D.V. Vassilevich, Phys. Rept. 388 (2003) 279, hep-th/0306138.
[1.5] A.O. Barvinsky and G.A. Vilkovisky, The generalized
Schwinger-DeWitt technique in gauge theories and quantum gravity,
Phys. Rep. 119 (1985) 1.

2. Many examples of using Schwinger-DeWitt technique, both basic
and advanced, can be found in

[2.1] I.L. Buchbinder, S.D. Odintsov and I.L. Shapiro, Effective Action
in Quantum Gravity. (IOP Publishing, 1992). [BOS].
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3. Definition of renormalization group equations in curved space. The
use of renormalization group equations for deriving effective potential
and other sectors of effective action.

Refs.: [3.1] BOS.
[3.2] I.L. Buchbinder, On Renormalization Group Equations in Curved
Space-Time. Theor. Math. Phys. 61 (1984) 393.

4. Discuss the renormalization group equations for the effective
action. Does parameter µ have physical sense? How can we use µ?

Refs.: [4.1] arXiv:0910.4925.
[4.2] BOS, arXive: 1107.2262.

5. Write down the renormalization-group corrected classical action.
Use the fact that the overall dependence on µ should cancel. What
changes when we go from flat to curved space?
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