Study of structure and reactions of radioactive nuclei using the RIBRAS facility

Alinka Lépine-Szily IF-USP

ICTP-SAIFR/FAIR Workshop on Mass Generation in QCD

Outline:

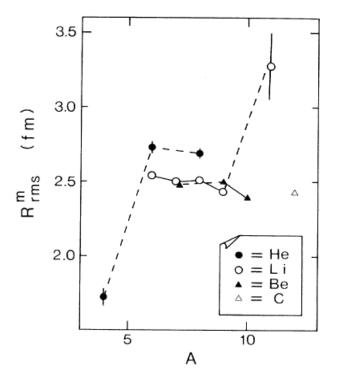
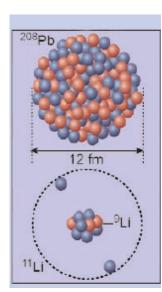
- Some properties of nuclei far from the stability valley: change from well established behavior.
- Production methods of radioactive beams, at different energies.
- Large effort and investments in new accelerator facilities: FAIR (Germany), FRIB (USA), SPIRAL (France), RIKEN-RIBF (Japan), RAON (South Korea), HIAF (China) etc.
- RIBRAS (Radioactive Ion Beams in Brazil) and its results

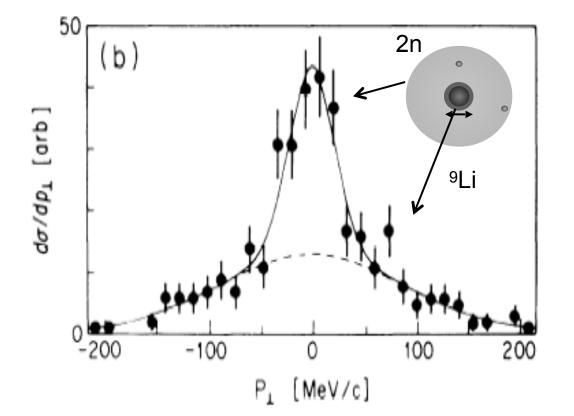
Study of properties of nuclei far from the stability valley

Matter rms radius measurement of Li isotopes at LBL Bevalac

I.Tanihata et al. Phys. Rev. Lett. 55, 2676 (1985)

 R_{rms} (11Li) = 3.27(24) fm

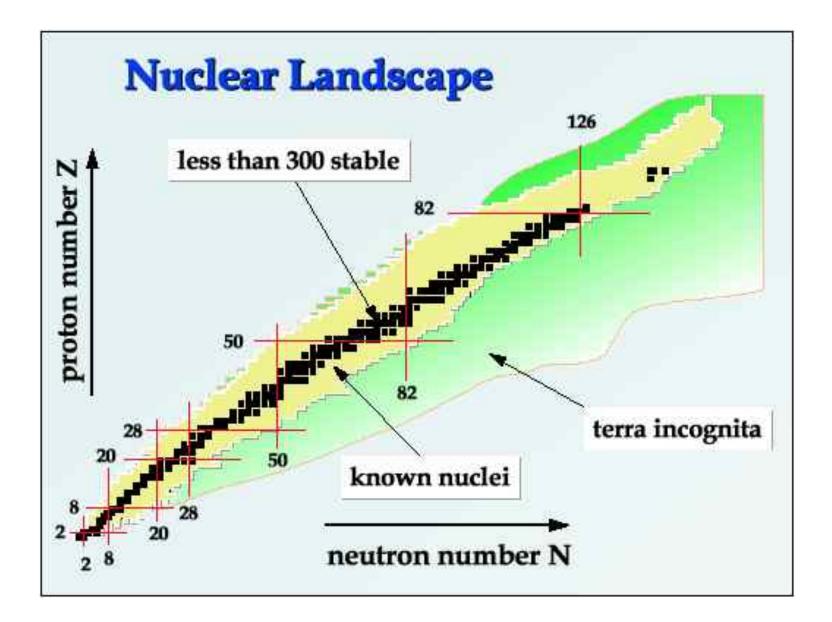



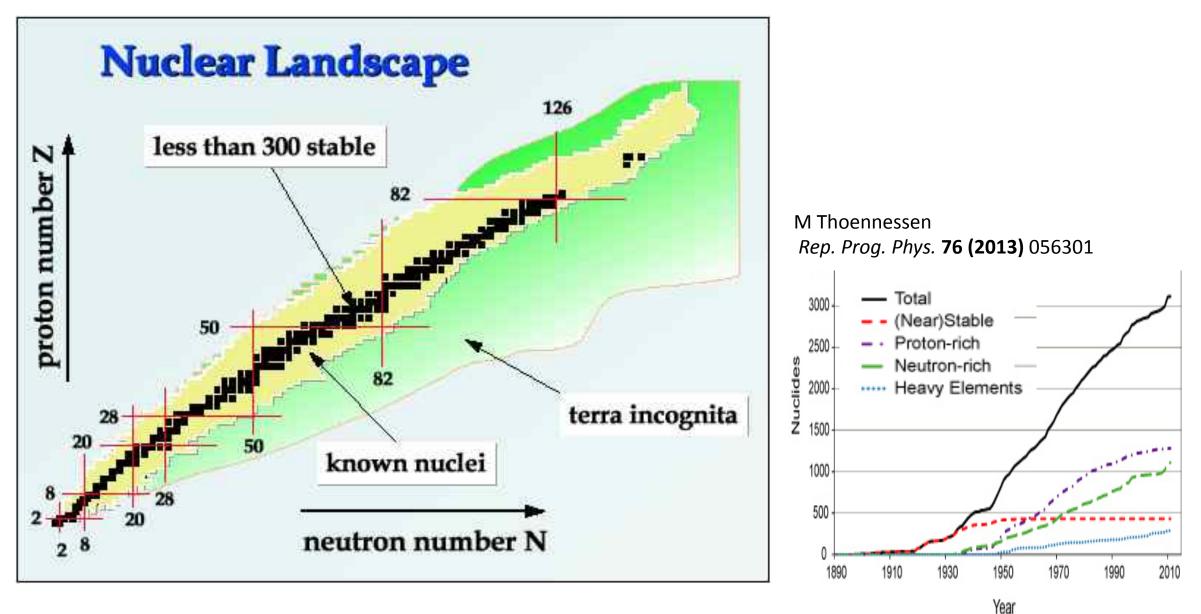

FIG. 3. Matter rms radius $R_{\rm rms}^m$. Lines connecting isotopes are only guides for the eye. Differences in radii are seen for isobars with A = 6, 8, and 9. The ¹¹Li isotope has a much larger radius than other nuclei.

Breakup of ¹¹Li on ¹²C target ¹¹Li \rightarrow ⁹Li +n + n

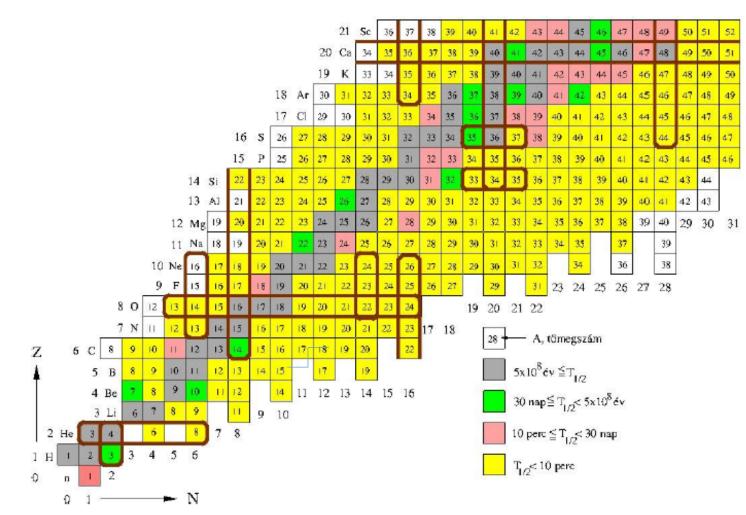
Kobayashi et al. measured the momentum distribution of ⁹Li: 2 widths: --- a large width Δp distribution \rightarrow well localized ⁹Li core, small Δr --- a small width Δp ditribution \rightarrow 2 neutrons, large Δr distribution \rightarrow $\Delta r \sim 8.26$ fm $\sim R(^{208}Pb)$

Uncertainty principle of Heisenberg: $\Delta p \Delta r \sim \hbar$

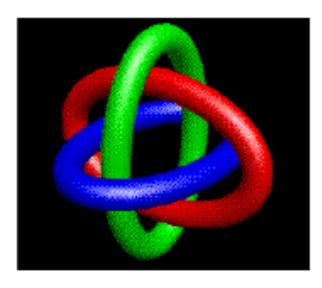




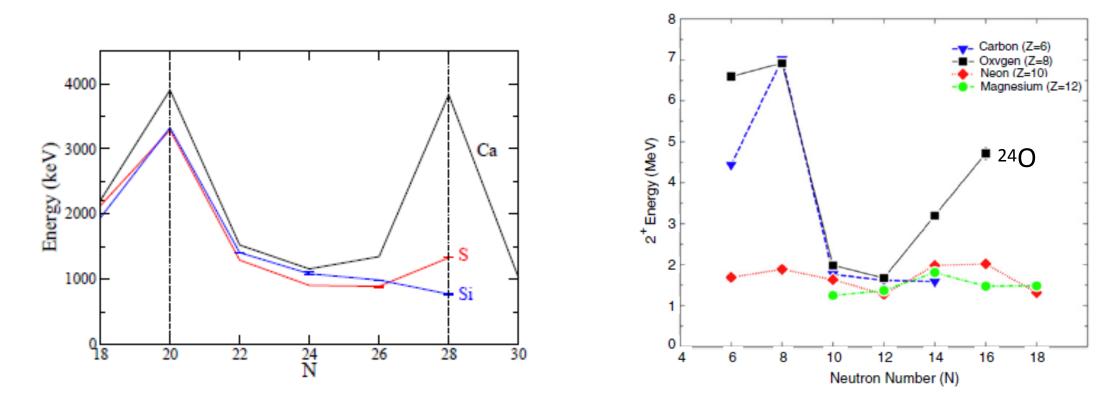
T.Kobayashi et al, PRL 60(1988)2599 $\Delta p_{wide} = 95 \pm 12 MeV / c \rightarrow normal \rightarrow R = 2.07 fm$ $\Delta p_{narrow} = 23 \pm 5 MeV / c \rightarrow exotic \rightarrow R = 8.26 fm$ $R_{11Li} = \frac{9}{11} 2.07 + \frac{2}{11} 8.26 = 3.19 fm$


						²⁰ Na	²¹ Na	²² Na	²³ Na	²⁴ Na	²⁵ Na	²⁶ Na	²⁷ Na	²⁸ Na	²⁹ Na	³⁰ Na	³¹ Na	³² Na
				¹⁷ Ne	¹⁸ Ne	¹⁹ Ne	²⁰ Ne	²¹ Ne	²² Ne	²³ Ne	24 Ne	²⁵ Ne	²⁶ Ne	²⁷ Ne	28Ne	²⁹ Ne	³⁰ Ne	³¹ Ne
					¹⁷ F	¹⁶ F	¹⁹ F	20 F	²¹ F	²² F	23F	²⁴ F	²⁵ F	²⁶ F	²⁷ F		²⁹ F	
	-	¹³ 0	¹⁴ O	¹⁵ 0	160	170	¹⁸ 0	¹⁹ 0	200	210	220	²³ O	240		1			
I	-	¹² N	¹³ N	14M	15N	¹⁶ N	¹⁷ N	¹⁸ N	¹⁹ N	²⁰ N	²¹ N	²² N	²³ N					
°C	10 C	11C	12C	13C	14C	¹⁵ C	¹⁶ C	17 C	¹⁸ C	¹⁹ C	20C		²² C					
₿B		10B	11B	¹² B	13B	¹⁴ B	¹⁵ B		¹⁷ B		¹⁹ B			1				
⁷ Be		°Be	¹⁰ Be	¹¹ Be	¹² Be		¹⁴ Be											
⁶ Li	7Li	⁸ Li	9Li		¹¹ Li					Neu	tron	and	pro	ton-	halo	nuc	lei	
	۴He		°He															
	⁸ ₿ ³Be	⁸ Β ⁷ Be ⁶ Li ⁷ Li	¹² N ⁹ C ¹⁰ C ¹¹ C ⁸ B ¹⁰ B ⁷ Be ⁹ Be ⁶ Li ⁷ Li ⁸ Li	¹² N ¹³ N ⁹ C ¹⁰ C ¹¹ C ¹² C ⁸ B ¹⁰ B ¹⁰ B ¹¹ B ⁷ Be ⁹ Be ¹⁰ Be ⁸ Li ⁷ Li ⁸ Li ⁹ Li	130 140 150 12N 13N 14N 9C 10C 11C 12C %B 10C 11C 12C %B 10B 11B 12B 7Be %Be 1%Be 1%Be %Li 7Li %Li 9Li	130 140 150 160 12N 13N 14N 15N 9C 10C 11C 12C 13C 14C 8B 10B 11B 12B 13B 7Be 9Li 8Li 9Li 11Be 12Be	17 Ne 18 Ne 19 Ne 17 Ne 18 Ne 19 Ne 17 F 18 F 17 F 18 F 17 F 18 F 13 O 14 O 15 O 16 O 13 O 14 O 15 O 16 O 17 O 12 N 13 N 14 N 15 N 16 N 9 C 10 C 11 C 12 C 13 C 14 C 15 C 8 B 10 B 11 B 12 B 13 B 14 B 7 Be 10 B 11 B 12 B 12 B 14 B 8 Li 9 Be 10 B 11 Be 12 B 12 B	17 Ne 18 Ne 19 Ne 29 Ne 17 Ne 18 Ne 19 Ne 29 Ne 17 F 16 F 19 F 130 140 150 160 170 180 12 N 13 N 14 N 15 N 16 N 17 N 9C 10 C 11 C 12 C 13 C 14 C 15 D 9B 10 B 11 B 12 B 13 B 14 B 15 B 7 Be 10 B 11 B 12 B 13 B 14 B 15 B 6 Li 7 Li 8 Li 9 Li 1 Be 12 B 12 B 14 B 14 Be	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 Ne 18 Ne 19 Ne 21 Ne 21 Ne 23 Ne 24 Ne 25 Ne 26 Ne 17 F 18 Ne 19 Ne 29 F 21 Ne 23 Ne 24 Ne 25 Ne 26 Ne 17 F 16 F 19 F 29 F 21 F 22 F 23 F 24 F 25 F 130 140 150 150 160 190 200 210 220 23 Ne 24 Ne 24 Ne 9C 10C 140 150 150 160 190 200 210 220 23 Ne 240 9C 10C 11C 31N 14N 15N 16N 19N 19N 29N 21N 22N 23N 9C 10C 11C 32N 14 B 15 B 19N 29N 21N 29C 29C 29C 29C 19 B 19 B	i i	17 Ne 18 Ne 19 Ne 29 Ne 21 Ne 23 Ne 24 Ne 26 Ne 26 Ne 28 Ne 17 F 18 Ne 19 Ne 29 Ne 21 Ne 21 Ne 24 Ne 25 Ne 26 Ne 27 Ne 28 Ne 130 140 150 160 17 Ne 18 Ne 19 Ne 20 P 21 F 22 P 23 Ne 24 Ne 26 Ne 26 Ne 27 Ne 27 P 130 140 150 160 17 Ne 18 Ne 19 Ne 20 O 21 O 22 O 23 O 24 O 24 Ne 24 Ne 24 Ne 24 Ne 26 Ne 26 Ne 27 Ne	i i	i i

I. Tanihata et al. / Progress in Particle and Nuclear Physics 68 (2013) 215–313



One of the foreront of nuclear structure and dynamics research is the study of « exotic nuclei »

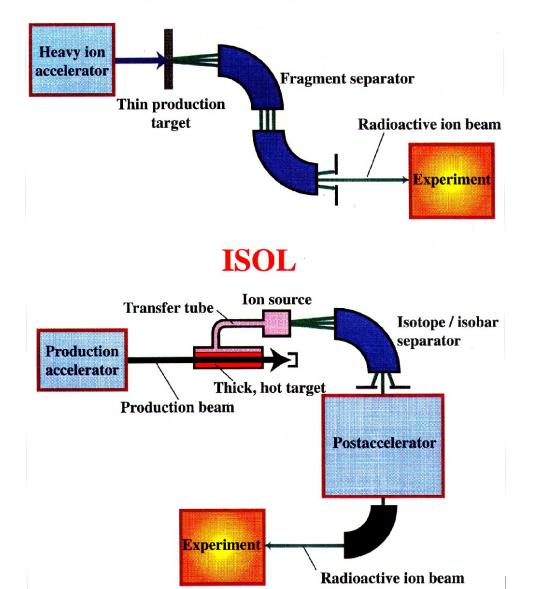

3- body borromean system

 \rightarrow The 2 n interaction bounds the ¹¹Li nucleus

Exotic nuclei: close to the dripline, very low binding energy, very short half life, strange properties (halo, skin, change in shell structure etc)

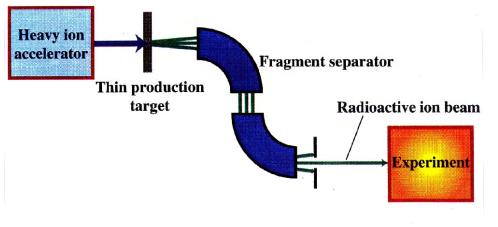
Change in magic numbers close to the drip lines :: $8 \rightarrow 6$, $20 \rightarrow 16$, $28 \rightarrow 30,32$ blue is stable, red close to the dripline.

C.R.Hoffman et al. Phys. Lett.B672,17 (2009)

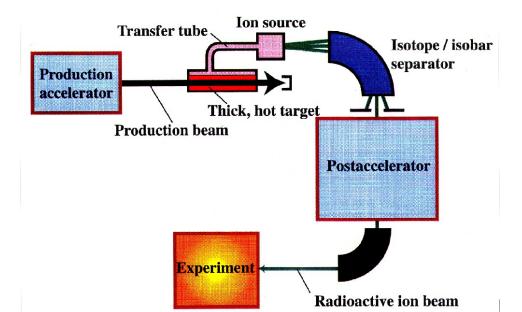

Sorlin, O.; Porquet, M. -G. PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 61, 602-673 (2008)

N=28 is not magic number for Z=14 and 16.

²⁴O is doubly magic (Z=8, N=16) spherical nucleus on the neutron drip-line (the last 2 neutrons are in a $2s_{1/2}$ shell)


Production methods of radioactive beams

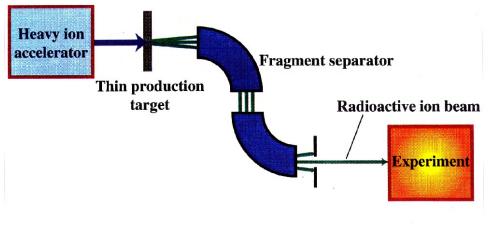
Projectile Fragmentation



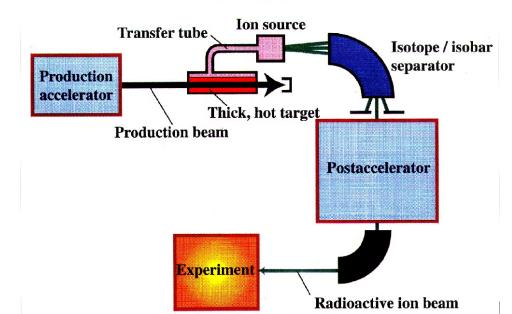
Production methods of radioactive beams

Projectile Fragmentation

ISOL



Fragmentation on thin target
 Intermediate to high energy:100 MeV/u to GeVu to GeVu
 u, in-flight separation.


--Quick process, the secondary beam has similar velocity to the primary stable beam. very short lived radioactive nuclei <u>GANIL, RIKEN-RIBF, GSI, MSU-NSCL, FRIB, FAIR</u>

Production methods of radioactive beams

Projectile Fragmentation

ISOL

- Fragmentation on thin target
 Intermediate to high energy:100 MeV/u to GeVu to GeVu
 u, in-flight separation.
- --Quick process, the secondary beam has similar velocity to the primary stable beam. very short lived radioactive nuclei <u>GANIL, RIKEN-RIBF, GSI, MSU-NSCL, FRIB, FAIR</u>

ISOL(isotope separation on line)

High energy (GeV/n) stable projectile on thick target: spallation. Re-acceleration produces low energy beams of longer halflives CERN-ISOLDE, TRIUMF, FRIB Large investments for new accelerator facilities : FAIR (Germany), FRIB (USA), SPIRAL (France), RIKEN (Japan), RAON (South Korea), HIAF (China) etc.

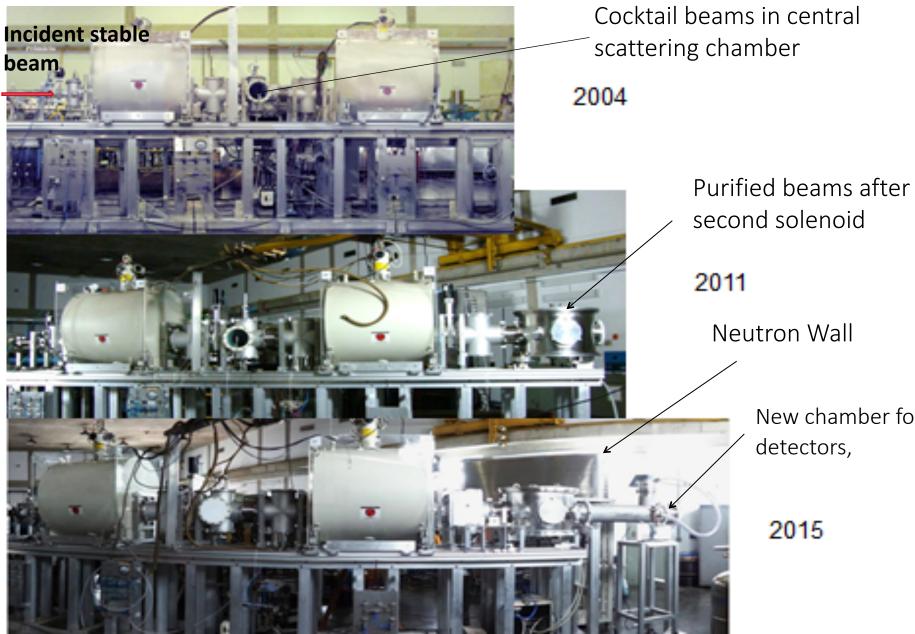
All new accelerator facilities will have Radioactive Ion Beams (RIB):

Method: projectile fragmentation on thin target Characteristics: RIB of relatively high energy, 200 – 2700 MeV/u (for U) Large variety of RIBs, becoming truly exotic (very n-rich) Large increase in beam intensities

Some will have also low energy beams, stopping and reaccelerating, ISOL method.

However low energy RIB also has interest : spectroscopy, mass and radius measurements, fusion below the Coulomb barrier, nuclear astrophysics etc

Low-energy accelerators can also produce radioactive beams, using transfer reactions, fusion, fission, fragmentation.


Ex: University of São Paulo, RIBRAS (Radioactive Ion Beam in Brasil)

Others : Notre Dame University, TwinSol Double solenoid Florida State University Argonne National Laboratory

2004 First RIB facility in Southern Hemisphere RIBRAS – 2 superconducting solenoids

Evolution of the RIBRAS system

New chamber for γ-

Eur. Phys. J. A (2014) **50**: 128 DOI 10.1140/epja/i2014-14128-4

THE EUROPEAN PHYSICAL JOURNAL A

Review

The Radioactive Ion Beams in Brazil (RIBRAS) facility

Description, program, main results, future plans

A. Lépine-Szily^a, R. Lichtenthäler, and V. Guimarães

Instituto de Física da Universidade de São Paulo, Caixa Postal 66318, 05314-0970, São Paulo, SP, Brazil

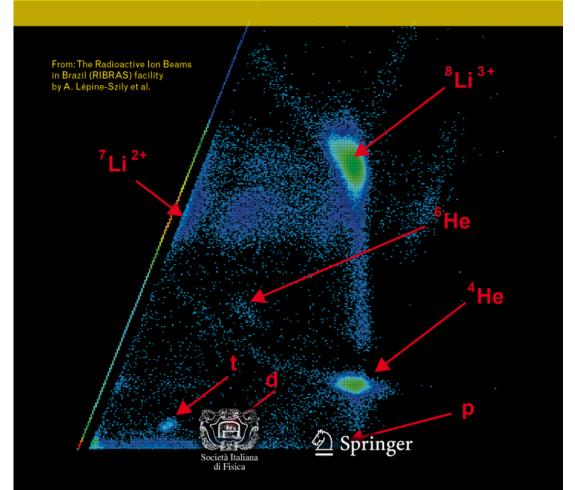
Eur. Phys. J. A (2014) **50**: 128 DOI 10.1140/epja/i2014-14128-4 The European Physical Journal A

Review

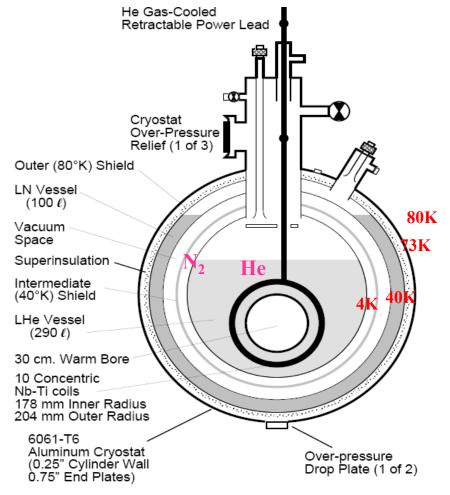
The Radioactive Ion Beams in Brazil (RIBRAS) facility

Description, program, main results, future plans

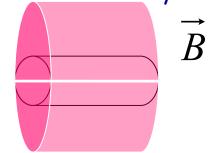
A. Lépine-Szily^a, R. Lichtenthäler, and V. Guimarães

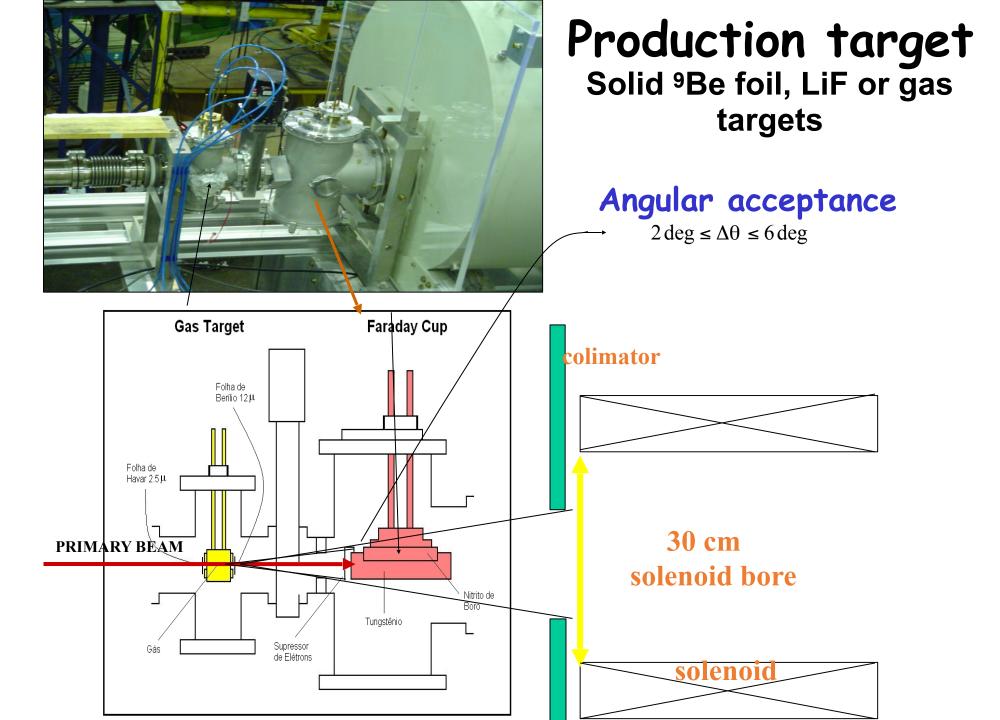

Instituto de Física da Universidade de São Paulo, Caixa Postal 66318, 05314-0970, São Paulo, SP, Brazil

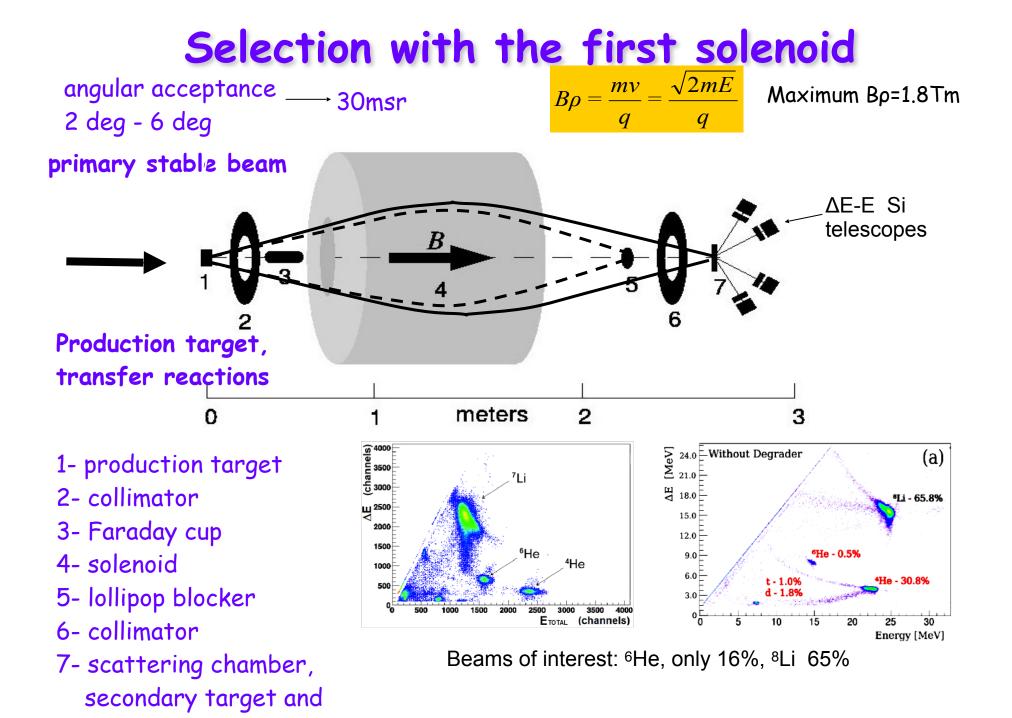
The European Physical Journal


volume 50 · number 8 · august · 2014

Hadrons and Nuclei

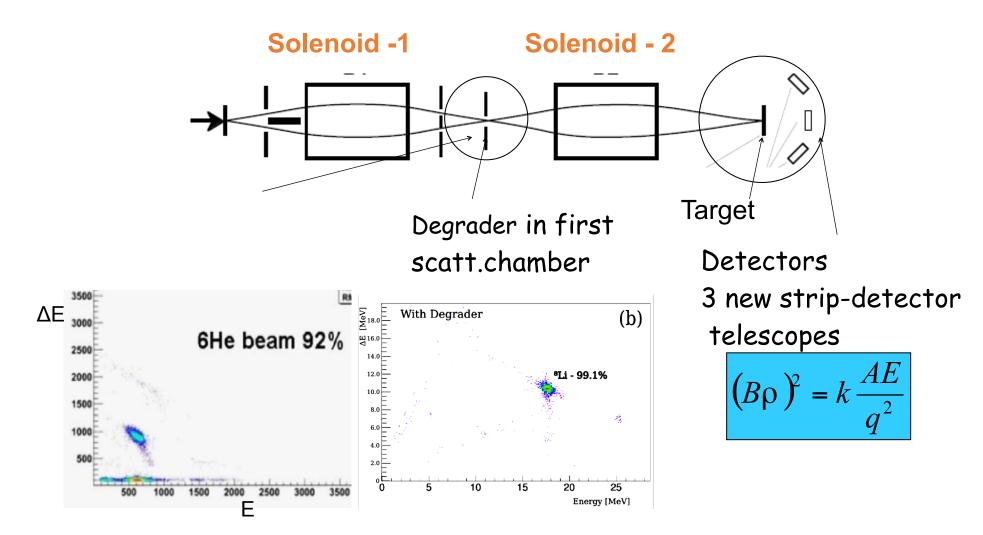



Superconducting Solenoid



Fabricant: Cryomagnetics Inc, Oak Ridge USA

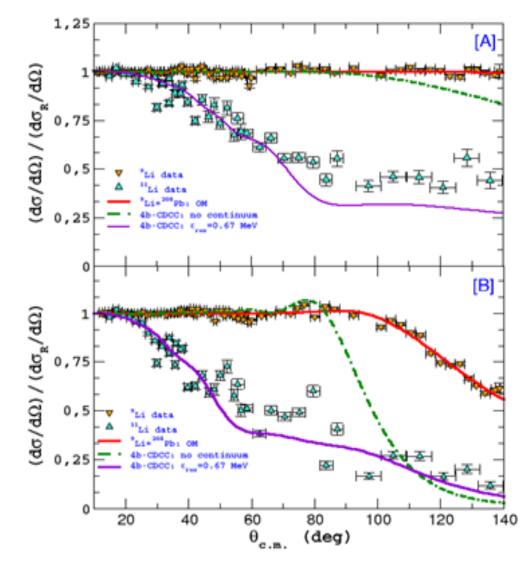
- Magnet NbTi
- Field integral 5 T.m.
- Max. central field 6.52 T
- Max. current 91.86 A
- Inductance 309 H
- Stored Energy 1.3 MJ
- LHe vessel 250 litros
- LHe boil-off rate 3.4 liters/day
- LN2 Vessel 130 Litros
- LN2 15 liters/day



Double solenoids (cross-over mode)

Second solenoid helps cleaning the secondary beam: Degrader changes the $B\rho$ of the particles with different Z (q)

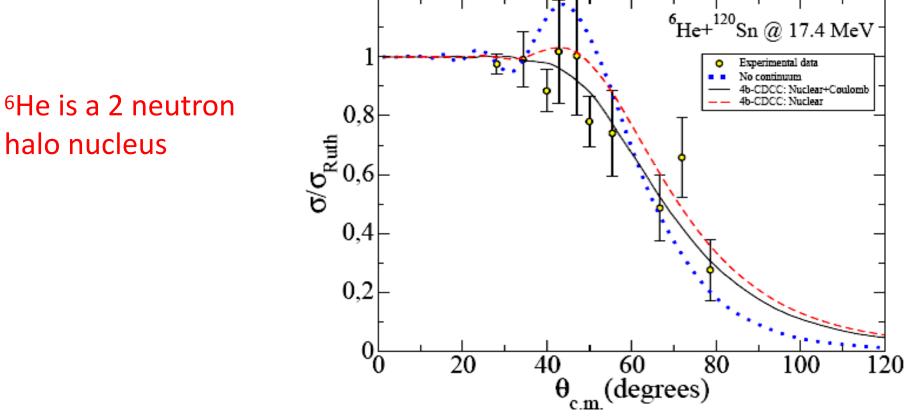
Present radioactive beams at RIBRAS


secondary ion	reaction	intensity / 1µA of primary beam
⁶ He	⁹ Be(⁷ Li, ⁶ He)	2 x 10 ⁵ p/s
8_1	⁹ Be(⁷ Li, ⁸ Li)	10 ⁶ p/s
⁷ Be	³ He(⁶ Li, ⁷ Be)	6x10 ⁵ p/s
⁷ Be	⁶ Li(⁷ Li, ⁷ Be)	10 ⁵ p/s
¹⁰ Be	⁹ Be(¹¹ B, ¹⁰ Be)	2 x 10 ³ p/s
8 <mark>8</mark>	³ He(⁶ Li, ⁸ B)	104 p/s
12 B	⁹ Be(¹¹ B, ¹² B)	10 ⁴ p/s
18 F	¹² C(¹⁷ O, ¹⁸ F)	10 ⁴ p/s
17 F	³ He(¹⁶ O, ¹⁷ F)d	*

Scientific interest at RIBRAS: study of nuclear reactions with weakly-bound, cluster-structured, low-energy, light, radioactive ion beams

Elastic scattering: (only first solenoid) 6He +9Be,27Al,51V,58Ni,120Sn 7Be + 27Al, 51V 8Li + 9Be, 51V 8B + 27Al 8Li, 7Be, 9Be, 10Be on 12C 8Li + p, 6He + p

Transfer reactions: ⁸Li(p,α)⁵He, ¹²C(⁸Li,⁹Li)¹¹C


State of the art: Elastic scattering of ¹¹Li and ⁹Li on ²⁰⁸Pb at theCoulomb barrierCubero, M.et al, Phys. Rev. Lett. 109, 262701 (2012)

Elastic differential cross section of ⁹Li and ¹¹Li on ²⁰⁸Pb , plotted as a ratio to the Rutherford cross section. In the upper part it is shown for energies below the barrier, $E_{c.m.} = 23.1$ MeV, and in the bottom part for $E_{c.m} = 28.3$ MeV. The optical model (OM) calculation for the ⁹Li+²⁰⁸Pb system is also shown in each panel.

Coupling to the breakup of ¹¹Li (states in the continuum) explains the strong reduction in cross section. CDCC (Continuum Discretized Coupled Channels) calculation reproduces the data.

⁶He + ¹²⁰Sn elastic scattering, measured at RIBRAS

Details of the coupling to the break-up channel

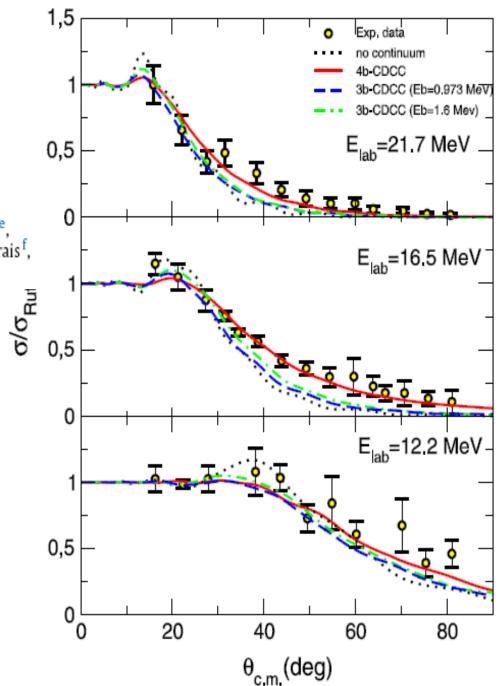
..... No-coupling to exited states, equiv to optical model calculation

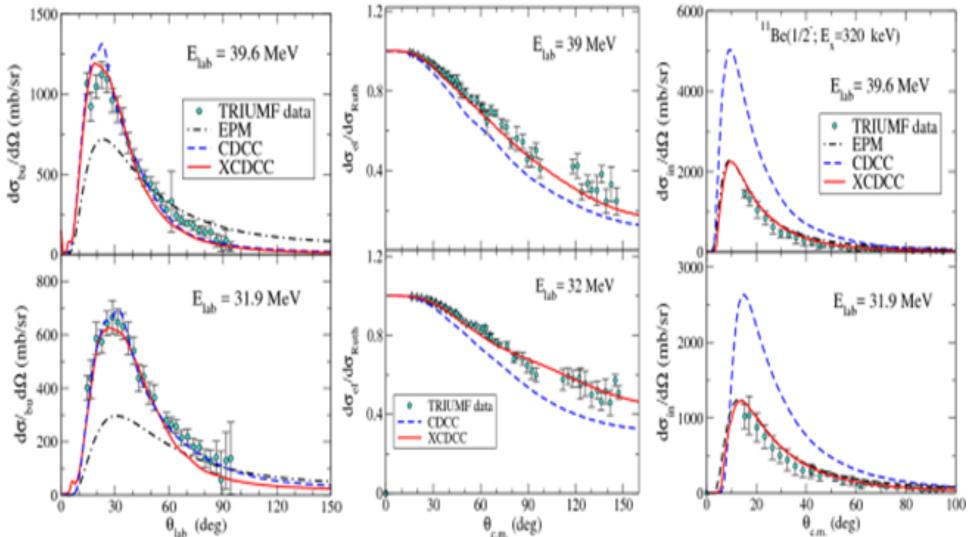
– – 4b-CDCC only nuclear coupling

- 4b-CDCC Coulomb + nuclear coupling

⁶He + ⁵⁸Ni elastic scattering

Physics Letters B 732 (2014) 228-232


Four-body effects in the ${}^{6}\text{He} + {}^{58}\text{Ni}$ scattering


V. Morcelle^{a,b}, K.C.C. Pires^{c,d}, M. Rodríguez-Gallardo^e, R. Lichtenthäler^{d,*}, A. Lépine-Szily^d, V. Guimarães^d, P.N. de Faria^b, D.R. Mendes Junior^b, A.M. Moro^e, L.R. Gasques^d, E. Leistenschneider^d, R. Pampa Condori^d, V. Scarduelli^d, M.C. Morais^f, A. Barioni^g, J.C. Zamoraⁱ, J.M.B. Shorto^h

Comparison with CDCC calc.

3-body and 4-body CDCC calculations give different cross Sections at $\theta_{cm} > 40^{o.}$

Excellent agreement with 4-body CDCC calculation

¹¹Be is a 1 neutron halo nucleus

These data and calculations show that the the ¹⁰Be core is excited during the reaction

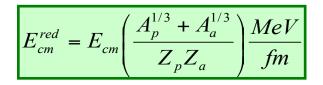
Experimental differential cross sections compared to theoretical calculations of the elastic scattering of ¹¹Be+¹⁹⁷Au (figures in the central column), of the ¹¹Be breakup (figures in the column to the left), of the inelastic

scattering of ¹¹Be (figures in the column to the right). **Exclusive measurements** V. Pesudo, et al, Phys. Rev. Lett. 118, 152502 (2017)

Present and future plans at RIBRAS for nuclear reactions:

Increase the detection capability for charged particles and γ-rays at RIBRAS.

Perform exclusive measurements: coincidence between the clusters emitted in breakup and the scattered particle, or measure the breakup in coincidence with γ -rays.


Total reaction cross section can be deduced from elastic scattering analysis.

$$\sigma_{reac} = 2\pi \int_{\theta_0}^{180} [\sigma_{Ruth}(\theta) - \sigma(\theta)] \sin \theta d\theta$$

This information is useful to investigate the role of breakup (or other reaction mechanisms) for weakly-bound / exotic nuclei. To compare total reaction cross sections of systems with different projectiles and targets, including halo nuclei, a reduction is introduced

reduced energy

reduced reaction cross section

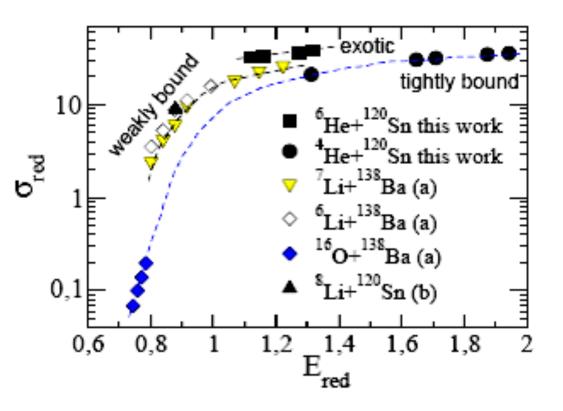
$$\sigma_R^{red} = \frac{\sigma_R}{\left(A_p^{1/3} + A_a^{1/3}\right)^2} (mb)$$

Removes: Geometrical differences arising from sizes and charges

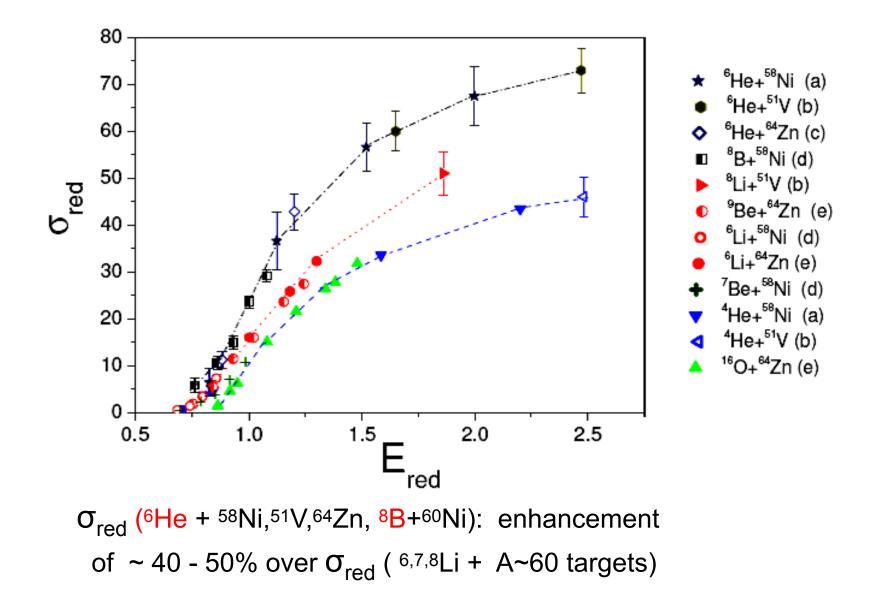
PHYSICAL REVIEW C 71, 017601 (2005)

Uncertainties in the comparison of fusion and reaction cross sections of different systems involving weakly bound nuclei

P. R. S. Gomes, J. Lubian, I. Padron, and R. M. Anjos Instituto de Física, Universidade Federal Fluminense, Av. Litorânea, s/n, Gragoatá, Niterói, R.J., 24210-340, Brazil


Total reaction cross sections on A~120 targets

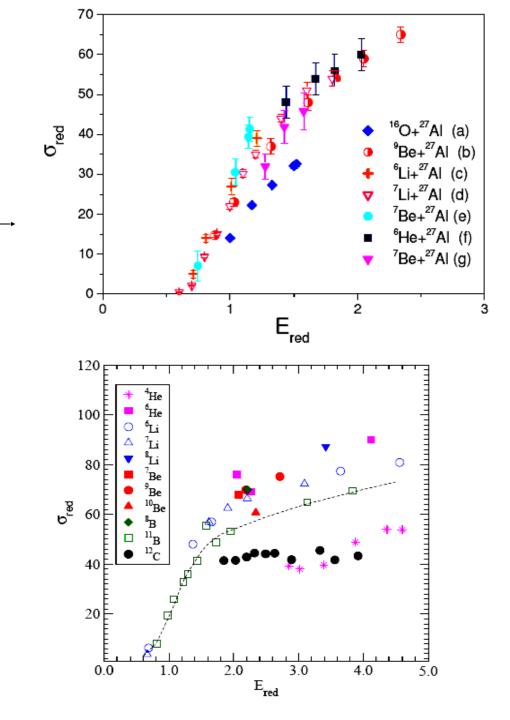
Reduction or scaling:


 σ_{red} (⁶He +¹²⁰Sn): enhancement of ~ 50% over σ_{red} (⁷Li+¹³⁸Ba)

The scaling yields 3 trends:

Lowest σ_{red} -> tightly bound Higher σ_{red} -> weakly bound Highest σ_{red} -> halo projectile

Total reaction cross sections on A~60 targets

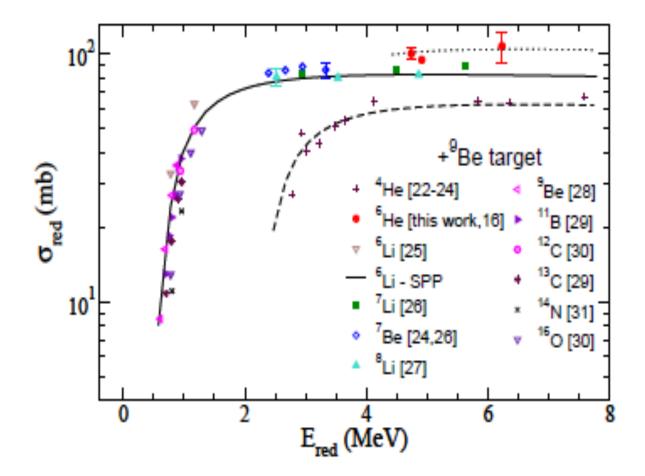


Total reaction cross sections on ²⁷Al target

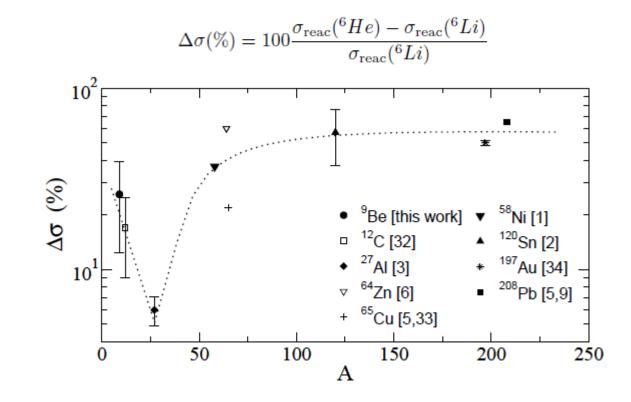
No enhancement for halo nuclei over weakly bound but over tightly bound

Total reaction cross sections on ¹²C target

Slight enhancement (15%) for halo nuclei over weakly bound. At low energies, strongly bound (¹¹B) and weakly bound (⁶Li) have similar behaviour


30

Total reaction cross sections on ⁹Be target


At high energies large enhancement for the ⁶He projectile over ⁴He.

Some enhancement over weakly bound as ⁷Li

At low energies, some strongly bound (¹¹B,¹²C, ¹⁴N,¹⁶O)and weakly bound (⁶Li, ⁹Be) have similar behaviour

Total reaction cross sections of 6He projectile as a function of A of target

Comparison of σ_{reac} of ⁶He and ⁶Li at the same energy (E_{red}>1.1MeV). It can yield information on effects which are not purely geometrical. Its understanding is challenging.

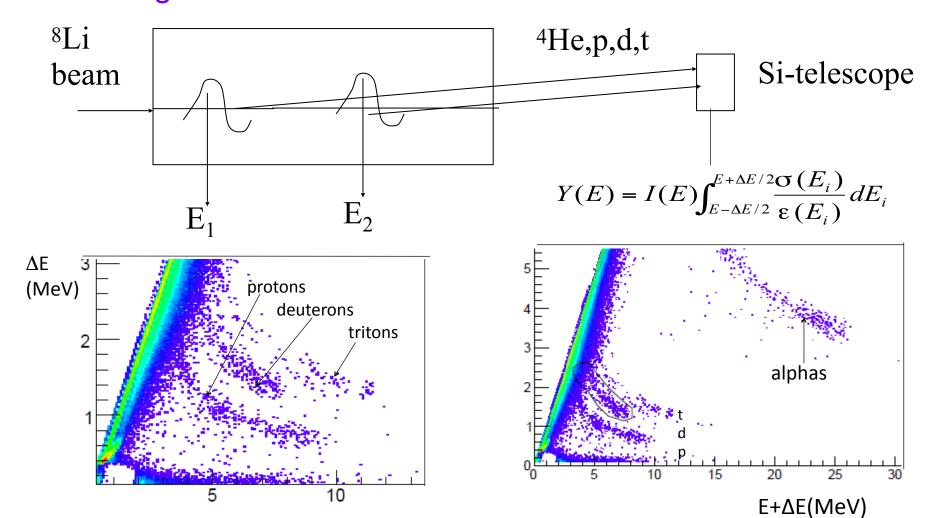
Measurements with purified radioactive beams:

Elastic scattering and transfer reactions on hydrogen target

Interest of $^{8}Li(p,\alpha)^{5}He$, $^{8}Li(p,p)^{8}Li$ and $^{8}Li(p,d)$ reactions:

Nuclear Physics:

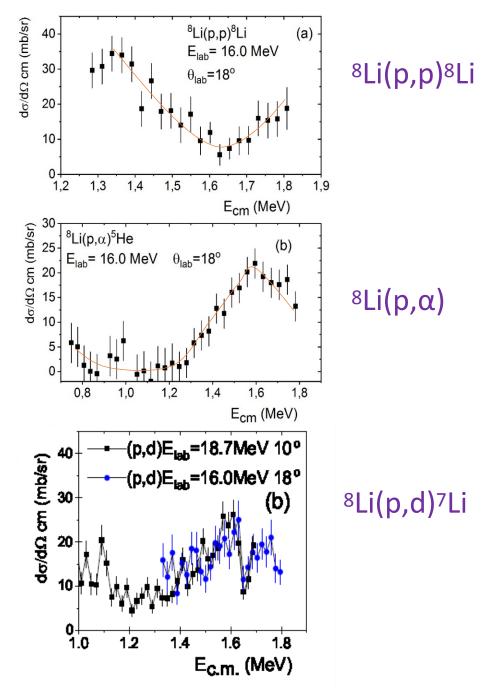
• Provide spectroscopic information on ⁹Be states near the p+⁸Li threshold (16.88 MeV)


Astrophysics:

• The reaction ${}^{8}\text{Li}(p,\alpha){}^{5}\text{He}$ destroys the ${}^{8}\text{Li}$, preventing the access to higher mass nuclei. •Important to measure and compare its strength with the branch ${}^{8}\text{Li}(\alpha,n){}^{11}\text{B}$

→Previously we have measured the excitation function for $^{8}\text{Li}(p,\alpha)^{5}\text{He}$ reaction between E_{cm} =0.2 -2.12 MeV,

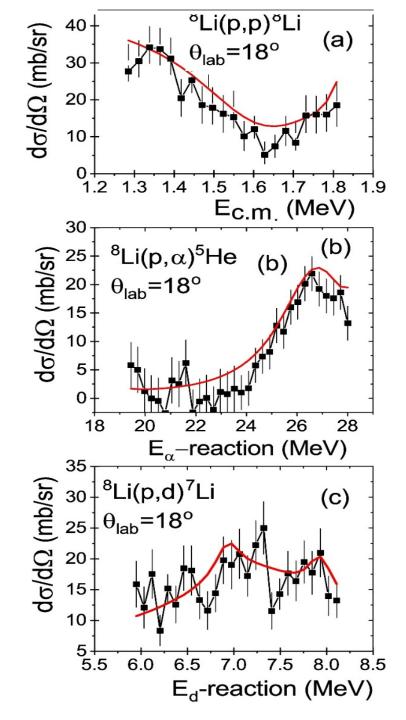
D.R.Mendes Jr. et al. Phys. Rev. C 86, 064321 (2012)


Method: Thick Target Inverse Kinematics (TTIK) : ⁸Li beam hitting a thick (6.7 mg/cm²) $[CH_2]_n$ target . ⁸Li beam looses energy, stops in the target

Results at $\theta_{lab} = 18^{\circ}$

The excitation function of the elastic scattering ⁸Li(p,p) was measured in our recent experiment. At E_{cm} =1.65 MeV there is a strong minimum.

In our recent measurements we could measure the excitation function of the transfer reaction ⁸Li(p,d)⁷Li. We see 2 peaks, due to the excitation of the ⁷Li.


R-matrix calculation Procedure:

- 1. Inputs for each resonance: ,
- 2. Calculation of the R-matrix for each J values
- 3. From R-matrices: calculation of the scattering matrices U_J for each J
- 4. From the scattering matrices U_{j} : elastic and transfer cross sections

Several reactions with the same entrance channel \rightarrow constraints Energy, proton width are common \rightarrow constraints

⁸Li(p,p)⁸Li: ⁸Li(p,α)⁵He: ⁸Li(p,d)⁷Li:

5-channels: ⁸Li + p ⁵He + α ⁵He*(1/2-)+ α ⁷Li_{gs} + d ⁷Li* (1/2-) + d

Present								
E_r	J	Γ_{p}	Γ_{∞}	Γ_{sl}	Γ_{*}			
0.42	5/2-	40	20	1.50^{b}				
0.61	7/2+	1.0	39	7				
1.10 ± 0.03	3/2+	10		30	10			
1.65 ± 0.04	7/2-	185	185	95	30			
1.80 ± 0.04	5/2-	20	14	25	20			

 $^{\sim}$ Fitted on the $^{\otimes}\text{Li}(d,p)^{7}\text{Li}$ integrated cross section [31] near the resonance.

	Literature [27]	
E,	J"	Г
0.40	$(5/2)^{-}$	200
0.605	(7/2)+	47
1.13		
1.69 ± 0.04		
1.76 ± 0.05	$(5/2^{-})$	300 ± 100

E. Leistenschneider, A. Lépine-Szily et al, Physical Review C 98, 064601 (2018)

Conclusions:

- A low-energy, light, radioactive beam facility, as RIBRAS, can make competitive contribution in nuclear reaction studies. RIBRAS has 2n halo beam (⁶He) and 1 proton halo beam (⁸B).
- Need for constant upgrade in electronics and detection capacity to be able to perform exclusive measurements. There are still very few data since they demand long measurement times. RIBRAS has the advantage of beam time availability.