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➢Neither	of	these	phenomena	is	apparent	in	QCD	's	Lagrangian,	
HOWEVER,	They	play	a	dominant	role	in	determining	the	
characteristics	of	real-world	QCD!
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➢ Dyson-Schwinger	equations		
✓ A	Nonperturbative	symmetry-preserving	tool	for	the	study	of	Continuum-	

QCD	
✓ Well	suited	to	Relativistic	Quantum	Field	Theory	
✓ A	method	connects	observables	with	long-range	behaviour	of	the	running	

coupling	
✓ Experiment	↔	Theory	comparison	leads	to	an	understanding	of	long-range	

behaviour	of	strong	running-coupling
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➢ Normalization	condition	à couplings:

➢ Faddeev	kernels:	22	×	22	matrices	are	reduced	to	16	×	16	!
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✓ We	introduce	a	single	parameter	into	the	Faddeev	equation	for	J^P=1/2^{+-}	baryons:	
gDB,	a	linear	multiplicative	factor	attached	to	each	opposite-parity	(-P)	diquark	
amplitude	in	the	baryon’s	Faddeev	equation	kernel.

✓ gDB	is	the	single	free	parameter	in	our	study.
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◆ The	four	lightest	baryon	(I=1/2,	J^P=1/2^{+-})	
isospin	doublets:	nucleon,	roper,	N(1535),	
N(1650)	

◆ Masses		
◆ Rest-frame	orbital	angular	momentum	
◆ Diquark	content	
◆ Pointwise	structure
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(Roper).

➢ Our	computed	values	for	the	masses	of	the	four	lightest	1/2^{+-}	baryon	doublets	
are	listed	here,	in	GeV:

➢ Pseudoscalar	and	vector	diquarks	have	no	impact	on	the	mass	of	the	two	positive-
parity	baryons,	whereas	scalar	and	pseudovector	diquarks	are	important	to	the	
negative	parity	systems.
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models	in	order	to	transform	a	bare	baryon	into	the	observed	state.
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➢ The	quark-diquark	kernel	omits	all	those	resonant	contributions	which	may	be	associated	with	
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observable	object.

➢ In	consequence,	a	comparison	between	the	empirical	values	of	the	resonance	pole	positions	
and	the	computed	masses	is	not	pertinent.	Instead,	one	should	compare	the	masses	of	the	
quark	core	with	values	determined	for	the	meson-undressed	bare	excitations,	e.g.,

							where	M^0_B	is	the	relevant	bare	mass	inferred	in	the	associated	dynamical	coupled-channels	
analysis.

➢ The	relative	difference	is	just	1.7%.	We	consider	this	to	be	a	success	of	our	calculation.
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➢ (b)	delivers	the	same	qualitative	picture		
as	that	presented	in	(a).	Therefore,	there	
is	little	mixing	between	partial	waves	in	
the	computation	of	a	baryon’s	mass.

➢ The	nucleon	and	Roper	are	primarily	S-
wave	in	nature.	On	the	other	hand,	the	
N(1535)1/2^-,N(1650)1/2^-	are	
essentially	P-wave	in	character.

➢ These	observations	provide	support	in	
quantum	field	theory	for	the	constituent-
quark	model	classifications	of	these	
systems.
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➢ (a)	Computed	from	the	amplitudes	
directly.	

							(b)	Computed	from	the	relative	
contributions	to	the	masses.

➢ From	(a):	The	amplitudes	associated	with	
these	negative-parity	states	contain	
roughly	equal	fractions	of	even	and	odd	
parity	diquarks.	Positive-parity	states:	
negative-parity	diquarks	are	almost	ZERO.

➢ From	(b):	In	each,	there	is	a	single	
dominant	diquark	component.	There	are	
significant	interferences	between	
different	diquarks.
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➢ For	N(1535)1/2^-,N(1650)1/2^-	:	the	contrast	with	the	positive-parity	states	is	STARK.
								In	particular,	there	is	no	simple	pattern	of	zeros,	with	all	panels	containing	at	least	one	function	

that	possesses	a	zero.
➢ In	their	rest	frames,	these	systems	are	predominantly	P-wave	in	nature,	but	possess	material	S-

wave	components;	and	the	first	excited	state	in	this	negative	parity	channel—N(1650)1/2^−—
has	little	of	the	appearance	of	a	radial	excitation,	since	most	of	the	functions	depicted	in	the	
right	panels	of	the	figure	do	not	possess	a	zero.
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➢ By	 including	 all	 kinds	 of	 diquarks,	 we	 performed	 a	 comparative	 study	 of	 the	 four	
lightest	baryon	(I=1/2,	J^P=1/2^{+-})	isospin	doublets	in	order	to	both	elucidate	their	
structural	similarities	and	differences.

➢ The	 two	 lightest	 (I=1/2,	 J^P=1/2^+)	 doublets	 are	 dominated	 by	 scalar	 and	
pseudovector	 diquarks;	 the	 associated	 rest-frame	 Faddeev	 wave	 functions	 are	
primarily	S-wave	in	nature;	and	the	first	excited	state	in	this	1/2^+	channel	has	very	
much	the	appearance	of	a	radial	excitation	of	the	ground	state.

➢ In	 the	 two	 lightest	 (I=1/2,	 J^P=1/2^-)	 systems,	 TOO,	 scalar	 and	 pseudovector	
diquarks	play	a	material	role.	In	their	rest	frames,	the	Faddeev	amplitudes	describing	
the	 dressed-quark	 cores	 of	 these	 negative-parity	 states	 contain	 roughly	 equal	
fractions	of	 even	 and	odd	parity	 diquarks;	 the	 associated	wave	 functions	of	 these	
negative-parity	 systems	 are	 predominantly	 P-wave	 in	 nature,	 but	 possess	
measurable	S-wave	components;	 and,	 the	 first	excited	 state	 in	 this	negative	parity	
channel	has	little	of	the	appearance	of	a	radial	excitation.
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➢ Based	on	solutions	to	the	gap	equation	that	were	obtained	with	a	dressed	gluon-quark	
vertex.

➢ Mass	function	has	a	real-world	value	at	p^2	=	0,	NOT	the	highly	inflated	value	typical	of	RL	
truncation.

➢ Propagators	are	entire	functions,	consistent	with	sufficient	condition	for	confinement	and	
completely	unlike	known	results	from	RL	truncation.

➢ Parameters	in	quark	propagators	were	fitted	to	a	diverse	array	of	meson	observables.		
ZERO	parameters	changed	in	study	of	baryons.

➢ Compare	with	that	computed	using	the	
							DCSB-improved	gap	equation	kernel	(DB).
							The	parametrization	is	a	sound	representation	of	contemporary	
							numerical	results,	although	simple	and	introduced	
							long	beforehand.
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➢ Diquark	amplitudes:	five	types	of	correlation	are	possible	in	a	J=1/2	bound	state:	
isoscalar	scalar(I=0,J^P=0^+),	isovector	pseudovector,	isoscalar	pseudoscalar,	isoscalar	
vector,	and	isovector	vector.

➢ The	LEADING	structures	in	the	correlation	amplitudes	for	each	case	are,	respectively	
(Dirac-flavor-color),

➢ Simple	form.		Just	one	parameter:	diquark	masses.
➢ Match	expectations	based	on	solutions	of	meson	and	diquark	Bethe-Salpeter	

amplitudes.
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➢ The	diquark	propagators

➢ The	F-functions:	Simplest	possible	form	that	is	consistent	with	infrared	and	
ultraviolet	constraints	of	confinement	(IR)	and	1/q^2	evolution	(UV)	of	meson	
propagators.

➢ Diquarks	are	confined.		
➢ free-particle-like	at	spacelike	momenta
➢ pole-free	on	the	timelike	axis
➢ This	is	NOT	true	of	RL	studies.		It	enables	us	to	reach	arbitrarily	high	values	of	

momentum	transfer.
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➢ In	consequence,	the	manner	by	which	the	dressed	quarks’	spin,	S,	and	orbital	angular	
momentum,	L,	add	to	form	the	total	momentum	J,	is	frame	dependent:	L,	S	are	not	
independently	Poincare	invariant.

➢ The	set	of	baryon	rest-frame	quark-diquark	angular	momentum	identifications:

➢ The	scalar	functions	associated	with	these	combinations	of	Dirac	matrices	in	a	Faddeev	
wave	function	possess	the	identified	angular	momentum	correlation	between	the	quark	
and	diquark.
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➢ Modern	diquarks	are	different	from	the	old	static,	point-like	diquarks	which	
featured	in	early	attempts	to	explain	the	so-called	missing	resonance	
problem.

➢ The	number	of	states	in	the	spectrum	of	baryons	obtained	is	similar	to	that	
found	in	the	three-constituent	quark	model,	just	as	it	is	in	today's	LQCD	
calculations.
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