Octet baryon double ratios $(G_E^*/G_M^*)/(G_E/G_M)$ in a nuclear medium

[Study of electromagnetic structure of baryons in-medium]

Gilberto Ramalho

LFTC, Universidade Cruzeiro do Sul, SP, Brazil **In collaboration with** K. Tsushima and J. P. B. C. de Melo

ICTP-SAIFR/FAIR Workshop on Mass Generation in QCD, IFT-UNESP, São Paulo, SP, Brazil February 28, 2019

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

- Motivation ... to study the double ratios $(G_E^*/G_M^*)/(G_E/G_M)$
- Formalism (vacuum and medium)
- Octet baryon double ratios in nuclear medium

GR, JPBC de Melo and K Tsushima arXiv:1902.04488 [hep-ph]

 X^* represent the variable X in nuclear medium

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

IFT-UNESP Feb. 28, 2019 2 / 39

< 回 > < 回 > < 回 >

$$\vec{e}p \to e\vec{p}$$

JLab 1999–...

Polarization transfer method

$$\frac{G_E}{G_M} \propto -\frac{P_t}{P_l}$$

 $P_t = parallel$ $P_l = longitudinal$

Jones PRL 84 (2000); Gayou PRL 88 (2002); Punjabi PRC 71 (2005); Puckett PRL 104 (2010)

$$\frac{G_E}{G_M} \times \mu_p$$

 $\vec{e}p \to e\vec{p}$

In Medium (bound *p*) Polarization transfer method

$$\frac{G_E^*}{G_M^*} \propto -\frac{P_t}{P_l}$$

 $P_t = parallel$ $P_l = longitudinal$

Dieterich, PLB 500 (2001); Strauch, EPJA 19 S1 (2004); Paolone, PRL 105 (2010) Vacuum: G_E/G_M Medium: G_E^*/G_M^* Define **Double Ratio**

$$\mathcal{R}_p \equiv rac{G_E^*/G_M^*}{G_E/G_M}
eq 1$$

Measures modifications in-medium

イロト 人間ト イヨト イヨト

proton In Medium

Vacuum: G_E/G_M Medium: G_E^*/G_M^*

Define **Double Ratio**

$$\mathcal{R}_p \equiv rac{G_E^*/G_M^*}{G_E/G_M}
eq 1$$

Measures modifications in-medium

Gilberto Ramalho (LFTC/UNICSUL)

proton In Medium suppression of G_E/G_M

Vacuum: G_E/G_M Medium: G_E^*/G_M^*

Define **Double Ratio**

$$\mathcal{R}_p \equiv \frac{G_E^*/G_M^*}{G_E/G_M} \neq 1$$

Measures modifications in-medium Dependence on ρ

In Medium

What about the neutron ?

Possible enhancement of G_E/G_M

- IC Cloet, GA Miller, E Piasetzky and G Ron, PRL 103, 082301 (2009)
- WRB de Araújo, JPCB de Melo and K Tsushima, NPA 970, 325 (2018)
- GR, K Tsushima and AW Thomas, JPG 40, 015102 (2013)

Dependence on ρ

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

IFT-UNESP Feb. 28, 2019 6 / 39

Motivation (3)

What about ?

- Σ^+ and Σ^-
- Λ and Σ^0 (neutral baryons)
- Ξ^- and Ξ^0 (two strange quarks)

3

Motivation (3)

What about ?

- Σ^+ and Σ^-
- Λ and Σ^0 (neutral baryons)
- Ξ^- and Ξ^0 (two strange quarks)

Motivation to this work:

Study electromagnetic structure of Octet Baryons in-medium

Model: GR, K Tsushima and AW Thomas, JPG 40, 015102 (2013)

- Use in-medium results (G_E^* , G_M^*)
- ${\ensuremath{\bullet}}$ Estimate medium modifications G_E^*/G_M^*

o ...

イロン 不良 とくほう イロン しゅう

Method

Calculation of **Octet baryon** electromagnetic form factors in the **vacuum** and in the **nuclear medium**

Covariant Spectator Quark Model
 Valence quark degrees of freedom
 ⊕ pion cloud effects
 ⇒ Model for the vacuum
 calibrated by physical and lattice QCD data

Method

Calculation of **Octet baryon** electromagnetic form factors in the **vacuum** and in the **nuclear medium**

Baryons as on-mass-shell particles with effective mass M_B^*

Modified masses and coupling constants $(g^*_{BB'})$:

 \Rightarrow Medium modifications: Valence quark \oplus Pion cloud

In vacuum: GR, K Tsushima, PRD 84, 054014 (2011) In nuclear medium: GR, K Tsushima, AW Thomas JPG 40, 015102 (2013)

Formalism †

• Covariant Spectator Quark Model

F Gross, GR and MT Peña, PRC 77, 015202 (2008); GR, FBS 59, 92 (2018)

- Baryon as qqq systems $SU(6)\otimes O(3)$ symmetry
- Radial wave function adjusted phenomenologically (momentum scales)
- Spectator formalism:

system with 2 on-shell quarks and an off-shell quark $\Rightarrow qq$ pair replaced by an *effective* diquark with mass m_D F Gross, GR and MT Peña, PRD 85, 093005 (2012) Ψ_B – effective quark-diquark wave function

• • = • • = •

Formalism †

• Covariant Spectator Quark Model

F Gross, GR and MT Peña, PRC 77, 015202 (2008); GR, FBS 59, 92 (2018)

- Baryon as qqq systems $SU(6)\otimes O(3)$ symmetry
- Radial wave function adjusted phenomenologically (momentum scales)
- Spectator formalism:

system with 2 on-shell quarks and an off-shell quark $\Rightarrow qq$ pair replaced by an *effective* diquark with mass m_D F Gross, GR and MT Peña, PRD 85, 093005 (2012) Ψ_B – effective quark-diquark wave function

• Pion cloud excitations $(q\bar{q} \text{ states})$ Phenomenological parametrization; using SU(3) (baryon-meson) and χ PT constraints

ヘロト 不得 とうき とうとう き

CSQM: **Octet** wave function (1)

S-state approximation (quark-diquark) P: Baryon; k: diquark F Gross, GR and K Tsushima, PLB 690, 183 (2010):

$$\Psi_B(P,k) = \frac{1}{\sqrt{2}} \left[|M_S\rangle \Phi_S^0 + |M_A\rangle \Phi_S^1 \right] \psi_B(P,k)$$

 $|M_S\rangle, |M_A\rangle$: flavor states; $\Phi_S^{0,1}$: spin states

В	$ M_S\rangle$	$ M_A\rangle$
p	$\frac{1}{\sqrt{6}}\left[(ud+du)u-2uud ight]$	$\frac{1}{\sqrt{2}}(ud-du)u$
n	$-rac{1}{\sqrt{6}}\left[(ud+du)d-2ddu ight]$	$\frac{1}{\sqrt{2}}(ud-du)d$
Λ^0	$rac{1}{2}\left[(dsu-usd)+s(du-ud) ight]$	$\frac{1}{\sqrt{12}}\left[s(du-ud)-(dsu-usd)-2(du-ud)s\right]$
Σ^+	$\frac{1}{\sqrt{6}}\left[(us+su)u-2uus\right]$	$\frac{1}{\sqrt{2}}(us-su)u$
Σ^0	$\frac{1}{\sqrt{12}}\left[s(du+ud)+(dsu+usd)-2(ud+du)s\right]$	$\frac{1}{2}\left[(dsu+usd)-s(ud+du)\right]$
Σ^{-}	$\frac{1}{\sqrt{6}}\left[(sd+ds)d-2dds\right]$	$\frac{1}{\sqrt{2}}(ds-sd)d$
Ξ^0	$-\frac{1}{\sqrt{6}}\left[(ud+du)s-2ssu\right]$	$\frac{1}{\sqrt{2}}(us-su)s$
Ξ	$-rac{1}{\sqrt{6}}\left[(ds+sd)s-2ssd ight]$	$\frac{1}{\sqrt{2}}(ds-sd)s$

Gilberto Ramalho (LFTC/UNICSUL)

IFT-UNESP Feb. 28, 2019

10 / 39

イロト イポト イヨト イヨト 二日

CSQM: **Octet** wave function (2) SU(3) breaking

Radial (scalar) wave functions: functions of $(P - k)^2$ Defined in terms of $(M_P - m_P)^2 - (P - k)^2$

$$\chi_B = \frac{(M_B - m_D)^2 - (P - k)^2}{M_B m_D}$$

$$\psi_N(P,k) = \frac{N_N}{m_D(\beta_1 + \chi_N)(\beta_2 + \chi_N)}$$
$$\psi_\Lambda(P,k) = \frac{N_\Lambda}{m_D(\beta_1 + \chi_\Lambda)(\beta_3 + \chi_\Lambda)}$$
$$\psi_\Sigma(P,k) = \frac{N_\Sigma}{m_D(\beta_1 + \chi_\Sigma)(\beta_3 + \chi_\Sigma)}$$
$$\psi_\Xi(P,k) = \frac{N_\Xi}{m_D(\beta_1 + \chi_\Xi)(\beta_4 + \chi_\Xi)}$$

11 / 39

 $\begin{array}{l} \beta_i: \text{ momentum range parameters } (m_D \text{ units}); \ \beta_4 > \beta_3 > \beta_2 > \beta_1 \\ \text{long range: } \beta_1 \text{ (all systems)} \\ \text{short range: } \beta_2 (lll systems); \ \beta_3 (sll systems); \ \beta_4 (ssl systems) \\ \hline \end{array}$

CSQM: Photon-Quark coupling (1)

• Quark current – constituent quark form factors

$$SU_F(3) \text{ structure}$$

$$j_q^{\mu} = \left[\frac{1}{6}f_{1+}\lambda_0 + \frac{1}{2}f_{1-}\lambda_3 + \frac{1}{6}f_{10}\lambda_s\right]\gamma^{\mu} + \left[\frac{1}{6}f_{2+}\lambda_0 + \frac{1}{2}f_{2-}\lambda_3 + \frac{1}{6}f_{20}\lambda_s\right]\frac{i\sigma^{\mu\nu}q_{\nu}}{2M_N}$$

 $\lambda_0 = \text{diag}(1, 1, 0), \ \lambda_3 = \text{diag}(1, -1, 0), \ \lambda_s = \text{diag}(0, 0, 2)$ Quarks with anomalous magnetic moments $\kappa_u, \kappa_d, \kappa_s$ quark-antiquark ⊕ gluon dressing

Gilberto Ramalho (LFTC/UNICSUL)

・ 同 ト ・ ヨ ト ・ ヨ ト

CSQM: Photon-Quark coupling (1)

quark-antiquark \oplus gluon dressing

 $\lambda_0 = \operatorname{diag}(1, 1, 0), \ \lambda_3 = \operatorname{diag}(1, -1, 0), \ \lambda_s = \operatorname{diag}(0, 0, 2)$

Quarks with anomalous magnetic moments $\kappa_u, \kappa_d, \kappa_s$

• Vector meson dominance parameterization:

イロト イポト イヨト イヨト 二日

CSQM: Photon-Quark coupling (2) ^{††}

Vector meson dominance

• Quark form factors parameterization $(m_{\omega} \approx m_{\rho})$ Vector meson poles: m_{ρ} , m_{ϕ} ($\bar{s}s$) and $M_h = 2M_N$ (effective)

$$\begin{split} f_{1\pm} &= \lambda_q + (1-\lambda_q) \frac{m_\rho^2}{m_\rho^2 + Q^2} + c_{\pm} \frac{M_h^2 Q^2}{(M_h^2 + Q^2)^2} \\ f_{2\pm} &= \kappa_{\pm} \left\{ d_{\pm} \frac{m_\rho^2}{m_\rho^2 + Q^2} + (1-d_{\pm}) \frac{M_h^2}{M_h^2 + Q^2} \right\} \\ f_{10} &= \lambda_q + (1-\lambda_q) \frac{m_\phi^2}{m_\phi^2 + Q^2} + c_0 \frac{M_h^2 Q^2}{(M_h^2 + Q^2)^2} \\ f_{20} &= \kappa_s \left\{ d_0 \frac{m_\phi^2}{m_\phi^2 + Q^2} + (1-d_{\pm}) \frac{M_h^2}{M_h^2 + Q^2} \right\} \end{split}$$

- Current parameters: λ_q , c_0 , c_{\pm} , d_0 and d_{\pm} determined in previous applications PRC 77, 015202 (2008); PRD 80, 033004 (2009) (nucleon \oplus baryon decuplet)
- Anomalous magnetic moments: κ_{\pm} fitted to the data $(\kappa_s \neq \mu_{\Omega^-})_{\Omega^{\oplus}}$

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

IFT-UNESP Feb. 28, 2019

Pion cloud: total electromagnetic current †

 \tilde{B}_i, \tilde{C}_i and \tilde{D}_i octet functions SU(3); $G_{\pi B}, G_{eB}$ and $G_{\kappa B}$ flavor deppendent; GR and K Tsushima, PRD 84, 054014 (2011)

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

IFT-UNESP Feb. 28, 2019 14 / 39

イロト 人間ト イヨト イヨト

Pion cloud: adding PC effects †

• Projecting $G_{\pi B}, G_{eB}$ and $G_{\kappa B} \Rightarrow$ coupling constants β_B

$$\beta_N = 1, \qquad \beta_\Lambda = \frac{4}{3}\alpha^2$$

$$\beta_\Sigma = 4(1-\alpha)^2, \qquad \beta_\Xi = (1-2\alpha)^2$$

SU(6) limit: $\alpha = 0.6$; and $g = g_{\pi NN} \longrightarrow$ included in \tilde{B}_i , \tilde{C}_i , \tilde{D}_i

Pion cloud: adding PC effects †

• Projecting $G_{\pi B}, G_{eB}$ and $G_{\kappa B} \Rightarrow$ coupling constants β_B

$$\beta_N = 1, \qquad \beta_\Lambda = \frac{4}{3}\alpha^2$$

$$\beta_\Sigma = 4(1-\alpha)^2, \qquad \beta_\Xi = (1-2\alpha)^2$$

SU(6) limit: $\alpha = 0.6$; and $g = g_{\pi NN} \longrightarrow$ included in \tilde{B}_i , \tilde{C}_i , \tilde{D}_i

• Fit functions of Q^2 : $\tilde{B}_i, \tilde{C}_i, \tilde{D}_i \longrightarrow \delta G_{EB}, \delta G_{MB}$ pion cloud GR and K Tsushima, PRD 84, 054014 (2011); Bare: $\tilde{e}_B, \tilde{\kappa}_B$ F Gross, GR and MT Peña, PRC 77, 015202 (2008)

$$F_{1B} = Z_B \left[\tilde{e}_B + \delta F_{1B} \right], \qquad G_{EB} = Z_B \left[G_{E0B} + \delta G_{EB} \right]$$

$$F_{2B} = Z_B \left[\tilde{\kappa}_B + \delta F_{2B} \right], \qquad G_{MB} = Z_B \left[G_{M0B} + \delta G_{MB} \right]$$

 Z_B is a normalization factor

Calibration of model in vacuum †

Information included in the fit

- Lattice QCD data bare part ẽ_B, κ̃_B
 Octet baryon form factors: p, n, Σ[±], Ξ^{0,−} no pion cloud
 H. W. Lin and K. Orginos, PRD 79, 074507 (2009)
 Lattice parametrization ⇒ Physical regime (bare part)
- Physical data meson cloud part \tilde{B}_i , \tilde{C}_i , \tilde{D}_i
 - Nucleon form factor data (proton and neutron)
 - Octet magnetic moments $(\Lambda, \Sigma^{\pm}, \Xi^{0,-})$
 - Octet radii: r_{Ep}^2 , r_{En}^2 , r_{Mp}^2 , r_{Mn}^2 and $r_{E\Sigma^-}^2$

Calibration of model in vacuum †

Information included in the fit

- Lattice QCD data bare part ẽ_B, κ̃_B
 Octet baryon form factors: p, n, Σ[±], Ξ^{0,−} no pion cloud
 H. W. Lin and K. Orginos, PRD 79, 074507 (2009)
 Lattice parametrization ⇒ Physical regime (bare part)
- Physical data meson cloud part \tilde{B}_i , \tilde{C}_i , \tilde{D}_i
 - Nucleon form factor data (proton and neutron)
 - Octet magnetic moments $(\Lambda, \Sigma^{\pm}, \Xi^{0,-})$
 - Octet radii: r_{Ep}^2 , r_{En}^2 , r_{Mp}^2 , r_{Mn}^2 and $r_{E\Sigma^-}^2$

• Parameters:

Bare: κ_{\pm} , β_1 , β_2 , β_3 , β_4 Pion cloud: B_1 , D'_1 , B_2 , C_2 , D_2 and Λ_1 , Λ_2

Gilberto Ramalho (LFTC/UNICSUL)

Extension to the nuclear medium – valence quark †

- Quark current (VMD): $j_q^{\mu} = j_1 \gamma^{\mu} + j_2 \frac{i \sigma^{\mu\nu} q_{\nu}}{2M_N}$ $j_q^{\mu}(M_N; m_{\rho}, m_{\phi}, M_h = 2M_N) \rightarrow j_q^{\mu}(M_N^*; m_{\rho}^*, m_{\phi}^*, M_h^* = 2M_N^*)$ [replace in-vacuum masses by in-medium masses]
- Radial wave functions:

 $\psi_B(P,k,M_B) \to \psi_B(P,k,M_B^*)$

[replace baryon mass M_B by in-medium baryon mass M_B^*]

 G_l^B bare contributions $\rightarrow G_l^{B*}$

Next slide: G_l^{π} pion cloud $\rightarrow G_l^{\pi*}$

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

Results in medium

Use medium modifications of masses and coupling constants for $\rho=0.5\rho_0$ and $\rho=\rho_0~(\rho_0=0.15~{\rm fm}^{-3})$

Parameters from Quark-Meson-Coupling model – masses **reduced** in medium Saito, Tsushima and Thomas, Prog. Part. Nucl. Phys. 58, 1 (2007)

$$M_N^* = M_N - g_\sigma \sigma + \dots$$

Goldberger-Treimann relation:

$$\frac{g_{\pi BB}^*}{g_{\pi BB}} \simeq \left(\frac{f_{\pi}}{f_{\pi}^*}\right) \left(\frac{g_A^{N*}}{g_A^N}\right) \left(\frac{M_B^*}{M_B}\right)$$

Goldberger and Treiman, PRC 110, 1178 (1958)

	$\rho = 0$	$\rho = 0.5\rho_0$	$\rho = \rho_0$	-			
M_N	939.0	831.3	754.5 =	-	a = 0	a = 0.5 a	0 - 0
M_{Λ}	1116.0	1043.9	992.7 -		p = 0	$p = 0.5p_0$	$p - p_0$
M_{Σ}	1192 0	1121 4	1070 4	$g_{\pi NN}^*/g_{\pi NN}$	1	0.921	0.899
M_{-}	1318.0	1282.2	1256 7	$g^*_{\pi\Lambda\Sigma}/g_{\pi\Lambda\Sigma}$	1	0.973	0.996
1VI <u>Ξ</u>	770.0	706.1	1250.7	$q_{\pi\Sigma\Sigma}^*/q_{\pi\Sigma\Sigma}$	1	0.977	1.004
$m_{ ho}$	779.0	706.1	653.7	$a^*_{\Box\Box}/a_{\Box\Xi\Xi}$	1	1.012	1.067
m_{ϕ}	1019.5	1019.1	1018.9 =	$9\pi \Xi \Xi / 9\pi \Xi \Xi$	-	2.022	1.001
m_{π}	138.0	138.0	138.0		_		

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

IFT-UNESP Feb. 28, 2019

Results: Form Factors – nucleon units ^{††}

All G_{MB}/G_{MB}^* converted into **units** of the **nucleon in vacuum** Vacuum: F_{1B} , F_{2B}

$$\begin{array}{lll} G_{EB}(Q^2) &=& F_{1B}(Q^2) - \frac{Q^2}{4M_B^2}F_{2B}(Q^2) \\ G_{MB}(Q^2) &=& \left[F_{1B}(Q^2) + F_{2B}(Q^2)\right]\frac{M_N}{M_B} \\ \\ \frac{M_N}{M_B}: \ G_{MB}(Q^2) \ \text{in nucleon units;} \ \mu_B = G_{MB}^0(0)\frac{e}{2M_B} = \underbrace{G_{MB}^0(0)\frac{M_N}{M_B}}_{G_{MB}(0)} \underbrace{\stackrel{e}{2M_N}}_{G_{MB}(0)} \end{array}$$

$$G_{EB}^{*}(Q^{2}) = F_{1B}^{*}(Q^{2}) - \frac{Q^{2}}{4M_{B}^{*2}}F_{2B}^{*}(Q^{2})$$
$$G_{MB}^{*}(Q^{2}) = \left[F_{1B}^{*}(Q^{2}) + F_{2B}^{*}(Q^{2})\right]\frac{M_{N}}{M_{B}^{*}}$$

Gilberto Ramalho (LFTC/UNICSUL)

Med

Octet baryon double ratios

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト … 臣

Results: Proton form factors in medium

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

IFT-UNESP Feb. 28, 2019

-

Results: Neutron form factors in medium

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

IFT-UNESP Feb. 28, 2019

→

э

Results: Λ form factors in medium $-\cdot - G_E \simeq G_E^{\pi}$

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

IFT-UNESP Feb. 28, 2019

→

3

Results: Σ^+ form factors in medium

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

IFT-UNESP Feb. 28, 2019 23 / 39

3

< ロト < 同ト < ヨト < ヨト

Results: Σ^0 form factors in medium $-\cdot - G_E \simeq G_E^{\pi}$

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

IFT-UNESP Feb. 28, 2019 2

< ロト < 同ト < ヨト < ヨト

24 / 39

3

Results: Σ^- form factors in medium

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

IFT-UNESP Feb. 28, 2019 25 / 39

3

(日) (同) (三) (三)

Results: Ξ^0 form factors in medium

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

IFT-UNESP Feb. 28, 2019

(日) (同) (三) (三)

26 / 39

3

Results: Ξ^- form factors in medium

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

A B F A B F IFT-UNESP Feb. 28, 2019

< 🗇 🕨

27 / 39

3

Results in vacuum/in medium – summary †

• Vacuum and Medium:

Dominance of valence quark component

- Medium modifications dominated by valence quark component
- \bullet Variation on pion cloud component $\lesssim 4\%$
- Exception: Electric form factor of neutral particles: Λ, Σ^0 dominated by pion cloud part (n, Ξ^0 dominated by valence part)

Results in vacuum/in medium – summary †

• Vacuum and Medium:

Dominance of valence quark component

- Medium modifications dominated by valence quark component
- \bullet Variation on pion cloud component $\lesssim 4\%$
- Exception: Electric form factor of neutral particles: Λ, Σ^0 dominated by pion cloud part (n, Ξ^0 dominated by valence part)

Next: results for the Double Ratios
Medium: proton G_E^*/G_M^* single ratio

Q² = 0: G^{*}_E/G^{*}_M ∝ M^{*}_N suppression of small masses (G^{*}_E = 1, G^{*}_M ∝ 1/M^{*}_N)
 Low-Q²:

$$\frac{G_E^*}{G_M^*} \simeq \frac{1}{G_M^*(0)} \left[1 - (r_{EB}^{*\,2} - r_{MB}^{*\,2}) \frac{Q^2}{6} \right]$$

almost linear falloff

- Vacuum $(r_{EB}^2 r_{MB}^2) \simeq$ $(0.782 - 0.718) \text{ fm}^2$ slow falloff
- In Medium:

$$r_{EB}^{*\,2} - r_{MB}^{*\,2}$$
 enhanced
faster falloff
 $\frac{G_E^*}{G_M^*}$ more supressed in medium

Gilberto Ramalho (LFTC/UNICSUL)

IFT-UNESP Feb. 28, 2019 29 / 39

Medium: proton G_E^*/G_M^* double ratio

- G_E^*/G_M^* suppressed in medium
- Larger suppression for larger densities
- Available data (⁴He) closer to estimate $\rho = 0.5\rho_0$

Dieterich, PLB 500 (2001); Strauch, EPJA 19 S1 (2004); Paolone, PRL 105 (2010)

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

IFT-UNESP Feb. 28, 2019 30 / 39

• $Q^2 \approx 0$: G^*_{En} enhanced G^*_{Mn} enhanced Enhancement increases with ρ

IFT-UNESP Feb. 28, 2019 31 / 39

• $Q^2 \approx 0$: G_{En}^* enhanced G_{Mn}^* enhanced Enhancement increases with ρ • Low- Q^2 : $G_{En}^* \simeq -\frac{1}{6}r_{En}^{*2}Q^2$ $-r_{En}^{*2}$ enhanced in medium $\frac{G_{En}^*}{G_{En}} \approx \frac{r_{En}^{*2}}{r_{En}^2} > 1$

IFT-UNESP Feb. 28, 2019 31 / 39

• $Q^2 \approx 0$: G^*_{En} enhanced G_{Mn}^* enhanced Enhancement increases with ρ • Low- Q^2 : $G_{En}^* \simeq -\frac{1}{6} r_{En}^{*2} Q^2$ $-r_{E_n}^{*2}$ enhanced in medium $\frac{G_{En}^*}{G_{En}} \approx \frac{r_{En}^{*2}}{r_{En}^2} > 1$ • Low- Q^2 : $G^*_{Mn} \propto 1/M^*_N$ $\frac{G_{Mn}^*}{G_{Mn}} \approx \frac{M_N}{M_N^*} > 1$

• $Q^2 \approx 0$: G^*_{En} enhanced G_{Mn}^* enhanced Enhancement increases with ρ • Low- Q^2 : $G_{En}^* \simeq -\frac{1}{6} r_{En}^{*2} Q^2$ $-r_{E_n}^{*2}$ enhanced in medium $\frac{G_{En}^*}{G_{En}} \approx \frac{r_{En}^{*2}}{r_{En}^2} > 1$ • Low- Q^2 : $G^*_{Mn} \propto 1/M^*_N$ $\frac{G_{Mn}^*}{G_{Mn}} \approx \frac{M_N}{M_N^*} > 1$ • Global effect (low Q^2): $\frac{G_E^*/G_M^*}{G_E/G_M} \approx \frac{r_{En}^{*\,2}}{r_{En}^2} \frac{M_N^*}{M_N} > 1$ • G_{E}^{*} effects dominate over G_M^* effect

医下颌 医下颌 医

• $Q^2 \approx 0$: G_{En}^* enhanced G^*_{Mn} enhanced Enhancement increases with ρ • Low- Q^2 : $G_{En}^* \simeq -\frac{1}{6} r_{En}^{*2} Q^2$ $-r_{E_n}^{*2}$ enhanced in medium $\frac{G_{En}^*}{G_{En}} \approx \frac{r_{En}^{*2}}{r_{En}^2} > 1$ • Low- Q^2 : $G^*_{Mn} \propto 1/M^*_N$ $\frac{G_{Mn}^*}{G_{Mn}} \approx \frac{M_N}{M_N^*} > 1$ • Global effect (low Q^2): $\frac{G_E^*/G_M^*}{G_E/G_M} \approx \frac{r_{En}^{*\,2}}{r_{En}^2} \frac{M_N^*}{M_N} > 1$ • G_{E}^{*} effects dominate over G_M^* effect

Octet baryon double ratios

- $\frac{G_E^*}{G_M^*}$ enhanced in medium
- ullet Q^2 -dependence important
- No linear effect
- Large Q^2 : Enhancement decreases with Q^2 Large Q^2 : $\frac{G_E^*/G_M^*}{G_E/G_M} < 1$

Medium: $\Sigma^{\pm} - G_E^*/G_M^*$ double ratio

- Similar to proton
- Slower falloff with Q^2
- (r^{*2}_{EB} r^{*2}_{MB}) reduced comparative to proton [effect of strange quark]
- Strange quarks

 \Rightarrow smaller medium effect

Medium: $\Lambda - G_E^*$, G_M^*

• G_E dominated by pion cloud

• Almost no medium effects: $Q^2 \approx 0: \frac{G_E^*}{G_E} \approx 1$ (5% error)

• Low- Q^2 : G_M enhanced in medium Valence quark effects $\rightarrow G_M$ dominate DR

Medium: $\Sigma^0 - G_E^*$, G_M^* (similar to Λ)

- G_E dominated by pion cloud
- Almost no medium effects: $Q^2 \approx 0$: $\frac{G_E^*}{G_E} \approx 1$ (5% error)
- Low- Q^2 : G_M enhanced in medium Valence quark effects $\rightarrow G_M$ dominate DR

Medium: Λ , $\Sigma^0 - G_E^*/G_M^*$ double ratio

- Low Q^2 suppression: similar to **proton**
- Increasing Q²: increasing medium effects

•
$$Q^2 > 1$$
 GeV²: $\frac{G_E^*/G_M^*}{G_E/G_M} > 1$

• Divergence for $Q^2 > 1 \text{ GeV}^2$ $(G_E \rightarrow 0)$

Medium: Ξ^0 , $\Xi^- - G_E^*/G_M^*$ double ratio

- Rough estimate of Ξ double ratio (limitation of the fit to Ξ lattice data)
- Weak deppendence on Q^2

IFT-UNESP Feb. 28, 2019

 ● Calculations of Octet Baryon form factors in nuclear medium Cov. Spectator Quark Model ⊕ Quark-Meson-Coupling Model

· · · · · · · · ·

Image: Image:

- Calculations of Octet Baryon form factors in nuclear medium Cov. Spectator Quark Model ⊕ Quark-Meson-Coupling Model
- Proposal of tool to study the e.m. structure of baryon in medium (heavy-ion collisions, neutron stars, compact stars, ...)

- Calculations of Octet Baryon form factors in nuclear medium Cov. Spectator Quark Model ⊕ Quark-Meson-Coupling Model
- Proposal of tool to study the e.m. structure of baryon in medium (heavy-ion collisions, neutron stars, compact stars, ...)
- Prediction to the **Octet double ratios:**
 - $\bullet\,$ proton, Σ^+ , $\Sigma^-\colon$ reduced
 - neutron: enhanced
 - Λ , Σ^0 : reduced at low Q^2 ; enhanced at large Q^2
 - Ξ^0 , Ξ^- : weak Q^2 deppendence

- Calculations of Octet Baryon form factors in nuclear medium Cov. Spectator Quark Model ⊕ Quark-Meson-Coupling Model
- Proposal of tool to study the e.m. structure of baryon in medium (heavy-ion collisions, neutron stars, compact stars, ...)
- Prediction to the **Octet double ratios:**
 - $\bullet\,$ proton, Σ^+ , $\Sigma^-\colon$ reduced
 - neutron: enhanced
 - Λ , Σ^0 : reduced at low Q^2 ; enhanced at large Q^2
 - Ξ^0 , Ξ^- : weak Q^2 deppendence
- Measurements of neutron double ratio expected in a near future: neutron recoil polarization in the ⁴He(*e*, *e*'*n*)³He reaction ⇒ Test predictions

- 4回 ト 4 ヨ ト - 4 ヨ ト - - ヨ

- Calculations of Octet Baryon form factors in nuclear medium Cov. Spectator Quark Model ⊕ Quark-Meson-Coupling Model
- Proposal of tool to study the e.m. structure of baryon in medium (heavy-ion collisions, neutron stars, compact stars, ...)
- Prediction to the **Octet double ratios:**
 - $\bullet\,$ proton, Σ^+ , $\Sigma^-\colon$ reduced
 - neutron: enhanced
 - Λ , Σ^0 : reduced at low Q^2 ; enhanced at large Q^2
 - Ξ^0 , Ξ^- : weak Q^2 deppendence
- Measurements of neutron double ratio expected in a near future: neutron recoil polarization in the ⁴He(*e*, *e*'*n*)³He reaction ⇒ Test predictions
- We hope new techniques can be used for other baryons ...

イロト イポト イヨト イヨト 二日

- Calculations of Octet Baryon form factors in nuclear medium Cov. Spectator Quark Model ⊕ Quark-Meson-Coupling Model
- Proposal of tool to study the e.m. structure of baryon in medium (heavy-ion collisions, neutron stars, compact stars, ...)
- Prediction to the **Octet double ratios:**
 - $\bullet\,$ proton, Σ^+ , $\Sigma^-\colon$ reduced
 - neutron: enhanced
 - Λ , Σ^0 : reduced at low Q^2 ; enhanced at large Q^2
 - Ξ^0 , Ξ^- : weak Q^2 deppendence
- Measurements of neutron double ratio expected in a near future: neutron recoil polarization in the ⁴He(*e*, *e*'*n*)³He reaction ⇒ Test predictions
- We hope new techniques can be used for other baryons ...

Thank you very much $^{ m b}$

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

Backup slides

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

IFT-UNESP Feb. 28, 2019 40 / 39

3

<ロ> (日) (日) (日) (日) (日)

Extension of the model for lattice QCD regime

GR and MT Peña JPG 36, 115011 (2009)

- Quark current (VMD): $j_I^{\mu}(M_N; m_{\rho}, M_h = 2M_N) \rightarrow j_I^{\mu}(M_N^{latt}; m_{\rho}^{latt}, 2M_N^{latt})$
- Wave functions: $\Psi_B(\{M_B\}) \rightarrow \Psi_B(\{M_B^{latt}\})$
- \Rightarrow Implicit m_{π} dependence in G_X [Form factors]

 G_X include only valence quark (bare) contributions $\rightarrow G_X^B$ Meson cloud effects suppressed for large m_{π} : Compare G_X^B with lattice data

Gilberto Ramalho (LFTC/UNICSUL)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Pion cloud: total electromagnetic current

 \tilde{B}_i, \tilde{C}_i and \tilde{D}_i octet functions SU(3); $G_{\pi B}, G_{eB}$ and $G_{\kappa B}$ flavor deppendent; GR and K Tsushima, PRD 84, 054014 (2011)

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

IFT-UNESP Feb. 28, 2019 42 / 39

Pion cloud parametrization

Functions $\tilde{B}_i, \tilde{C}_i, \tilde{D}_i$

$$\begin{split} \tilde{B}_{1} &= B_{1} \left(\frac{\Lambda_{1}^{2}}{\Lambda_{1}^{2} + Q^{2}} \right)^{5} \times \left[1 + \frac{1}{Z_{N}B_{1}} \left(\frac{1}{24} \frac{\alpha_{1}}{\alpha_{0}} \log m_{\pi} + b_{1}' \right) Q^{2} \right] \\ \tilde{C}_{1} &= B_{1} \left(\frac{\Lambda_{1}^{2}}{\Lambda_{1}^{2} + Q^{2}} \right)^{2}, \qquad \tilde{D}_{1} = D_{1}' \frac{Q^{2}\Lambda_{1}^{4}}{(\Lambda_{1}^{2} + Q^{2})^{3}} \\ \tilde{B}_{2} &= B_{2} \left(\frac{\Lambda_{2}^{2}}{\Lambda_{2}^{2} + Q^{2}} \right)^{6} \times \left[1 + \frac{1}{Z_{N}B_{2}} \left(-\frac{1}{24} \frac{\alpha_{2}}{\alpha_{0}} \frac{M}{m_{\pi}} + b_{2}' \right) Q^{2} \right] \\ \tilde{C}_{2} &= C_{2} \left(\frac{\Lambda_{2}^{2}}{\Lambda_{2}^{2} + Q^{2}} \right)^{3}, \qquad \tilde{D}_{2} = D_{2} \left(\frac{\Lambda_{2}^{2}}{\Lambda_{2}^{2} + Q^{2}} \right)^{3} \end{split}$$

Coefficients B_1, D_1', B_2, C_2, D_2 and cutoffs Λ_1, Λ_2 adjustable parameters

43 / 39

Pion cloud: form factors

Nucleon dresssed form factors [GR and K Tsushima, PRD 84, 054014 (2011)]

$$F_{1p} = Z_N \left\{ \tilde{e}_{0p} + 2\beta_N \tilde{B}_1 + \beta_N (\tilde{e}_{0p} + 2\tilde{e}_{0n}) \tilde{C}_1 + \beta_N (\tilde{\kappa}_{0p} + 2\tilde{\kappa}_{0n}) \tilde{D}_1 \right\}$$

$$F_{2p} = Z_N \left\{ \tilde{\kappa}_{0p} + 2\beta_N \tilde{B}_2 + \beta_N (\tilde{e}_{0p} + 2\tilde{e}_{0n}) \tilde{C}_2 + \beta_N (\tilde{\kappa}_{0p} + 2\tilde{\kappa}_{0n}) \tilde{D}_2 \right\}$$

$$F_{1n} = Z_N \left\{ \tilde{e}_{0n} - 2\beta_N \tilde{B}_1 + \beta_N (2\tilde{e}_{0p} + \tilde{e}_{0n}) \tilde{C}_1 + \beta_N (2\tilde{\kappa}_{0p} + \tilde{\kappa}_{0n}) \tilde{D}_1 \right\}$$

$$F_{2n} = Z_N \left\{ \tilde{\kappa}_{0n} - 2\beta_N \tilde{B}_2 + \beta_N (2\tilde{e}_{0p} + \tilde{e}_{0n}) \tilde{C}_2 + \beta_N (2\tilde{\kappa}_{0p} + \tilde{\kappa}_{0n}) \tilde{D}_2 \right\}$$

F Gross, GR and K Tsushima PLB 690, 183 (2010): $F_{1p}(0) = 1 \text{ and } F_{1n}(0) = 0 \implies \tilde{D}_1(0) = 0 \text{ and } \tilde{B}_1(0) = \tilde{C}_1(0) \equiv B_1$

Gilberto Ramalho (LFTC/UNICSUL)

IFT-UNESP Feb. 28, 2019 44 / 39

イロト イポト イヨト イヨト 二日

Pion cloud: Normalization factor

 Z_B normalization factor; determined by the charge or self-energy Nucleon case, using $B_1 = \tilde{B}_1(0) = \tilde{C}_1(0)$

$$G_{En}(0) = Z_N \left[0 + 2\beta_N B_1 - 2\beta_N B_1 \right] = 0$$

$$G_{Ep}(0) = Z_N \left[1 + \beta_N B_1 + 2\beta_N B_1 \right] = 1$$

Then $G_{Ep}(0) = 1 = Z_N [1 + \frac{3\beta_N B_1}{2}]$:

$$Z_N = \frac{1}{1 + 3\beta_N B_1}$$

Similar for Z_{Λ}, Z_{Σ} and Z_{Ξ}

IFT-UNESP Feb. 28, 2019 45 / 39

イロト 不得下 イヨト イヨト 二日

Pion cloud parametrization

• Simulate falloff of pion cloud with $Q^2\,$

$$\delta F_{1B} \sim \frac{1}{Q^4} \times \frac{1}{Q^4}, \qquad \delta F_{2B} \sim \frac{1}{Q^4} \times \frac{1}{Q^6},$$

factor $1/Q^4$ from $\bar{q}q$ contributions at high $Q^2;$ $F\sim \frac{1}{Q^{(N-1)}},$ for N=3+2 constituents

イロト イポト イヨト イヨト 二日

Pion cloud parametrization

• Simulate falloff of pion cloud with $Q^2\,$

$$\delta F_{1B} \sim \frac{1}{Q^4} \times \frac{1}{Q^4}, \qquad \delta F_{2B} \sim \frac{1}{Q^4} \times \frac{1}{Q^6},$$

factor $1/Q^4$ from $\bar{q}q$ contributions at high Q^2 ; $F \sim \frac{1}{Q^{(N-1)}}$, for N = 3 + 2 constituents

• Simulate the m_{π} deppendence form χPT of nucleon V radii

$$(r_1^V)^2 = -\frac{\alpha_1}{\alpha_0} \log m_\pi + ...$$

 $(r_2^V)^2 = +\frac{\alpha_2}{\alpha_0} \frac{M}{m_\pi} + ...$

 $\alpha_0=8\pi^2F_\pi^2$, $\alpha_1=5g_A^2+1$ and $\alpha_2=\pi g_A^2$

Gilberto Ramalho (LFTC/UNICSUL)

イロト イポト イヨト イヨト 二日

$G^*_{MB}(0)$ valence quark contribution

В	$G^*_{MB}(0)$
p	$\left[1 + \left(\frac{8}{9}\kappa_u + \frac{1}{9}\kappa_d\right)\right]\frac{M_N}{M_N^*}$
n	$-\left[\frac{2}{3} + \left(\frac{2}{9}\kappa_u + \frac{4}{9}\kappa_d\right)\right]\frac{\dot{M}_N}{M_N^*}$
Λ	$-rac{1}{3}rac{M_N}{M_\Lambda^*}-rac{1}{3}\kappa_srac{M_N}{M_N^*}$
Σ^+	$rac{M_N}{M_{\Sigma}^*} + \left(rac{8}{9}\kappa_u + rac{1}{9}\kappa_s ight)rac{M_N}{M_N^*}$
Σ^0	$\frac{1}{3}\frac{M_N}{M_{\Sigma}^*} + \left(\frac{4}{9}\kappa_u - \frac{2}{9}\kappa_d + \frac{1}{9}\kappa_s\right)\frac{M_N}{M_N^*}$
Σ^{-}	$-\frac{1}{3}\frac{M_N}{M_{\Sigma}^*} - \left(\frac{4}{9}\kappa_d - \frac{1}{9}\kappa_s\right)\frac{M_N}{M_N^*}$
Ξ^0	$-\frac{2}{3}\frac{M_N}{M_{\Xi}^*} - \left(\frac{2}{9}\kappa_u + \frac{4}{9}\kappa_s\right)\frac{M_N}{M_N^*}$
Ξ^{-}	$-\frac{1}{3}\frac{M_N^2}{M_{\Xi}^*} + \left(\frac{1}{9}\kappa_d - \frac{4}{9}\kappa_s\right)\frac{M_N^N}{M_N^*}$

Gilberto Ramalho (LFTC/UNICSUL)

Results: Nucleon lattice data

IFT-UNESP Feb. 28, 2019

Results: Nucleon bare form factors (optional)

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

IFT-UNESP Feb. 28, 2019

Results: Nucleon form factors in vacuum

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

IFT-UNESP Feb. 28, 2019

Octet square radii

В	$(r_{EB}^2)_b$	$(r_{EB}^2)_{\pi}$	r_{EB}^2	$(r_{MB}^2)_b$	$(r_{MB}^2)_{\pi}$	r_{MB}^2
p	0.614	0.168	0.782	0.601	0.117	0.718
n	-0.097	-0.016	-0.113	0.624	0.105	0.729
Λ	-0.005	0.073	0.068	0.449	-0.221	0.228
Σ^+	0.470	0.244	0.713	0.350	0.166	0.516
Σ^0	-0.001	0.040	0.039	0.291	0.097	0.388
Σ^{-}	0.480	0.162	0.643	0.388	0.253	0.642
Ξ^0	0.096	0.001	0.097	0.325	-0.005	0.319
Ξ^-	0.382	0.021	0.403	0.218	0.050	0.218

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
 IFT-UNESP Feb. 28, 2019

Spectator QM: Baryon wave functions

- Baryon: 3 constituent quark system
- Covariant Spectator Theory: wave function Ψ defined in terms of a 3-quark vertex Γ with 2 on-mass-shell quarks

$$= \Psi_{\alpha}(P,k_3) = \left(\frac{1}{m_q - k_3 - i\varepsilon}\right)_{\alpha\beta} \Gamma^{\beta}(P,k_1,k_2)$$

 Confinement insures that vertex Γ vanishes when the 3 quarks are on-shell [Γ cancels the quark propagator singularity]

Stadler, Gross and Frank PRC 56, 2396 (1998); Savkli and Gross PRC 63, 035208 (2001)

• Ψ free of singularities

Instead of modulate $\Gamma \Rightarrow$ modulate directly Ψ

Spectator QM: Baryon wave functions (II)

Integrating over the on-mass-shell quark momenta:

 $k = k_1 + k_2, r = \frac{1}{2}(k_1 - k_2);$

reduce current integrals to the integration in **k** and $s = (k_1 + k_2)^2$

- F. Gross and P. Agbakpe, PRC 73, 015203 (2006);
- F. Gross, GR and M. T. Pena, arXiv:1201.6336 [hep-ph] :

$$\int \frac{d^3k_1}{2E_{k_1}} \int \frac{d^3k_2}{2E_{k_2}} = \frac{\pi}{4} \int d\Omega_{\hat{\mathbf{r}}} \int_{4m_q^2}^{+\infty} ds \sqrt{\frac{s - 4m_q^2}{s}} \int \frac{d^3\mathbf{k}}{2E_k}$$

with $E_k = \sqrt{s + \mathbf{k}^2}$ as the energy of the diquark.

• Mean value theorem: average in diquark mass $\sqrt{s}
ightarrow m_D$

$$\int \frac{d^3k_1}{2E_{k_1}} \int \frac{d^3k_2}{2E_{k_2}} \to \int \frac{d^3\mathbf{k}}{2\sqrt{m_D^2 + \mathbf{k}^2}}$$

 m_D =eff. mass; covariant integration in diquark **on-shell** momentum

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

Current conservation (1)

• Quark current in a Feynman diagram (one-body current)

$$j^{\mu}(q) = j_1 \gamma^{\mu} + j_2 \frac{i\sigma^{\mu\nu} q_{\nu}}{2M}$$

on-shell: current conserved $q_{\mu}[\bar{u}(p')j^{\mu}u(p)] = 0$. When the Dirac particle is off-shell, it is necessary to modify this current in order to maintain current conservation.

• If a dynamics exists, we can do this in the manner of Gross and Riska, PRC 36, 1928 (1987); Adam *et. al*, PRC66, 044003 (2002)

$$\tilde{S}(p) = \frac{h(p)}{m-p}, \qquad j_R^{\mu}(p',p) = j_R^{\mu}\left(j^{\mu}, h(p'), h(p); p', p\right)$$

 j^{μ}_{R} off-shell current, satisfies Ward-Takahashi identity

$$q_{\mu}j_{R}^{\mu} = \tilde{S}^{-1}(p') - \tilde{S}^{-1}(p')$$

Gilberto Ramalho (LFTC/UNICSUL)

54 / 39

イロト イポト イヨト イヨト 二日

Current conservation (2)

• When no dynamics exists a purely phenomenological treatment is needed

$$j^{\mu} \rightarrow j^{\mu} - (q_{\nu}j^{\nu})\frac{q^{\mu}}{q^{2}}$$
$$= j_{1}\left(\gamma^{\mu} - \frac{\not{q}q^{\mu}}{q^{2}}\right) + j_{2}\frac{i\sigma^{\mu\nu}q_{\nu}}{2M}$$

On-shell: $\not q$ term vanishes; current reduced to the 1st case

 Calculations of γ^{*}N → N^{*}: equivalent to Landau prescripton Kelly, PRC 56, 2672 (1997); Batiz and Gross, PRC 58, 2963 (1998)

$$J^{\mu} \to J^{\mu} - (q \cdot J) \frac{q^{\mu}}{q^2}$$

Restores current conservation but does not affect the observables
 DIS calculations: subtraction term - ^{q/q^µ}/_{q²} arises naturally from interaction currents neglected in impulse approximation Batiz and Gross, PRC 58, 2963 (1998)

Gilberto Ramalho (LFTC/UNICSUL)
Spectator QM: Nucleon wave function

Nucleon wave function: [PRC 77,015202 (2008); EPJA 36, 329 (2008)] Simplest structure –S-state in quark-diquark system

$$\Psi_N(P,k) = \frac{1}{\sqrt{2}} \left[\Phi_I^0 \Phi_S^0 + \Phi_I^1 \Phi_S^1 \right] \psi_N(P,k)$$

Spin states:

$$\Phi^0_S(s) \equiv u(P,s)$$
 $\Phi^1_S(s) \equiv -\varepsilon^*_{\alpha} U^{\alpha}(P,s)$

$$U^{\alpha}(P,s) = \sum_{\lambda s'} \langle \frac{1}{2}s'; 1\lambda | \frac{1}{2}s \rangle \varepsilon^{\alpha}_{\lambda} u(P,s') \to \frac{1}{\sqrt{3}} \gamma_5 \left(\gamma^{\alpha} - \frac{P^{\alpha}}{M}\right) u(P,s)$$

 $\varepsilon_{\lambda} = \varepsilon_{\lambda P}$ function of nucleon momentum Fixed-Axis polarization states; PRC 77, 035203 (2008) $\Rightarrow \Psi_N$ pure S-state

IFT-UNESP Feb. 28, 2019 56 / 39

イロト イポト イヨト イヨト 二日

Scalar wave function: Nucleon

Scalar wave functions deppendent of $(P - k)^2 = (quark momentum)^2$

$$\chi_{\scriptscriptstyle B} = \frac{(M_B - m_D)^2 - (P - k)^2}{M_B m_D} \xrightarrow{NR} \frac{\mathbf{k}^2}{m_D^2}$$

 $M_B = baryon mass; m_D = diquark mass$

Nucleon scalar wave function:

$$\begin{split} \psi_N(P,k) &= \frac{N_0}{m_D} \frac{1}{(\beta_1 + \chi_N)(\beta_2 + \chi_N)} = \frac{N_0}{m_D} \frac{1}{\beta_2 - \beta_1} \left[\frac{1}{\beta_1 + \chi_N} - \frac{1}{\beta_2 + \chi_N} \right] \\ & \xrightarrow{NR} \quad \frac{N_0}{m_D} \frac{1}{\beta_2 - \beta_1} \left[\frac{1}{\beta_1 + \frac{\mathbf{k}^2}{m_D^2}} - \frac{1}{\beta_2 + \frac{\mathbf{k}^2}{m_D^2}} \right] \end{split}$$

Position space:

$$\psi_N(P,k) \xrightarrow{FT} \frac{e^{-m_D\sqrt{\beta_1}r}}{r} - \frac{e^{-m_D\sqrt{\beta_2}r}}{r}$$

 β_1, β_2 momentum range parameters; $\beta_2 > \beta_1$

 β_1 long spatial range; β_2 short spatial range

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

IFT-UNESP Feb. 28, 2019

▲日▼ ▲□▼ ▲目▼ ▲目▼ ■ ●の00

Baryon wave function -example: Nucleon spin (I)

Example
$$|p\uparrow\rangle$$
:

$$\uparrow = \begin{pmatrix} 1\\ 0 \end{pmatrix}; \quad \chi_s = \begin{pmatrix} 1\\ 0 \end{pmatrix}$$
Spin-0:

$$\Phi_S^0 = \overbrace{\frac{1}{\sqrt{2}}(\uparrow\downarrow - \downarrow\uparrow)}^{\varepsilon^s} \uparrow = \varepsilon^s \chi_s$$
Relativistic generalization $\rightarrow \varepsilon^s u(P,\uparrow)$
Spin-1:

$$\Phi_S^1 = \frac{1}{\sqrt{6}} [2\uparrow\uparrow\downarrow - (\downarrow\uparrow + \downarrow\uparrow)\uparrow] = -\frac{1}{\sqrt{3}} (\sigma \cdot \varepsilon_P^*) \chi_s$$
Relativistic generalization $\rightarrow -(\varepsilon_P^*)_{\alpha} U^{\alpha}(P,\uparrow)$
 ε_P^* in rest frame:

$$\varepsilon_P^{\alpha}(0) = (0,0,0,1) \quad \varepsilon_P^{\alpha}(\pm) = \mp \frac{1}{\sqrt{2}} (0,1,\pm i,0)$$
 \Rightarrow Fixed-axis polarization base

$\Phi^{0,1}_S$ in terms of baryon properties

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

IFT-UNESP Feb. 28, 2019

★ ○ ★ ○ ★ ○ ★ ○ ○ ○

Baryon wave functions: B =diquark \oplus quark

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Baryon wave functions: B =diquark \oplus quark

• Not determined by a dynamical equation (complicated interaction)

3

- 4 目 ト - 4 日 ト - 4 日 ト

Baryon wave functions: B =diquark \oplus quark

- Not determined by a dynamical equation (complicated interaction)
- Combination of **diquark** (12) and single **quark** (3) states, using $SU(6) \otimes O(3)$:

$$\Psi_B = \sum_{\substack{(\text{color}) \otimes (\text{flavor}) \otimes (\text{spin}) \\ \otimes (\text{orbital}) \otimes \underbrace{\psi_B(P,k)}_{\text{radial}}}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Baryon wave functions: B =diquark \oplus quark

- Not determined by a dynamical equation (complicated interaction)
- Combination of **diquark** (12) and single **quark** (3) states, using $SU(6) \otimes O(3)$:

$$\begin{split} \Psi_B = & \sum \quad (\text{color}) \otimes (\text{flavor}) \otimes (\text{spin}) \\ & \otimes (\text{orbital}) \otimes \underbrace{\psi_B(P,k)}_{\text{radial}} \end{split}$$

• Phenomenology on ψ_B parametrization

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

IFT-UNESP Feb. 28, 2019 59 / 39

- 4 同 6 4 日 6 4 日 6

Baryon wave functions: B =diquark \oplus quark

- Not determined by a dynamical equation (complicated interaction)
- Combination of **diquark** (12) and single **quark** (3) states, using $SU(6) \otimes O(3)$:

$$\Psi_B = \sum_{\substack{(\text{color}) \otimes (\text{flavor}) \otimes (\text{spin}) \\ \otimes (\text{orbital}) \otimes \underbrace{\psi_B(P,k)}_{\text{radial}}}$$

- \bullet Phenomenology on ψ_B parametrization
- Ψ_B in rest frame using quark states

- 4 週 ト - 4 三 ト - 4 三 ト

Baryon wave functions: B =diquark \oplus quark

- Not determined by a dynamical equation (complicated interaction)
- Combination of **diquark** (12) and single **quark** (3) states, using $SU(6) \otimes O(3)$:

$$\begin{split} \Psi_B = & \sum \quad (\text{color}) \otimes (\text{flavor}) \otimes (\text{spin}) \\ & \otimes (\text{orbital}) \otimes \underbrace{\psi_B(P,k)}_{\text{radial}} \end{split}$$

- \bullet Phenomenology on ψ_B parametrization
- Ψ_B in rest frame using quark states
- Covariant generalization of Ψ_B in terms baryon properties

- 4 目 ト - 4 日 ト - 4 日 ト

CSQM: Electromagnetic currents ($\gamma B \rightarrow B'$)

Quark current $j^{\mu}_{q} \oplus$ Baryon wave function $\Psi_{B} \Rightarrow J^{\mu}$

Transition current J^{μ} in spectator formalism Franz Gross et al PR 186 (1969); PRC 45, 2094 (1992) Gross, Peña and GR, PRC77 015202 (2008); arXiv:1201.6336 [hep-ph]

Relativistic impulse approximation:

$$T^{\mu} = 3 \sum_{\lambda} \int_{k} \bar{\Psi}_{B'}(P_{+}, k) j_{q}^{\mu} \Psi_{B}(P_{-}, k)$$

diquark on-shell
 $q = P_{+} - P_{-}, \quad P = \frac{1}{2}(P_{+} + P_{-}), \qquad Q^{2} = -q^{2}$

D

.]

Quark structure and electromagnetic interaction (I)

Quark structure and electromagnetic interaction (II)

IFT-UNESP Feb. 28, 2019 62 / 39

Quark structure and electromagnetic interaction (II)

• Not important at high Q^2 [pQCD: supression $1/Q^4$], Very important at low Q^2

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

IFT-UNESP Feb. 28, 2019

Quark structure and electromagnetic interaction (II)

- Not important at high Q^2 [pQCD: supression $1/Q^4$], Very important at low Q^2
- Assume NO interference with quark dressing processes

$$F = F^B + F^{mc}$$

(bare \oplus meson cloud)

Gilberto Ramalho (LFTC/UNICSUL)

Octet baryon double ratios

Results in medium: coupling constants

Goldberger-Treimann relation

$$\begin{array}{lll} \frac{g_{\pi BB}^{*}}{g_{\pi BB}} & = & \left(\frac{f_{\pi}}{f_{\pi}^{*}}\right) \left(\frac{g_{A}^{B*}}{g_{A}^{B}}\right) \left(\frac{M_{B}^{*}}{M_{B}}\right) \\ & \simeq & \left(\frac{f_{\pi}}{f_{\pi}^{*}}\right) \left(\frac{g_{A}^{N*}}{g_{A}^{N}}\right) \left(\frac{M_{B}^{*}}{M_{B}}\right) \end{array}$$

M. L. Goldberger and S. B. Treiman, Phys. Rev. 110, 1178 (1958)

 f_{π}^{*} : M. Kirchbach and A. Wirzba, NPA 616, 648 (1997) $\frac{g_{A}^{N*}}{g_{A}^{N}}$: D. H. Lu, A. W. Thomas and K. Tsushima, arXiv:nucl-th/0112001 K. Tsushima, H. c. Kim and K. Saito, PRC 70, 038501 (2004)